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P R O C E S S O R  D I F F E R E N C E S

The differences between comparable 
process architectures, such as desktop RISC 

chips, can be dramatic, and when moving 
code between high-end desktop processors 

such as the IBM G5 and lower-end processors such as 
the Intel xScale, the amount of work required for a 
successful transition is often surprising.

Computer processor designs vary radically in their storage requirements 
(alignment of data and ordering of bytes), data sizes and formats, and, 
obviously, performance. This chapter covers some of the common issues 
you’ll encounter when moving between processor architectures. 

Note that when you’re migrating from a high-performance system to a 
lower-end one, the feature set may be portable, but your chosen algorithms 
and data structures may not scale down as neatly. This issue is addressed in 
the discussion of scalability in Chapter 14.
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Alignment

Most processors prefer (or even require) that memory accesses be aligned. 
This means that when the processor accesses a chunk of data n bytes in 
length, the chunk’s beginning address must be some multiple of n. For 
example, a four-byte variable should be on a four-byte boundary (address 
is a multiple of four); a two-byte variable should be on a two-byte boundary 
(address is a multiple of two); and so on.

However, processors often have different requirements for memory 
accesses. For example, the Intel x86 architecture allows unaligned memory 
accesses but imposes a significant performance penalty on unaligned oper-
ations. A misaligned access on many RISC processors will result in a proces-
sor fault, causing either a crash or, if the fault is handled by a software trap, 
a very slow unaligned access (the access is handled entirely in software). And 
on the ARM line of embedded processors, a misaligned access will result in 
incorrect data, which is probably the least ideal outcome, since it can result 
in incorrect behavior that is silently accepted.

NOTE Certain ARM implementations with memory management units will implement 
optional alignment checking, but this feature is not ubiquitous across the entire ARM 
family.

For maximum portability, alignment should be forced to the highest 
granularity possible. Any tricks such as pointer manipulation should be 
avoided, because they might incur unexpected misaligned accesses. One 
of the more common memory-alignment errors occurs when accessing a 
memory buffer via an invalid pointer cast.

A union is a handy mechanism that will guarantee alignment between 
two different types. For example, Motorola’s SIMD AltiVec instruction set 
requires 16-byte alignment when transferring data between the floating-
point and vector (SIMD) units:

/* Based on code from:
http://developer.apple.com/hardware/ve/alignment.html */
/* NOTE: "vector" is a keyword specific to the 
Altivec enabled GCC compilers */
vector float FillVectorFloat( float f1, float f2, float f3, float f4 )
{
   /* this union guarantees that the 'scalars' array will be 
   aligned the same as the */
   /* 'vector float v' */
   union
   {
      float scalars[ vec_step( vector float ) ];
      vector float v;
   } buffer;

   /* copy four floating point values into array of scalars */
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   buffer.scalars[0] = f1;
   buffer.scalars[1] = f2;
   buffer.scalars[2] = f3;
   buffer.scalars[3] = f4;

/* return vec float equivalent */
   return buffer.v;
}

M I S A LI G N E D  A C C E S S E S  T H R O U G H  P O I N T E R  C A S T I N G

SAL has a WAVE file-parsing function, _SAL_create_sample_from_wave(), that could 
have easily taken the buffer and simply cast it to the appropriate structure:

typedef struct
{

    char         wh_riff[ 4 ];

    sal_u32_t    wh_size;     

    char         wh_wave[ 4 ];

    char         wh_fmt[ 4 ]; 

    sal_u32_t    wh_chunk_header_size;

} _SAL_WaveHeader;

sal_error_e

SAL_create_sample_from_wav( SAL_Device *device,

                            SAL_Sample **pp_sample,

                            const void *kp_src,

                            int src_size )

{

_SAL_WaveHeader *pwh  = ( _SAL_WaveHeader * ) kp_src;

    .

    .

    .

    /* verify that this is a legit WAV file

       NOTE: wf_chunk_header_size might be a misaligned access! */

    if ( strncmp( pwh->wh_riff, "RIFF", 4 ) ||

         strncmp( pwh->wh_wave, "WAVE", 4 ) ||

         pwh->wh_chunk_header_size != 16 )

    {

        return SALERR_INVALIDPARAM;

    }

}

Depending on the alignment of kp_src, the comparison statement using pwh-
>wh_chunk_header_size may result in a misaligned access. While this won’t happen 
in the vast majority of cases, since most buffers are allocated on paragraph or page 
boundaries, if you’ve written a naive buffer allocation/free system that works on 
byte boundaries, this could be a real problem.



