
WICKED COOL
PERL SCRIPTS

U s e f u l P e r l S c r i p t s T h a t
S o l v e D i f f ic u l t P r o b l e m s

by Steve Oual l ine

San Francisco

WCPS_02.book Page iii Tuesday, January 10, 2006 2:36 PM

assistant
final

http://www.nostarch.com/wcps.htm
http://www.amazon.com/gp/product/1593270623/
http://search.barnesandnoble.com/booksearch/isbninquiry.asp?ISBN=1593270623&pdf=y

3
C G I D E B U G G I N G

Perl and the Web were made for each
other. The Perl language is ideal for

processing text in an environment where
speed does not matter. Perl can munch text and

use it to produce dynamic web pages with ease.
But programming in a CGI environment is not the easiest thing in the

world. There is no built-in CGI debugger. Also, error messages and other
information can easily get lost or misplaced. In short, if your program is not
perfect, things can get a little weird.

In this chapter, I’ll show you some of the Perl hacks you can use to help
debug your CGI programs.

#10 Hello World

This is the CGI version of “Hello World.” In spite of it being a very simple pro-
gram, it is extremely useful. Why? Because if you can run it, you know that
your server is properly configured to run CGI programs. And from bitter expe-
rience I can tell you that sometimes configuring the server is half the battle.

WCPS_02.book Page 45 Tuesday, January 10, 2006 2:36 PM

No Starch Press, Copyright © 2006 by Steve Oualline

46 Chapter 3

The Code

1 #!/usr/bin/perl -T
2
3 use strict;
4 use warnings;
5
6 print <<EOF
7 Content-type: text/html
8
9 <HEAD><TITLE>Hello</TITLE></HEAD>

10 <BODY>
11 <P>
12 Hello World!
13 </BODY>
14
15 EOF

Running the Script
To run the script, just point your web browser at the correct URL. If you are
using the default Apache configuration, the script resides in ~apache/cgi-bin/
hello.pl and the URL to run it is http://server/cgi-bin/hello.pl.

The Results

How It Works
The script just writes out its greeting, so the script itself is very simple.

The purpose of the script is to help you identify all the problems outside
the script that can prevent CGI scripts from running.

WCPS_02.book Page 46 Tuesday, January 10, 2006 2:36 PM

No Starch Press, Copyright © 2006 by Steve Oualline

CGI Debugging 47

Hacking the Script
In this section, I’m supposed to tell you how to enhance the script. But really,
what can you do with “Hello World!”?

I suppose you could enhance it by saying “Hello Solar System,” “Hello
Galaxy,” or “Hello Universe.” You are limited only by your imagination.

#11 Displaying the Error Log

One of the problems with developing CGI scripts is that there’s no error
displayed when you make a syntax error or other programming mistake.
All you get is a screen telling you Internal Server Error. That tells you next
to nothing.

The real information gets redirected to the error_log file. The messages
in this file are extremely useful when it comes to debugging a program.

However, these files are normally only accessible by a few users such as
apache and root. These are privileged accounts and you don’t want to give
everybody access to them.

So we have a problem. Programmers need to see the log files, and the
system administrators want to keep the server protected. The solution is to
write a short Perl script to let a user view the last few lines of the error_log.

The Code

1 #!/usr/bin/perl -T
2 use strict;
3
4 use CGI::Thin;
5 use CGI::Carp qw(fatalsToBrowser);
6 use HTML::Entities;
7
8 use constant DISPLAY_SIZE => 50;
9

10
11 # Call the program to print out the stuff
12 print <<EOF ;
13 Content-type: text/html
14 \n
15 <HEAD><TITLE>Error Log</TITLE></HEAD>
16 <BODY BGCOLOR="#FF8080">
17 <H1>Error Log</H1>
18 EOF
19
20 if (not open IN_FILE, "</var/log/httpd/error_log") {
21 print "<P>Could not open error_log\n";
22 exit (0);
23 }

WCPS_02.book Page 47 Tuesday, January 10, 2006 2:36 PM

No Starch Press, Copyright © 2006 by Steve Oualline

48 Chapter 3

24
25
26 # Lines from the file
27 my @lines = <IN_FILE>;
28
29 my $start = $#lines - DISPLAY_SIZE + 1;
30 if ($start < 0) {
31 $start = 0;
32 }
33 for (my $i = $start; $i <= $#lines; ++$i) {
34 print encode_entities($lines[$i]), "
\n";
35 }

Running the Script
The script must be installed in the CGI program directory and must be
setuid to root (or some other user who has access to the error logs). It is
accessed through a web browser.

The Results
From this display you can see that the last script run was bad.pl and it errored
out because of a Premature end of script header error. (Translation: we forgot
the #!/usr/bin/perl at the top of the script.)

