
You now know the physical and logical 
structure of a Linux system, what the ker-

nel is, and how to work with processes. This 
chapter will teach you how the kernel starts, 

or boots. In other words, you’ll learn how the kernel 
moves into memory and what it does up to the point 
where the first user process starts. 

A simplified view of the boot process looks like this: 

 1. The machine’s BIOS or boot firmware loads and runs a boot loader.

 2. The boot loader finds the kernel image on disk, loads it into memory,
and starts it.

 3. The kernel initializes the devices and its drivers.

 4. The kernel mounts the root filesystem.

 5. The kernel starts a program called init with a process ID of 1. This point
is the user space start.

5
H O W  T H E  L I N U X  K E R N E L  B O O T S

How Linux Works (Sample Chapter) © 09/16/20 by Brian Ward



2   Chapter 5

 6. init sets the rest of the system processes in motion.

 7. At some point, init starts a process allowing you to log in, usually at the
end or near the end of the boot sequence.

This chapter covers the first couple of stages, focusing on the boot
loaders and kernel. Chapter 6 continues with the user space start by 
detailing systemd, the most widespread version of init on Linux systems.

Being able to identify each stage of the boot process will prove invalu-
able to you in fixing boot problems and understanding the system as a whole. 
However, the default behavior in many Linux distributions often makes it dif-
ficult, if not impossible, to identify the first few boot stages as they proceed, 
so you’ll probably be able to get a good look only after they’ve completed and 
you log in.

5.1 Startup Messages
Traditional Unix systems produce many diagnostic messages upon boot 
that tell you about the boot process. The messages come first from the ker-
nel and then from processes and initialization procedures that init starts. 
However, these messages aren’t pretty or consistent, and in some cases they 
aren’t even very informative. In addition, hardware improvements have 
caused the kernel to start much faster than before; the messages flash by 
so quickly, it can be difficult to see what’s happening. As a result, most cur-
rent Linux distributions do their best to hide boot diagnostics with splash 
screens and other forms of filler to distract you while the system starts.

The best way to view the kernel’s boot and runtime diagnostic mes-
sages is to retrieve the journal for the kernel with the journalctl command. 
Running journalctl -k displays the messages from the current boot, but you 
can view previous boots with the -b option. We’ll cover the journal in more 
detail in Chapter 7.

If you don’t have systemd, you can check for a logfile such as /var/log/
kern.log or run the dmesg command to view the messages in the kernel ring 
buffer.

Here’s a sample of what you can expect to see from the journalctl -k 
command:

microcode: microcode updated early to revision 0xd6, date = 2019-10-03
Linux version 4.15.0-112-generic (buildd@lcy01-amd64-027) (gcc version 7.5.0 
(Ubuntu 7.5.0-3ubuntu1~18.04)) #113-Ubuntu SMP Thu Jul 9 23:41:39 UTC 2020 (Ubuntu 
4.15.0-112.113-generic 4.15.18)
Command line: BOOT_IMAGE=/boot/vmlinuz-4.15.0-112-generic root=UUID=17f12d53-c3d7-4ab3-943e-
a0a72366c9fa ro quiet splash vt.handoff=1
KERNEL supported cpus:
--snip--
scsi 2:0:0:0: Direct-Access     ATA      KINGSTON SM2280S 01.R PQ: 0 ANSI: 5
sd 2:0:0:0: Attached scsi generic sg0 type 0
sd 2:0:0:0: [sda] 468862128 512-byte logical blocks: (240 GB/224 GiB)

How Linux Works (Sample Chapter) © 09/16/20 by Brian Ward



How the Linux Kernel Boots   3

sd 2:0:0:0: [sda] Write Protect is off
sd 2:0:0:0: [sda] Mode Sense: 00 3a 00 00
sd 2:0:0:0: [sda] Write cache: enabled, read cache: enabled, doesn't support DPO or FUA
 sda: sda1 sda2 < sda5 >
sd 2:0:0:0: [sda] Attached SCSI disk
--snip--

After the kernel has started, the user-space startup procedure often 
generates messages. These messages will likely be more difficult to view 
and review because on most systems you won’t find them in a single logfile. 
Startup scripts are designed to send messages to the console that are erased 
after the boot process finishes. However, this isn’t a problem on Linux sys-
tems because systemd captures diagnostic messages from startup and run-
time that would normally go to the console.

