
3
B E G I N N I N G  D A T A 

E X P L O R A T I O N   W I T H  S E L E C T

For me, the best part of digging into data 
isn’t the prerequisites of gathering, loading, 

or cleaning the data, but when I actually get 
to interview the data. Those are the moments 

when I discover whether the data is clean or dirty, 
whether it’s complete, and, most of all, what story the 
data can tell. Think of interviewing data as a process 
akin to interviewing a person applying for a job. You 
want to ask questions that reveal whether the reality 
of their expertise matches their résumé.

Interviewing the data is exciting because you discover truths. For 
 example, you might find that half the respondents forgot to fill out the 
email field in the questionnaire, or the mayor hasn’t paid property taxes 
for the past five years. Or you might learn that your data is dirty: names are 
spelled inconsistently, dates are incorrect, or numbers don’t jibe with your 
expectations. Your findings become part of the data’s story.

Practical SQL 2e (Sample Chapter) © 2021 by Anthony DeBarros



2   Chapter 3

In SQL, interviewing data starts with the SELECT keyword, which 
retrieves rows and columns from one or more of the tables in a database. 
A SELECT statement can be simple, retrieving everything in a single table, or 
it can be complex enough to link dozens of tables while handling multiple 
calculations and filtering by exact criteria.

We’ll start with simple SELECT statements and then look into the more 
powerful things SELECT can do.

Basic SELECT Syntax
Here’s a SELECT statement that fetches every row and column in a table called 
my_table:

SELECT * FROM my_table;

This single line of code shows the most basic form of a SQL query. The 
asterisk following the SELECT keyword is a wildcard, which is like a stand-in 
for a value: it doesn’t represent anything in particular and instead repre-
sents everything that value could possibly be. Here, it’s shorthand for “select 
all columns.” If you had given a column name instead of the wildcard, 
this command would select the values in that column. The FROM keyword 
indicates you want the query to return data from a particular table. The 
semicolon after the table name tells PostgreSQL it’s the end of the query 
statement.

Let’s use this SELECT statement with the asterisk wildcard on the teach-
ers table you created in Chapter 2. Once again, open pgAdmin, select the 
analysis database, and open the Query Tool. Then execute the statement 
shown in Listing 3-1. Remember, as an alternative to typing these state-
ments into the Query Tool, you can also run the code by clicking Open File 
and navigating to the place where you saved the code you downloaded from 
GitHub. Always do this if you see the code is truncated with --snip--. For 
this chapter, you should open Chapter_03.sql and highlight each statement 
before clicking the Execute/Refresh icon.

SELECT * FROM teachers;

Listing 3-1: Querying all rows and columns from the teachers table

Once you execute the query, the result set in the Query Tool’s output 
pane contains all the rows and columns you inserted into the teachers table 
in Chapter 2. The rows may not always appear in this order, but that’s okay.

id    first_name    last_name    school                 hire_date     salary
--    ----------    ---------    -------------------    ----------    ------
1     Janet         Smith        F.D. Roosevelt HS      2011-10-30    36200
2     Lee           Reynolds     F.D. Roosevelt HS      1993-05-22    65000
3     Samuel        Cole         Myers Middle School    2005-08-01    43500
4     Samantha      Bush         Myers Middle School    2011-10-30    36200
5     Betty         Diaz         Myers Middle School    2005-08-30    43500
6     Kathleen      Roush        F.D. Roosevelt HS      2010-10-22    38500

Practical SQL 2e (Sample Chapter) © 2021 by Anthony DeBarros



Beginning Data Exploration with SELECT   3

Note that the id column (of type bigserial) is automatically filled with 
sequential integers, even though you didn’t explicitly insert them. Very 
handy. This auto-incrementing integer acts as a unique identifier, or key, 
that not only ensures each row in the table is unique, but also later gives us 
a way to connect this table to other tables in the database.

Before we move on, note that you have two other ways to view all rows 
in a table. Using pgAdmin, you can right-click the teachers table in the 
object tree and choose View/Edit DataAll Rows. Or you can use a little-
known bit of standard SQL:

TABLE teachers;

Both provide the same result as the code in Listing 3-1. Now, let’s refine 
this query to make it more specific.

Querying a Subset of Columns
Often, it’s more practical to limit the columns the query retrieves, especially 
with large databases, so you don’t have to wade through excess information. 
You can do this by naming columns, separated by commas, right after the 
SELECT keyword. Here’s an example:

SELECT some_column, another_column, amazing_column FROM table_name;

With that syntax, the query will retrieve all rows from just those three 
columns.