WCPS_02.book Page 48 Tuesday, January 10, 2006 2:36 PM

No Starch Press, Copyright © 2006 by Steve Oualline

CGI Debugging 49

How It Works
The script starts with the magic line that runs Perl with the -T flag. The -T
tells Perl to turn on taint checks. This helps prevent malicious user input
from doing something nasty inside your program. It is a good idea to turn
on taint for any CGI program. (We’ll discuss taint mode in more detail in
the next chapter.)

1 #!/usr/bin/perl -T

The script makes use of the CGI::Carp module. This module will catch any
fatal errors and print out an error message that is readable by the browser.
This means that error messages show up in the browser instead of going only
to the error log.

This is especially a good idea for this script. If this script errors out, you
can’t use the error log script to find out what went wrong (because this is the
error log script).

5 use CGI::Carp qw(fatalsToBrowser);

Start by outputting a page header. The background color chosen for
the errors is #FF8080, which is a sort of sick pink. It looks ugly, but the color
screams “Errors!”

12 print <<EOF ;
13 Content-type: text/html
14 \n
15 <HEAD><TITLE>Error Log</TITLE></HEAD>
16 <BODY BGCOLOR="#FF8080">
17 <H1>Error Log</H1>
18 EOF

Next, open the log file and read all lines in it:

26 # Lines from the file
27 my @lines = <IN_FILE>;

Finally it’s just a matter of printing the last 50 lines. The only trick is that
you can’t print them directly (they contain text and you want HTML). So the
text is processed through the encode_entities function to turn nasty ASCII
characters into something a browser can understand.

33 for (my $i = $start; $i <= $#lines; ++$i) {
34 print encode_entities($lines[$i]), "
\n";
35 }

WCPS_02.book Page 49 Tuesday, January 10, 2006 2:36 PM

No Starch Press, Copyright © 2006 by Steve Oualline

50 Chapter 3

Hacking the Script
One problem with this script is that it exposes the entire error log to anyone
who can access the page. You may want to utilize authentication to prevent
unauthorized usage.

Or you can restrict the listing so that only the information for programs
created by the user is displayed.

#12 Printing Debugging Information

CGI programming requires different skills. Not only do you have to know
Perl programming, but also HTML and HTML forms. Sometimes what’s in
the form and what you think is in the form differ. As a result, the inputs to
your CGI program aren’t what it expects and the program fails.

To help locate errors, it’s nice to know the exact inputs to a program.
This shows the use of a debug function that prints out all the CGI and environ-
ment parameters, giving the programmer a lot of extremely useful debugging
information.

The Code

1 #!/usr/bin/perl -T
2 use strict;
3
4 use CGI::Thin;
5 use CGI::Carp qw(fatalsToBrowser);
6 use HTML::Entities;
7
8 #
9 # debug -- print debugging information to the screen

10 #
11 sub debug()
12 {
13 print "<H1>DEBUG INFORMATION</H1>\n";
14 print "<H2>Form Information</H2>\n";
15 my %form_info = Parse_CGI();
16 foreach my $cur_key (sort keys %form_info) {
17 print "
";
18 if (ref $form_info{$cur_key}) {
19 foreach my $value (@{$form_info{$cur_key}}) {
20 print encode_entities($cur_key), " = ",
21 encode_entities($value), "\n";
22 }
23 } else {
24 print encode_entities($cur_key), " = ",
25 encode_entities(
26 $form_info{$cur_key}), "\n";

WCPS_02.book Page 50 Tuesday, January 10, 2006 2:36 PM

No Starch Press, Copyright © 2006 by Steve Oualline

CGI Debugging 51

27 }
28 }
29 print "<H2>Environment</H2>\n";
30 foreach my $cur_key (sort keys %ENV) {
31 print "
";
32 print encode_entities($cur_key), " = ",
33 encode_entities($ENV{$cur_key}), "\n";
34 }
35 }
36
37 # Call the program to print out the stuff
38 print "Content-type: text/html\n";
39 print "\n";
40 debug();

Using the Function
To use the function, simply put it in your CGI program and call it.

The Results
Here’s the result of running the script. The form we filled in to get to this
script took two parameters, a width and a height. From the debug output you
can see the values we filled in.

You can also see all the environment information passed to us by the CGI
system.

WCPS_02.book Page 51 Tuesday, January 10, 2006 2:36 PM

No Starch Press, Copyright © 2006 by Steve Oualline

52 Chapter 3

How It Works
The script uses the Parse_CGI function to grab all the CGI parameters. These
are stored in the hash %form_hash:

15 my %form_info = Parse_CGI();

The hash creates a

form_variable => value

mapping. But there is a problem. Some form elements, like a multiple-
selection list, can have more than one value. In that case the “value”
returned is not a real value but instead a reference to an array of values.