80 Chapter  5

The marginally slower, but safer, solution is to copy the incoming data into a 
structure, which will be aligned correctly by the compiler:

sal_error_e
SAL_create_sample_from_wav( SAL_Device *device,

                            SAL_Sample **pp_sample,

                            const void *kp_src,

                            int src_size )
{

    _SAL_WaveHeader wh;

    .

    .
    .

    /* this still makes assumptions about padding, byte ordering, etc. */

    memcpy( &wh, kp_src, sizeof( wh ) );

    /* verify that this is a legit WAV file

       NOTE: wf_chunk_header_size will be aligned correctly */

if ( strncmp( wh.wh_riff, "RIFF", 4 ) ||

         strncmp( wh.wh_wave, "WAVE", 4 ) ||
         wh.wh_chunk_header_size != 16 )

    {

        return SALERR_INVALIDPARAM;

    }
}

However, raw copies don’t handle byte ordering or padding issues, so often 
you need to parse the raw memory and transform it into the correct form, like so:

const sal_byte_t *kp_bytes = ( const sal_byte_t * ) kp_src;
    .

    .

    .
    /* read out wave header */

    memcpy( wh.wh_riff, kp_bytes, 4 );

    kp_bytes += 4;

    wh.wh_size = POSH_ReadU32FromLittle( kp_bytes );
kp_bytes += 4;

    memcpy( wh.wh_wave, kp_bytes, 4 );

    kp_bytes += 4;

    memcpy( wh.wh_fmt, kp_bytes, 4 );
    kp_bytes += 4;

    wh.wh_chunk_header_size = POSH_ReadU32FromLittle( kp_bytes );

    kp_bytes += 4;

    /* verify that this is a legit WAV file */

    if ( strncmp( wh.wh_riff, "RIFF", 4 ) ||

         strncmp( wh.wh_wave, "WAVE", 4 ) ||

         wh.wh_chunk_header_size != 16 )
    {

        return SALERR_INVALIDPARAM;

    }
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Byte Ordering and Endianess

Multibyte data types such as integers may be represented in one of two forms: 
little-endian or big-endian, indicating the order bytes are represented within the 
data type. On a little-endian architecture such as the Intel x86, the least signifi-
cant bytes are placed first (that is, at a lower address). A big-endian architec-
ture, like the Motorola PowerPC, places the most significant bytes first.

There are also mixed-endian and bi-endian machines. For example, the 
PDP-11 stored 32-bit values as two big-endian shorts (most significant bytes at 
the lower address), but with the least significant short stored at the lower 
address (2-3-0-1 where 1 corresponds to the lowest address). Many modern 
CPUs and coprocessors (network processors, graphics processing units, 
and sound chips) support bi-endian operation, where they can operate in 
little-endian or big-endian mode. This ability helps both performance and 
portability. Unfortunately, rarely can an application control this feature; 
the operating system or device drivers usually control the endianess mode 
for specific hardware.

Big-Endian versus Little-Endian Values

Consider the following example:

union
{
   long l; /* assuming sizeof( long ) == 4 */
   unsigned char c[ 4 ];
} u;
u.l = 0x12345678;
printf( “c[ 0 ] = 0x%x\n”, ( unsigned ) u.c[ 0 ] );

Here are the little-endian and big-endian values for this example:

When run on a little-endian machine, you would expect the output to be 
as follows:

c[ 0 ] = 0x78

And on a big-endian CPU, you would expect to see this output:

c[ 0 ] = 0x12

Address Little-Endian Value Big-Endian Value

&c[ 0 ] 0x78 0x12

&c[ 1 ] 0x56 0x34

&c[ 2 ] 0x34 0x56

&c[ 3 ] 0x12 0x78
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This poses a significant problem: multibyte data cannot be shared 
directly between processors with different byte ordering. For example, if 
you were to write some multibyte data to a file and then read it back on 
an architecture of different endianess, the data would be garbled, like so:

void write_ulong( FILE *fp, unsigned long u )
{
   /* BAD!  Storing to disk in 'native' format of the current CPU */
   fwrite( &u, sizeof( u ), 1, fp );
}
unsigned long read_ulong( FILE *fp )
{
   unsigned long u;
   /* BAD!  Blithely assuming that the format on disk matches the
   processor's byte ordering! */
   fread( &u, sizeof( u ), 1, fp );
   return u;
}

Standardized Storage Format

A solution to the problem of different byte ordering is to store data in a 
standardized byte order. Software running on processors that do not match 
this standardized format must then manually “swizzle” the bytes to convert 
from the canonical format to the processor’s native format. Another option 
is to store data in the platform’s native byte order and then mark what that 
order is in the file’s header. Several file formats, such as TIFF, specify the 
endianess this way.