5.2 Kernel Initialization and Boot Options
Upon startup, the Linux kernel initializes in this general order:

1. CPU inspection

2. Memory inspection

 3. Device bus discovery

4. Device discovery

 5. Auxiliary kernel subsystem setup (networking and the like)

 6. Root filesystem mount

 7. User space start

The first two steps aren’t too remarkable, but when the kernel gets to
devices, the question of dependencies arises. For example, the disk device 
drivers may depend on bus support and SCSI subsystem support, as you 
saw in Chapter 3. Then, later in the initialization process, the kernel must 
mount a root filesystem before starting init. 

 In general, you won’t have to worry about the dependencies, except 
that some necessary components may be loadable kernel modules rather 
than part of the main kernel. Some machines may need to load these ker-
nel modules before the true root filesystem is mounted. We’ll cover this 
problem and its initial RAM filesystem (initrd) workaround solutions in 
Section 6.8.

The kernel emits certain kinds of messages indicating that it’s getting 
ready to start its first user process:

Freeing unused kernel memory: 2408K
Write protecting the kernel read-only data: 20480k
Freeing unused kernel memory: 2008K
Freeing unused kernel memory: 1892K

How Linux Works (Sample Chapter) © 09/16/20 by Brian Ward



4   Chapter 5

Here, not only is the kernel cleaning up some unused memory, but it’s 
also protecting its own data. Then, if you’re running a new enough kernel, 
you’ll see the kernel start the first user-space process as init:

Run /init as init process
   with arguments:
    --snip--

Later on, you should be able to see the root filesystem being mounted 
and systemd starting up, sending a few messages of its own to the kernel log:

EXT4-fs (sda1): mounted filesystem with ordered data mode. Opts: (null)
systemd[1]: systemd 237 running in system mode. (+PAM +AUDIT +SELINUX +IMA 
+APPARMOR +SMACK +SYSVINIT +UTMP +LIBCRYPTSETUP +GCRYPT +GNUTLS +ACL +XZ +LZ4
+SECCOMP +BLKID +ELFUTILS +KMOD -IDN2 +IDN -PCRE2 default-hierarchy=hybrid)
systemd[1]: Detected architecture x86-64.
systemd[1]: Set hostname to <duplex>.

At this point, you definitely know that user space has started.

5.3 Kernel Parameters
When the Linux kernel starts, it receives a set of text-based kernel parameters 
containing a few additional system details. The parameters specify many 
different types of behavior, such as the amount of diagnostic output the 
kernel should produce and device driver–specific options.

You can view the parameters passed to your system’s currently running 
kernel by looking at the /proc/cmdline file:

$ cat /proc/cmdline
BOOT_IMAGE=/boot/vmlinuz-4.15.0-43-generic root=UUID=17f12d53-c3d7-4ab3-943e 
-a0a72366c9fa ro quiet splash vt.handoff=1

The parameters are either simple one-word flags, such as ro and quiet, 
or key=value pairs, such as vt.handoff=1. Many of the parameters are unim-
portant, such as the splash flag for displaying a splash screen, but one that 
is critical is the root parameter. This is the location of the root filesystem; 
without it, the kernel cannot properly perform the user space start.

The root filesystem can be specified as a device file, as in this example:

root=/dev/sda1

On most contemporary systems, there are two alternatives that are 
more common. First, you might see a logical volume such as this:

root=/dev/mapper/my-system-root

You may also see a UUID (see Section 4.2.4):

root=UUID=17f12d53-c3d7-4ab3-943e-a0a72366c9fa

How Linux Works (Sample Chapter) © 09/16/20 by Brian Ward



How the Linux Kernel Boots   5

Both of these are preferable because they do not depend on a specific 
kernel device mapping.

The ro parameter instructs the kernel to mount the root filesystem 
in read-only mode upon user space start. This is normal; read-only mode 
ensures that fsck can check the root filesystem safely before trying to do 
anything serious. After the check, the bootup process remounts the root 
filesystem in read-write mode.

Upon encountering a parameter that it doesn’t understand, the Linux 
kernel saves that parameter. The kernel later passes the parameter to init 
when performing the user space start. For example, if you add -s to the ker-
nel parameters, the kernel passes the -s to the init program to indicate that 
it should start in single-user mode.

If you’re interested in the basic boot parameters, the bootparam(7) 
manual page gives an overview. If you’re looking for something very spe-
cific, you can check out kernel-params.txt, a reference file that comes with the 
Linux kernel.