Let’s apply this to the teachers table. Perhaps in your analysis you want 
to focus on teachers’ names and salaries, not the school where they work 
or when they were hired. In that case, you would select just the relevant 
columns. Enter the statement shown in Listing 3-2. Notice that the order of 
the columns in the query is different than the order in the table: you’re able 
to retrieve columns in any order you’d like.

SELECT last_name, first_name, salary FROM teachers;

Listing 3-2: Querying a subset of columns

Now, in the result set, you’ve limited the columns to three:

last_name    first_name    salary
---------    ----------    ------
Smith        Janet         36200
Reynolds     Lee           65000
Cole         Samuel        43500
Bush         Samantha      36200
Diaz         Betty         43500
Roush        Kathleen      38500

Although these examples are basic, they illustrate a good strategy for 
beginning your interview of a dataset. Generally, it’s wise to start your 
analysis by checking whether your data is present and in the format you 

Practical SQL 2e (Sample Chapter) © 2021 by Anthony DeBarros



4   Chapter 3

expect, which is a task well suited to SELECT. Are dates in a proper format 
complete with month, date, and year, or are they entered (as I once ruefully 
observed) as text with the month and year only? Does every row have values 
in all the columns? Are there mysteriously no last names starting with let-
ters beyond M? All these issues indicate potential hazards ranging from 
missing data to shoddy record keeping somewhere in the workflow.

We’re only working with a table of six rows, but when you’re facing a 
table of thousands or even millions of rows, it’s essential to get a quick read 
on your data quality and the range of values it contains. To do this, let’s dig 
deeper and add several SQL keywords.

N O T E  pgAdmin allows you to drag and drop column names, table names, and other objects 
from the object browser into the Query Tool. This can be helpful if you’re writing a 
new query and don’t want to keep typing lengthy object names. Expand the object tree 
to find your tables or columns, as you did in Chapter 1, and click and drag them into 
the Query Tool.

Sorting Data with ORDER BY
Data can make more sense, and may reveal patterns more readily, when it’s 
arranged in order rather than jumbled randomly.

In SQL, we order the results of a query using a clause containing the 
keywords ORDER BY followed by the name of the column or columns to sort. 
Applying this clause doesn’t change the original table, only the result of the 
query. Listing 3-3 shows an example using the teachers table:

SELECT first_name, last_name, salary
FROM teachers
ORDER BY salary DESC;

Listing 3-3: Sorting a column with ORDER BY

By default, ORDER BY sorts values in ascending order, but here I sort in 
descending order by adding the DESC keyword. (The optional ASC keyword 
specifies sorting in ascending order.) Now, by ordering the salary column 
from highest to lowest, I can determine which teachers earn the most:

first_name    last_name    salary
----------    ---------    ------
Lee           Reynolds     65000
Samuel        Cole         43500
Betty         Diaz         43500
Kathleen      Roush        38500
Janet         Smith        36200
Samantha      Bush         36200

The ORDER BY clause also accepts numbers instead of column names, 
with the number identifying the sort column according to its position in 

Practical SQL 2e (Sample Chapter) © 2021 by Anthony DeBarros



Beginning Data Exploration with SELECT   5

the SELECT clause. Thus, you could rewrite Listing 3-3 this way, using 3 to 
refer to the third column in the SELECT clause, salary:

SELECT first_name, last_name, salary
FROM teachers
ORDER BY 3 DESC;

The ability to sort in our queries gives us great flexibility in how we view 
and present data. For example, we’re not limited to sorting on just one col-
umn. Enter the statement in Listing 3-4:

SELECT last_name, school, hire_date
FROM teachers
1 ORDER BY school ASC, hire_date DESC;

Listing 3-4: Sorting multiple columns with ORDER BY

In this case, we’re retrieving the last names of teachers, their school, 
and the date they were hired. By sorting the school column in ascending 
order and hire_date in descending order 1, we create a listing of teachers 
grouped by school with the most recently hired teachers listed first. This 
shows us who the newest teachers are at each school. The result set should 
look like this:

last_name    school                 hire_date
---------    -------------------    ----------
Smith        F.D. Roosevelt HS      2011-10-30
Roush        F.D. Roosevelt HS      2010-10-22
Reynolds     F.D. Roosevelt HS      1993-05-22
Bush         Myers Middle School    2011-10-30
Diaz         Myers Middle School    2005-08-30
Cole         Myers Middle School    2005-08-01

You can use ORDER BY on more than two columns, but you’ll soon reach 
a point of diminishing returns where the effect will be hardly noticeable. 
Imagine if you added columns about teachers’ highest college degree 
attained, the grade level taught, and birthdate to the ORDER BY clause. It 
would be difficult to understand the various sort directions in the output 
all at once, much less communicate that to others. Digesting data happens 
most easily when the result focuses on answering a specific question; there-
fore, a better strategy is to limit the number of columns in your query to 
only the most important and then run several queries to answer each ques-
tion you have.