B Y T E - O R D E R I N G  E X A M P LE :

P O W E R P C  V E R S U S  I N T E L  X 8 6

Now let’s consider an example to demonstrate the effects of byte ordering. If you 
were to execute the following on a PowerPC:

write_ulong( fp, 0x12345678 );

and then run it again on an Intel x86 like this:

unsigned long ul = read_ulong( fp );

you would be in for a surprise: the variable ul will contain 0x78563412 on the Intel 
processor. The reason is that the bytes on disk are in “PowerPC format” (stored as 
0x12,0x34,0x56,0x78), which will be backward when read and stored into ul 
(0x12 in the lowest address, 0x34 in the next, and so on). This is probably one of 
the most common—if not the most common—bugs programmers encounter when 
migrating between platforms.
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NOTE Some file formats, such as the TIFF graphics format, don’t have a fixed endianess. 
Instead, a program must inspect the TIFF header to determine its byte ordering.

Now let’s assume that a standardized storage format is big-endian. You 
could then write the code shown at the beginning of this section as follows:

void write_ulong( FILE *fp, unsigned long u )
{
   unsigned char c[ 4 ];
   c[ 0 ] = ( unsigned char ) ( u >> 24 );
   c[ 1 ] = ( unsigned char ) ( u >> 16 );
   c[ 2 ] = ( unsigned char ) ( u >> 8 );
   c[ 3 ] = ( unsigned char ) u;
   fwrite( c, sizeof( c ), 1, fp );
}
unsigned long read_ulong( FILE *fp )
{
   unsigned char c[ 4 ];
   unsigned long u = 0;

   fread( c, sizeof( c ), 1, fp );

   u |= ( ( unsigned long ) c[ 0 ] ) << 24;
   u |= ( ( unsigned long ) c[ 1 ] ) << 16;
   u |= ( ( unsigned long ) c[ 2 ] ) << 8;
   u |= ( ( unsigned long ) c[ 3 ] );
   return u;
}

This code example makes no assumption regarding the data’s organi-
zation in memory; instead, it directly extracts the relevant values by shifting 
and masking. The only complaint with this code is that it exacts a perfor-
mance toll even when the storage format matches the processor’s native 
format. 

To optimize such situations, you can detect byte ordering and perform 
manual construction/reconstruction only when necessary, as follows:

unsigned long read_ulong( FILE *fp )
{
   unsigned char c[ 4 ];
   unsigned long u;

   fread( c, sizeof( c ), 1, fp );

   /* this function is discussed next */
   if ( is_big_endian() )
   {
      /* this is fine, but only on big-endian systems */
      /* Obviously you'd move this conditional outside */
      /* this loop for performance */
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      return * ( unsigned long * ) c;
   }

   u  = ( ( unsigned long ) c[ 0 ] ) << 24;
   u |= ( ( unsigned long ) c[ 1 ] ) << 16;
   u |= ( ( unsigned long ) c[ 2 ] ) << 8;
   u |= ( ( unsigned long ) c[ 3 ] );
   return u;
}

Now you simply write your is_big_endian() function, which you can base 
on the initial code fragment that illustrated the problem:

int
is_big_endian( void )
{
   union
   {
      unsigned long l;
      unsigned char c[ 4 ];
   } u;
   u.l = 0xFF000000;
   /* big-endian architectures will have the MSB at 
   the lowest address */
   if ( u.c[ 0 ] == 0xFF )
      return 1;
   return 0;
}

NOTE If you control your storage format, then you can avoid byte-ordering concerns by using 
a text format for data storage. This is discussed in more detail in Chapter 15.

Fixed Network Byte Ordering

The TCP/IP network protocol specifies a big-endian network byte order, 
which means that parameters provided to the network layer (but not the 
actual data being transmitted) must be in big-endian format. 