With these basics covered, you should feel free to skip ahead to Chapter 6 
to learn the specifics of user space start, the initial RAM disk, and the init 
program that the kernel runs as its first process. The remainder of this chap-
ter details how the kernel loads into memory and starts, including how it gets 
its parameters.

5.4 Boot Loaders
At the start of the boot process, before the kernel and init start, a boot loader 
program starts the kernel. The boot loader’s job sounds simple: it loads the 
kernel into memory from somewhere on a disk and then starts the kernel 
with a set of kernel parameters. However, this job is more complicated than 
it appears. To understand why, consider the questions that the boot loader 
must answer:

• Where is the kernel?

• What kernel parameters should be passed to the kernel when it starts?

The answers are (typically) that the kernel and its parameters are usually
somewhere on the root filesystem. It may sound like the kernel parameters 
should be easy to find, but remember that the kernel itself is not yet running, 
and it’s the kernel that usually traverses a filesystem to find the necessary 
files. Worse, the kernel device drivers normally used to access the disk are 
also unavailable. Think of this as a kind of “chicken or egg” problem. It can 
get even more complicated than this, but for now, let’s see how a boot loader 
overcomes the obstacles of the drivers and the filesystem.

A boot loader does need a driver to access the disk, but it’s not the same 
one that the kernel uses. On PCs, boot loaders use the traditional Basic Input/
Output System (BIOS) or the newer Unified Extensible Firmware Interface (UEFI) to 
access disks. (Extensible Firmware Interface, or EFI, and UEFI will be discussed 
in more detail in Section 5.8.2.) Contemporary disk hardware includes 

How Linux Works (Sample Chapter) © 09/16/20 by Brian Ward



6   Chapter 5

firmware allowing the BIOS or UEFI to access attached storage hardware via 
Linear Block Addressing (LBA). LBA is a universal, simple way to access data 
from any disk, but its performance is poor. This isn’t a problem, though, 
because boot loaders are often the only programs that must use this mode 
for disk access; after starting, the kernel has access to its own high-perfor-
mance drivers.

N O T E  To determine if your system uses a BIOS or UEFI, run efibootmgr. If you get a list 
of boot targets, your system has UEFI. If instead you’re told that EFI variables aren’t 
supported, your system uses a BIOS. Alternatively, you can check to see that /sys/
firmware/efi exists; if so, your system uses UEFI.

Once access to the disk’s raw data has been resolved, the boot loader 
must do the work of locating the desired data on the filesystem. Most com-
mon boot loaders can read partition tables and have built-in support for 
read-only access to filesystems. Thus, they can find and read the files that 
they need to get the kernel into memory. This capability makes it far easier 
to dynamically configure and enhance the boot loader. Linux boot loaders 
have not always had this capability; without it, configuring the boot loader 
was more difficult.

In general, there’s been a pattern of the kernel adding new features 
(especially in storage technology), followed by boot loaders adding sepa-
rate, simplified versions of those features to compensate.

5.4.1 Boot Loader Tasks
A Linux boot loader’s core functionality includes the ability to do the 
following:

•	 Select from multiple kernels.

•	 Switch between sets of kernel parameters.

•	 Allow the user to manually override and edit kernel image names and 
parameters (for example, to enter single-user mode).

•	 Provide support for booting other operating systems.

Boot loaders have become considerably more advanced since the 
inception of the Linux kernel, with features such as command-line history 
and menu systems, but a basic need has always been flexibility in kernel 
image and parameter selection. (One surprising phenomenon is that 
some needs have actually diminished. For example, because you can 
perform an emergency or recovery boot from a USB storage device, you 
rarely have to worry about manually entering kernel parameters or going 
into single-user mode.) Current boot loaders offer more power than ever, 
which can be particularly handy if you’re building custom kernels or just 
want to tweak parameters.

How Linux Works (Sample Chapter) © 09/16/20 by Brian Ward



How the Linux Kernel Boots   7

5.4.2 Boot Loader Overview
Here are the main boot loaders that you may encounter:

GRUB A near-universal standard on Linux systems, with BIOS/MBR 
and UEFI versions.

LILO One of the first Linux boot loaders. ELILO is a UEFI version.

SYSLINUX Can be configured to run from many different kinds of 
filesystems.

LOADLIN Boots a kernel from MS-DOS.

systemd-boot A simple UEFI boot manager.

coreboot (formerly LinuxBIOS) A high-performance replacement for 
the PC BIOS that can include a kernel.