Using DISTINCT to Find Unique Values
In a table, it’s not unusual for a column to contain rows with duplicate 
values. In the teachers table, for example, the school column lists the same 
school names multiple times because each school employs many teachers.

Practical SQL 2e (Sample Chapter) © 2021 by Anthony DeBarros



6   Chapter 3

To understand the range of values in a column, we can use the DISTINCT 
keyword as part of a query that eliminates duplicates and shows only unique 
values. Use DISTINCT immediately after SELECT, as shown in Listing 3-5:

SELECT DISTINCT school
FROM teachers
ORDER BY school;

Listing 3-5: Querying distinct values in the school column

The result is as follows:

school
-------------------
F.D. Roosevelt HS
Myers Middle School

Even though six rows are in the table, the output shows just the two 
unique school names in the school column. This is a helpful first step 
toward assessing data quality. For example, if a school name is spelled more 
than one way, those spelling variations will be easy to spot and correct, 
especially if you sort the output.

When you’re working with dates or numbers, DISTINCT will help high-
light inconsistent or broken formatting. For example, you might inherit 
a dataset in which dates were entered in a column formatted with a text 
data type. That practice (which you should avoid) allows malformed dates 
to exist:

date
---------
5/30/2023
6//2023
6/1/2023
6/2/2023

The DISTINCT keyword also works on more than one column at a time. 
If we add a column, the query returns each unique pair of values. Run the 
code in Listing 3-6:

SELECT DISTINCT school, salary
FROM teachers
ORDER BY school, salary;

Listing 3-6: Querying distinct pairs of values in the school and salary columns

Now the query returns each unique (or distinct) salary earned at each 
school. Because two teachers at Myers Middle School earn $43,500, that 
pair is listed in just one row, and the query returns five rows rather than all 
six in the table:

Practical SQL 2e (Sample Chapter) © 2021 by Anthony DeBarros



Beginning Data Exploration with SELECT   7

school                 salary
-------------------    ------
F.D. Roosevelt HS      36200
F.D. Roosevelt HS      38500
F.D. Roosevelt HS      65000
Myers Middle School    36200
Myers Middle School    43500

This technique gives us the ability to ask, “For each x in the table, what 
are all the y values?” For each factory, what are all the chemicals it pro-
duces? For each election district, who are all the candidates running for 
office? For each concert hall, who are the artists playing this month?

SQL offers more sophisticated techniques with aggregate functions that 
let us count, sum, and find minimum and maximum values. I’ll cover those 
in detail in Chapter 6 and Chapter 9.

Filtering Rows with WHERE
Sometimes, you’ll want to limit the rows a query returns to only those in 
which one or more columns meet certain criteria. Using teachers as an 
example, you might want to find all teachers hired before a particular year 
or all teachers making more than $75,000 at elementary schools. For these 
tasks, we use the WHERE clause.

The WHERE clause allows you to find rows that match a specific value, a 
range of values, or multiple values based on criteria supplied via an opera-
tor—a keyword that let us perform math, comparison, and logical opera-
tions. You also can use criteria to exclude rows.

Listing 3-7 shows a basic example. Note that in standard SQL syntax, 
the WHERE clause follows the FROM keyword and the name of the table or tables 
being queried:

SELECT last_name, school, hire_date
FROM teachers
WHERE school = 'Myers Middle School';

Listing 3-7: Filtering rows using WHERE

The result set shows just the teachers assigned to Myers Middle School:

last_name    school                 hire_date
---------    -------------------    ----------
Cole         Myers Middle School    2005-08-01
Bush         Myers Middle School    2011-10-30
Diaz         Myers Middle School    2005-08-30

Here, I’m using the equals comparison operator to find rows that 
exactly match a value, but of course you can use other operators with WHERE 
to customize your filter criteria. Table 3-1 summarizes the most commonly 
used comparison operators. Depending on your database system, many 
more might be available.