In order to print things, your code needs to know the difference between
the two. This is done using the ref function. If you have an array reference,
you print the elements. If you have something else, you just print the value:

16 foreach my $cur_key (sort keys %form_info) {
17 print "
";
18 if (ref $form_info{$cur_key}) {
19 foreach my $value (@{$form_info{$cur_key}}) {
20 print encode_entities($cur_key), " = ",
21 encode_entities($value), "\n";
22 }
23 } else {
24 print encode_entities($cur_key), " = ",
25 encode_entities(
26 $form_info{$cur_key}), "\n";
27 }
28 }

The environment is printed using a similar system. Since you don’t have
to worry about multiple values this time, the printing is a bit simpler:

30 foreach my $cur_key (sort keys %ENV) {
31 print "
";
32 print encode_entities($cur_key), " = ",
33 encode_entities($ENV{$cur_key}), "\n";
34 }

Between the environment and the CGI parameters, you’ve printed every
input to a CGI program.

Hacking the Script
In the field, it would be nice to be able to turn on and off the debugging out-
put at will. One technique is use a remote shell on the server to create a file
such as /tmp/cgi_debug and, if it is present, turn on the debugging.

WCPS_02.book Page 52 Tuesday, January 10, 2006 2:36 PM

No Starch Press, Copyright © 2006 by Steve Oualline

CGI Debugging 53

The debug function can also be augmented to print out more information,
such as the state of program variables or the contents of information files.

Printing information to the screen is one of the more useful ways of
getting debugging information out of a CGI system.

#13 Debugging a CGI Program Interactively

Perl comes with a good interactive debugger. There’s just one problem with
it: You have to have a terminal to use it. In the CGI programming environ-
ment, there are no terminals.

Fortunately, there is another Perl debug, ptkdb. (The module name is
Devel::ptkdb. If you install this module, you’ve installed the debugger.)

The ptkdb debugger requires a windowing system to run. In other words,
if the web server can contact your X server, you can do interactive debugging
of your CGI script.

The only trick is how to get things started. That’s where this debugging
script comes in.

The Code

1 #!/usr/bin/perl -T

2 #

3 # Allows you to debug a script by starting the

4 # interactive GUI debugger on your X screen.

5 #

6 use strict;

7 use warnings;

8

9 $ENV{DISPLAY} = ":0.0"; # Set the name of the display

10 $ENV{PATH}="/bin:/usr/bin:/usr/X11R6/bin:";

11

12 system("/usr/bin/perl -T -d:ptkdb hello.pl");

Running the Script
The first thing you need to do is edit the script and make sure that it sets the
environment variable DISPLAY to the correct value. The name of the main
screen of an X Window System is host:0.0, where host is the name of the host
running the X server. If no host is specified, then the local host is assumed.

NOTE If you are running an X Window System with multiple displays, the display name may
be different. But if you’re smart enough to connect multiple monitors to your computer,
you’re smart enough to set the display without help.

The other thing you’ll need to do is to change the name of the program
being debugged. In this example, it’s hello.pl, but you should use the name
of your CGI program.

WCPS_02.book Page 53 Tuesday, January 10, 2006 2:36 PM

No Starch Press, Copyright © 2006 by Steve Oualline

54 Chapter 3

Once you’ve made these edits and copied the start-debug.pl script into
the CGI directory, point your browser at the start-debug.pl script:

$ mozilla http://localhost/cgi-bin/start-debug.pl

The Results
The script will start a debugging session on the script you specified.

You can now use the debugger to go through your code step by step in
order to find problems.

How It Works
The simple answer is that it executes the following command:

$ perl -d:ptkdb script

WCPS_02.book Page 54 Tuesday, January 10, 2006 2:36 PM

No Starch Press, Copyright © 2006 by Steve Oualline

CGI Debugging 55

Unfortunately, there are a few details you have to worry about. First, the
script is run with the taint option:

1 #!/usr/bin/perl -T

Taint mode turns on extra security checks which prevent a Perl program
from using user-supplied data in an insecure manner.

Next you set the display so that the debugger knows where to display its
window:

9 $ENV{DISPLAY} = ":0.0"; # Set the name of the display

Because taint checks are turned on, the system function will not work.
That’s because the system function uses the PATH environment variable to find
commands. Since PATH comes from the outside, it’s tainted and cannot be used
for anything critical.

The solution is to reset the path in the script. Once this is done, PATH is
untainted and the system function works:

10 $ENV{PATH}="/bin:/usr/bin:/usr/X11R6/bin:";

All that’s left is to run the real script with debugging enabled:

12 system("/usr/bin/perl -T -d:ptkdb hello.pl");

Hacking the Script
This script is extremely limited. It can only debug programs named hello.pl.
With a little work, you could create a CGI interface to the front end and make
the script debug anything.

This brings us to the other problem with this script: no security. If you can
get to the program, you can get to the debugger. From the debugger, you
can do a lot of damage. It would be nice if the script let only good people
run it.

But as a debugging tool, it’s a whole lot better than the usual CGI
debugging techniques of hope, pray, and print.

WCPS_02.book Page 55 Tuesday, January 10, 2006 2:36 PM

No Starch Press, Copyright © 2006 by Steve Oualline