For example, a 32-bit IPv4 address and 16-bit port specification, such as 
the ones used in the sockaddr structure, must be in network order. This 
means that this code:

struct sockaddr_in svr;
/* UNPORTABLE: sin_port is expected to be in network byte order! */
svr.sin_port = PORT_NO; 

will mysteriously fail on little-endian architectures, since PORT_NO is in the 
incorrect byte order. 
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In order to fix this, the BSD sockets and Winsock APIs provide helper 
functions that convert from host to network byte ordering and back:

uint32_t htonl( uint32_t hostlong );   /* host to network long */
uint16_t htons( uint16_t hostshort );  /* host to network short */
uint32_t ntohl( uint32_t netlong );    /* network to host long */
uint16_t ntohs( uint16_t netshort );   /* network to host short */

The portable version of the port assignment statement would then be:

struct sockaddr_in svr;
svr.sin_port = htons( PORT_NO ); /* convert from host to network ordering */

Byte ordering should not be a concern for most programs unless they 
are storing and/or loading binary data or directly extracting bytes by refer-
ence from larger multibyte values. As long as you convert to and from a 
predefined byte-ordering format for storage and avoid directly extracting 
bytes by reference from larger multibyte values, processor endianess should 
not be a major issue.

Signed Integer Representation

Many programmers assume that a signed integer is represented in two’s 
complement form, since this is the most common representation on 
modern computer systems; however, the ANSI C and C++ specifications 
do not dictate the format of a signed integer. Some processors do use 
one’s complement or even sign-magnitude format. If your code might 
run on those systems, you should not make assumptions about signed 
integer ranges and bit formats.

For example, instead of assuming that a 16-bit signed value has a mini-
mum value of –32768, use the preprocessor constant SHRT_MIN defined in 
<limits.h>. Another common case is the assumption that ~0 == –1, which is 
not true on a one’s complement machine, where –0 == ~0.

Size of Native Types

Processors have a natural word size, corresponding to their internal register 
size, which represents the optimal size of a variable. Originally, there was an 
expectation that C compilers would make the int type correspond to this 
word size, allowing a programmer to use int any time optimal performance 
was desired (assuming no other constraints on the range of the variable in 
question). This was true for many years; however, at some point, a critical 
mass of programs made the assumption that sizeof(int)==4.

The assumption about int size played havoc with compiler writers who 
needed backward compatibility but who were targeting 64-bit platforms. 
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P O S H  E X A M P LE :  B Y T E -O R DE R I N G  C A PA B I LI T I E S

POSH provides a host of byte-ordering assistance functions and macros. First, it has 
a slew of byte-swapping functions suitable for converting little-endian to big-endian 
and back:

extern posh_u16_t  POSH_SwapU16( posh_u16_t u );
extern posh_i16_t  POSH_SwapI16( posh_i16_t u );

extern posh_u32_t  POSH_SwapU32( posh_u32_t u );

extern posh_i32_t  POSH_SwapI32( posh_i32_t u );

In addition, it has serialization and deserialization functions that automatically 
convert from the native format to a user-specified destination format:

extern posh_u16_t *POSH_WriteU16ToLittle( void *dst, posh_u16_t value );
extern posh_i16_t *POSH_WriteI16ToLittle( void *dst, posh_i16_t value );

extern posh_u32_t *POSH_WriteU32ToLittle( void *dst, posh_u32_t value );

extern posh_i32_t *POSH_WriteI32ToLittle( void *dst, posh_i32_t value );

extern posh_u16_t *POSH_WriteU16ToBig( void *dst, posh_u16_t value );

extern posh_i16_t *POSH_WriteI16ToBig( void *dst, posh_i16_t value );

extern posh_u32_t *POSH_WriteU32ToBig( void *dst, posh_u32_t value );

extern posh_i32_t *POSH_WriteI32ToBig( void *dst, posh_i32_t value );

extern posh_u16_t  POSH_ReadU16FromLittle( const void *src );

extern posh_i16_t  POSH_ReadI16FromLittle( const void *src );

extern posh_u32_t  POSH_ReadU32FromLittle( const void *src );

extern posh_i32_t  POSH_ReadI32FromLittle( const void *src );

extern posh_u16_t  POSH_ReadU16FromBig( const void *src );

extern posh_i16_t  POSH_ReadI16FromBig( const void *src );

extern posh_u32_t  POSH_ReadU32FromBig( const void *src );

extern posh_i32_t  POSH_ReadI32FromBig( const void *src );

On top of these are macros that convert a value to native format. These macros 
are redefined depending on the byte order of the current platform:

#if defined POSH_LITTLE_ENDIAN

#  define POSH_LittleU16(x) (x)

#  define POSH_LittleU32(x) (x)

#  define POSH_LittleI16(x) (x)

#  define POSH_LittleI32(x) (x)

#  if defined POSH_64BIT_INTEGER

#    define POSH_LittleU64(x) (x)

#    define POSH_LittleI64(x) (x)

#  endif /* defined POSH_64BIT_INTEGER */

#  define POSH_BigU16(x) POSH_SwapU16(x)

#  define POSH_BigU32(x) POSH_SwapU32(x)

#  define POSH_BigI16(x) POSH_SwapI16(x)

#  define POSH_BigI32(x) POSH_SwapI32(x)
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#  if defined POSH_64BIT_INTEGER

#    define POSH_BigU64(x) POSH_SwapU64(x)

#    define POSH_BigI64(x) POSH_SwapI64(x)

#  endif /* defined POSH_64BIT_INTEGER */

#else

#  define POSH_BigU16(x) (x)

#  define POSH_BigU32(x) (x)

#  define POSH_BigI16(x) (x)

#  define POSH_BigI32(x) (x)

#  if defined POSH_64BIT_INTEGER

#    define POSH_BigU64(x) (x)

#    define POSH_BigI64(x) (x)

#  endif /* POSH_64BIT_INTEGER */

#  define POSH_LittleU16(x) POSH_SwapU16(x)

#  define POSH_LittleU32(x) POSH_SwapU32(x)

#  define POSH_LittleI16(x) POSH_SwapI16(x)

#  define POSH_LittleI32(x) POSH_SwapI32(x)

#  if defined POSH_64BIT_INTEGER

#    define POSH_LittleU64(x) POSH_SwapU64(x)

#    define POSH_LittleI64(x) POSH_SwapI64(x)

#  endif /* POSH_64BIT_INTEGER */

#endif

With these macros, an application can trivially convert to and from any byte 
ordering without needing to explicitly detect the current platform’s endianess. The 
previous function to read an unsigned long value then becomes:

unsigned long read_ulong( FILE *fp )
{

   unsigned char c[ 4 ];

   unsigned long u;

   fread( c, sizeof( c ), 1, fp );

   return POSH_ReadU32FromBig( c );

}

or

unsigned long read_ulong( FILE *fp )

{

   unsigned long u;

   fread( u, sizeof( u ), 1, fp );

   return POSH_BigU32( u );

}
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As a result, numerous models were introduced for 64-bit architectures, 
with varying emphasis on interoperability with 32-bit platforms versus ideal 
performance for 64-bit platforms. These models have names like LP64, 
ILP64, LLP64, ILP32, and LP32, which indicate the size of the core C data 
types, as shown in Table 5-1. L corresponds to a long, P corresponds to 
pointer size, I corresponds to int, and LL corresponds to a long long. (Other 
models exist as well; these are just a few of the more common ones.)

NOTE long long is a type specific to a few compilers, notably GCC. Other compilers, such as 
Microsoft Visual C++, use an _int64 type instead.

Most programmers are familiar with the traditional 32-bit programming 
model, ILP32, where integers, longs, and pointers are 32 bits in size. LP32, 
originally used by the Win16 C API, is an even simpler specification designed 
around the idiosyncrasies of the Intel 8086 family, which had 16-bit integer 
registers but 20-bit (8086) or 24-bit (80286) addressing. (And, even more 
idiosyncratic, the 8086 and 80286 processors used a segmented addressing 
architecture.)

Since the ILP32 model lacks 64-bit types, it is inappropriate for 64-bit 
CPUs, which have an address space beyond the 4 GB limit of 32-bit systems. 
For 64-bit CPUs, you need 64-bit pointers, which all the other models have. 
All that remains then is to decide what is more important:

� Maintaining the assumption that sizeof(int)==sizeof(long)==sizeof(void *)

� Maintaining the assumption that sizeof(int)==machine word size

� Maintaining the assumption that sizeof(int)==4

Since the first two assumptions are mutually exclusive on 64-bit 
architectures, confusion ensues (thus the proliferation of models). 

Regrettably, the ANSI standard does not take a position on this issue, 
leaving it up to each compiler writer (and compiler user) to deal with this on 
a case-by-case basis. Sun, SGI, and Compaq/DEC use the LP64 model for 
their Unix variants, whereas Microsoft uses the LLP64 (or, more accurately, 
P64) model for 64-bit Windows support. 