Practical SQL 2e (Sample Chapter) © 2021 by Anthony DeBarros



8   Chapter 3

Table 3-1: Comparison and Matching Operators in PostgreSQL

Operator Function Example

= Equal to WHERE school = 'Baker Middle'

<> or != Not equal to* WHERE school <> 'Baker Middle'

> Greater than WHERE salary > 20000

< Less than WHERE salary < 60500

>= Greater than or equal to WHERE salary >= 20000

<= Less than or equal to WHERE salary <= 60500

BETWEEN Within a range WHERE salary BETWEEN 20000 AND 
40000

IN Match one of a set of values WHERE last_name IN ('Bush', 
'Roush')

LIKE Match a pattern (case sensitive) WHERE first_name LIKE 'Sam%'

ILIKE Match a pattern (case insensitive) WHERE first_name ILIKE 'sam%'

NOT Negates a condition WHERE first_name NOT ILIKE 'sam%'
* The != operator is not part of standard ANSI SQL but is available in PostgreSQL and several other 
database systems.

The following examples show comparison operators in action. First, we 
use the equal operator to find teachers whose first name is Janet:

SELECT first_name, last_name, school
FROM teachers
WHERE first_name = 'Janet';

Next, we list all school names in the table but exclude F.D. Roosevelt HS 
using the not equal operator:

SELECT school
FROM teachers
WHERE school <> 'F.D. Roosevelt HS';

Here we use the less than operator to list teachers hired before January 
1, 2000 (using the date format YYYY-MM-DD):

SELECT first_name, last_name, hire_date
FROM teachers
WHERE hire_date < '2000-01-01';

Then we find teachers who earn $43,500 or more using the >= operator:

SELECT first_name, last_name, salary
FROM teachers
WHERE salary >= 43500;

The next query uses the BETWEEN operator to find teachers who earn 
from $40,000 to $65,000. Note that BETWEEN is inclusive, meaning the result 
will include values matching the start and end ranges specified.

Practical SQL 2e (Sample Chapter) © 2021 by Anthony DeBarros



Beginning Data Exploration with SELECT   9

SELECT first_name, last_name, school, salary
FROM teachers
WHERE salary BETWEEN 40000 AND 65000;

Use caution with BETWEEN, because its inclusive nature can lead to inad-
vertent double-counting of values. For example, if you filter for values with 
BETWEEN 10 AND 20 and run a second query using BETWEEN 20 AND 30, a row with 
the value of 20 will appear in both query results. You can avoid this by using 
the more explicit greater than and less than operators to define ranges. For 
example, this query returns the same result as the previous one but more 
obviously specifies the range:

SELECT first_name, last_name, school, salary
FROM teachers
WHERE salary >= 40000 AND salary <= 65000;

We’ll return to these operators throughout the book, because they’ll 
play a key role in helping us ferret out the data and answers we want to find.

Using LIKE and ILIKE with WHERE:
Comparison operators are fairly straightforward, but the matching opera-
tors LIKE and ILIKE deserve additional explanation. Both let you find a vari-
ety of values that include characters matching a specified pattern, which 
is handy if you don’t know exactly what you’re searching for or if you’re 
rooting out misspelled words. To use LIKE and ILIKE, you specify a pattern to 
match using one or both of these symbols:

Percent sign (%)  A wildcard matching one or more characters

Underscore (_)  A wildcard matching just one character

For example, if you’re trying to find the word baker, the following LIKE 
patterns will match it:

LIKE 'b%'
LIKE '%ak%'
LIKE '_aker'
LIKE 'ba_er'

The difference? The LIKE operator, which is part of the ANSI SQL stan-
dard, is case sensitive. The ILIKE operator, which is a PostgreSQL-only imple-
mentation, is case insensitive. Listing 3-8 shows how the two keywords give 
you different results. The first WHERE clause uses LIKE 1 to find names that 
start with the characters sam, and because it’s case sensitive, it will return  
zero results. The second, using the case-insensitive ILIKE 2, will return 
Samuel and Samantha from the table:

SELECT first_name
FROM teachers
1 WHERE first_name LIKE 'sam%';

Practical SQL 2e (Sample Chapter) © 2021 by Anthony DeBarros



10   Chapter 3

SELECT first_name
FROM teachers
2 WHERE first_name ILIKE 'sam%';

Listing 3-8: Filtering with LIKE and ILIKE

Over the years, I’ve gravitated toward using ILIKE and wildcard operators 
to make sure I’m not inadvertently excluding results from searches, par-
ticularly when vetting data. I don’t assume that whoever typed the names of 
people, places, products, or other proper nouns always remembered to capi-
talize them. And if one of the goals of interviewing data is to understand its 
quality, using a case-insensitive search will help you find variations.