Microsoft was concerned primarily with a clean, easy, and safe migration 
to Win64. To ensure this, the Microsoft developers wanted to avoid, as much 
as possible, breaking assumptions in 32-bit code while still gaining 64-bit 

Table 5-1: Some Programming Models

Type LP64 ILP64 LLP64 ILP32 LP32

char 8 8 8 8 8

short 16 16 16 16 16

int 32 64 32 32 16

long 64 64 32 32 32

long long 64

pointer 64 64 64 32 32
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pointers. The LLP64 model provides this by creating 64-bit integers only by 
using the _int64 or long long types. Structures that do not contain pointers 
retain the exact same size between ILP32 and LLP64, an important consid-
eration for backward-compatibility. 

This puts you, the ostensibly portable programmer, in a predicament: 
you must decide whether to use the C native types (short, int, and long) 
or a set of sized types like those provided by C99 (inttypes.h), as shown in 
Table 5-2. 

As a rule, if you absolutely must enforce a particular size—for example, 
when creating a rigidly formatted structure definition or when you require a 
guaranteed range—use the sized types. If you do not require a specific range, 
such as when you need an indexing variable that will reach only into the 
thousands, the C native integer type should allow the compiler to make the 
right choice for you, but, unfortunately, this is not always the case. Some 
platforms err on the side of compatibility and provide 32-bit integers when 
the architecture is natively 64-bit.

A program that requests a particular size variable, such as a 32-bit integer, 
by using C99’s uint32_t type, may find itself suffering from very poor perfor-
mance when migrating to a lower-end platform that does not support the 
operations on those sizes natively. For example, the 8086 processor is a 16-bit 
processor, so 32-bit integer operations often required a function call. Be 
careful to specify exact sizes only when you truly need them, such as when 
you have range or packing concerns.

Address Space

One of the major signposts for the advancement of computer architectures 
has been address space, or the total amount of memory a computer system can 
easily access. 

Early computers could access only the tiniest amount of memory due to 
limitations with both the size of a pointer and the available hardware. 

Table 5-2: C99 Sized Types

Type Description

int8_t Signed 8-bit integer

uint8_t Unsigned 8-bit integer

int16_t Signed 16-bit integer

uint16_t Unsigned 16-bit integer

int32_t Signed 32-bit integer

uint32_t Unsigned 32-bit integer

int64_t Signed 64-bit integer

uint64_t Unsigned 64-bit integer
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As a general, but inaccurate, rule, a computer system may access no 
more memory than the size of a pointer will allow; that is, addressable bytes 
are 2-to-the-pointer bits in size. However, there are many exceptions to this, 
such as systems where pointers are larger than the actual address space. The 
Motorola 68000 could address only 16 MB, even though it had 32-bit pointer 
registers, and the Intel 8086 could address only 64 KB easily (with a single 
pointer access) but up to 1 MB in total using its segmented memory archi-
tecture. Today, we’re seeing machines with 64-bit pointers; however, even 
those can access a much smaller range of memory, sometimes as low as 40 
bits. Older computer systems used paged, windowed, or banked memory 
access to reach more memory than was addressable natively.

Programs that work with large arrays or structures need to be aware of 
any potential limitations as they migrate to lower-end platforms. This is often 
a surprising gotcha that programmers don’t expect. For example, something 
as innocuous as this:

static unsigned char buffer[ 0x20000 ];

suddenly stops building when targeting a lower-end system with, say, 16-bit 
pointers.

Summary

Along with operating system differences, the most fundamental component 
of a platform is the choice of processor. Processors can differ radically in 
performance, features, and implementations issues, and this is one of the 
most common areas during portable software development. This chapter 
covers the majority of key issues related to architectural differences between 
processors.

P O S H  E X A M P L E :  S I Z E D  T Y P E S

POSH supplies analogs to the C99 (inttypes.h) definitions, as follows:

posh_byte_t Unsigned 8-bit quantity

posh_i8_t Signed 8-bit integer

posh_u8_t Unsigned 8-bit integer

posh_i16_t Signed 16-bit integer

posh_u16_t Unsigned 16-bit integer

posh_i32_t Signed 32-bit integer

posh_u32_t Unsigned 32-bit integer

posh_i64_t Signed 64-bit integer

posh_u64_t Unsigned 64-bit integer