Because LIKE and ILIKE search for patterns, performance on large data-
bases can be slow. We can improve performance using indexes, which I’ll 
cover in “Speeding Up Queries with Indexes” in Chapter 8.

Combining Operators with AND and OR
Comparison operators become even more useful when we combine them. 
To do this, we connect them using the logical operators AND and OR along 
with, if needed, parentheses.

The statements in Listing 3-9 show three examples that combine opera-
tors this way:

SELECT *
FROM teachers
1 WHERE school = 'Myers Middle School'
      AND salary < 40000;

SELECT *
FROM teachers
2 WHERE last_name = 'Cole'
      OR last_name = 'Bush';

SELECT *
FROM teachers
3 WHERE school = 'F.D. Roosevelt HS'
      AND (salary < 38000 OR salary > 40000);

Listing 3-9: Combining operators using AND and OR

The first query uses AND in the WHERE clause 1 to find teachers who work 
at Myers Middle School and have a salary less than $40,000. Because we 
connect the two conditions using AND, both must be true for a row to meet 
the criteria in the WHERE clause and be returned in the query results.

The second example uses OR 2 to search for any teacher whose last name 
matches Cole or Bush. When we connect conditions using OR, only one of the 
conditions must be true for a row to meet the criteria of the WHERE clause.

The final example looks for teachers at Roosevelt whose salaries are 
either less than $38,000 or greater than $40,000 3. When we place state-
ments inside parentheses, those are evaluated as a group before being 
combined with other criteria. In this case, the school name must be 

Practical SQL 2e (Sample Chapter) © 2021 by Anthony DeBarros



Beginning Data Exploration with SELECT   11

exactly F.D. Roosevelt HS, and the salary must be either less or higher than 
specified for a row to meet the criteria of the WHERE clause.

If we use both AND with OR in a clause but don’t use any parentheses, the 
database will evaluate the AND condition first and then the OR condition. In 
the final example, that means we’d see a different result if we omitted paren-
theses—the database would look for rows where the school name is F.D. 
Roosevelt HS and the salary is less than $38,000 or rows for any school where 
the salary is more than $40,000. Give it a try in the Query Tool to see.

Putting It All Together
You can begin to see how even the previous simple queries allow us to delve 
into our data with flexibility and precision to find what we’re looking for. 
You can combine comparison operator statements using the AND and OR key-
words to provide multiple criteria for filtering, and you can include an ORDER 
BY clause to rank the results.

With the preceding information in mind, let’s combine the concepts in 
this chapter into one statement to show how they fit together. SQL is par-
ticular about the order of keywords, so follow this convention:

SELECT column_names
FROM table_name
WHERE criteria
ORDER BY column_names;

Listing 3-10 shows a query against the teachers table that includes all 
the aforementioned pieces:

SELECT first_name, last_name, school, hire_date, salary
FROM teachers
WHERE school LIKE '%Roos%'
ORDER BY hire_date DESC;

Listing 3-10: A SELECT statement including WHERE and ORDER BY

This listing returns teachers at Roosevelt High School, ordered from 
newest hire to earliest. We can see a clear correlation between a teacher’s 
hire date at the school and their current salary level:

first_name    last_name    school               hire_date     salary
----------    ---------    -----------------    ----------    ------
Janet         Smith        F.D. Roosevelt HS    2011-10-30    36200
Kathleen      Roush        F.D. Roosevelt HS    2010-10-22    38500
Lee           Reynolds     F.D. Roosevelt HS    1993-05-22    65000

Wrapping Up
Now that you’ve learned the basic structure of a few different SQL queries, 
you’ve acquired the foundation for many of the additional skills I’ll cover in 

Practical SQL 2e (Sample Chapter) © 2021 by Anthony DeBarros



12   Chapter 3

later chapters. Sorting, filtering, and choosing only the most important col-
umns from a table can yield a surprising amount of information from your 
data and help you find the story it tells.

In the next chapter, you’ll learn about another foundational aspect of 
SQL: data types.

T RY IT YOURSEL F

Explore basic queries with these exercises:

1. The school district superintendent asks for a list of teachers in each school. 
Write a query that lists the schools in alphabetical order along with teach-
ers ordered by last name A–Z.

2. Write a query that finds the one teacher whose first name starts with the 
letter S and who earns more than $40,000.

3. Rank teachers hired since January 1, 2010, ordered by highest paid to 
lowest.

Practical SQL 2e (Sample Chapter) © 2021 by Anthony DeBarros