Linux Kernel EFISTUB A kernel plug-in for loading the kernel 
directly from a EFI/UEFI System Partition (ESP).

efilinux A UEFI boot loader intended to serve as a model and refer-
ence for other UEFI boot loaders.

This book deals almost exclusively with GRUB. The rationale behind 
using other boot loaders is that they’re simpler to configure than GRUB, 
they’re faster, or they provide some other special-purpose functionality.

You can learn a lot about a boot loader by getting to a boot prompt 
where you can enter a kernel name and parameters. To do this, you need to 
know how to get to a boot prompt or menu. Unfortunately, this can some-
times be difficult to figure out because Linux distributions heavily custom-
ize boot loader behavior and appearance. It’s usually impossible to tell just 
by watching the boot process which boot loader the distribution uses. 

The next sections tell you how to get to a boot prompt in order to enter 
a kernel name and parameters. Once you’re comfortable with that, you’ll 
see how to configure and install a boot loader. 

 5.5 GRUB Introduction
GRUB stands for Grand Unified Boot Loader. We’ll cover GRUB 2, but there’s 
also an older version called GRUB Legacy that’s no longer in active use. 

One of GRUB’s most important capabilities is filesystem navigation that 
allows for easy kernel image and configuration selection. One of the best 
ways to see this in action and to learn about GRUB in general is to look at 
its menu. The interface is easy to navigate, but there’s a good chance that 
you’ve never seen it. 

To access the GRUB menu, press and hold SHIFT when your BIOS 
startup screen first appears, or ESC if your system has UEFI. Otherwise, 
the boot loader configuration may not pause before loading the kernel. 
Figure 5-1 shows the GRUB menu. 

How Linux Works (Sample Chapter) © 09/16/20 by Brian Ward



8   Chapter 5

Figure 5-1: GRUB menu

Try the following to explore the boot loader:

 1. Reboot or power on your Linux system.

 2. Hold down SHIFT during the BIOS self-test or ESC at the firmware 
splash screen to get the GRUB menu. (Sometimes these screens are not 
visible, so you have to guess when to press the button.)

 3. Press e to view the boot loader configuration commands for the default 
boot option. You should see something like Figure 5-2 (you might have 
to scroll down to see all of the details).

�
�

�

�

Figure 5-2: GRUB configuration editor

How Linux Works (Sample Chapter) © 09/16/20 by Brian Ward



How the Linux Kernel Boots   9

This screen tells us that for this configuration, the root is set with a 
UUID, the kernel image is /boot/vmlinuz-4.15.0-45-generic, and the kernel 
parameters include ro, quiet, and splash. The initial RAM filesystem is /boot/
initrd.img-4.15.0-45-generic. But if you’ve never seen this sort of configuration 
before, you might find it somewhat confusing. Why are there multiple refer-
ences to root, and why are they different? Why is insmod here? If you’ve seen 
this before, you might remember that it’s a Linux kernel feature normally 
run by udevd. 

The double takes are warranted, because GRUB doesn’t use the Linux 
kernel (remember, its job is to start the kernel). The configuration you see 
consists wholly of features and commands internal to GRUB, which exists in 
its own separate world.

The confusion stems partly from the fact that GRUB borrows terminol-
ogy from many sources. GRUB has its own “kernel” and its own insmod com-
mand to dynamically load GRUB modules, completely independent of the 
Linux kernel. Many GRUB commands are similar to Unix shell commands; 
there’s even an ls command to list files.

N O T E  There’s a GRUB module for LVM that is required to boot systems where the kernel 
resides on a logical volume. You might see this on your system.

By far, the most confusion results from GRUB’s use of the word root. 
Normally, you think of root as your system’s root filesystem. In a GRUB con-
figuration, this is a kernel parameter, located somewhere after the image 
name of the linux command.

Every other reference to root in the configuration is to the GRUB root, 
which exists only inside of GRUB. The GRUB “root” is the filesystem where 
GRUB searches for kernel and RAM filesystem image files. 

In Figure 5-2, the GRUB root is first set to a GRUB-specific device 
(hd0,msdos1), a default value for this configuration 1. In the next command, 
GRUB then searches for a particular UUID on a partition 2. If it finds that 
UUID, it sets the GRUB root to that partition.

To wrap it up, the linux command’s first argument (/boot/vmlinuz-. . .) 
is the location of the Linux kernel image file 3. GRUB loads this file from 
the GRUB root. The initrd command is similar, specifying the file for the 
initial RAM filesystem covered in Chapter 6 4.

You can edit this configuration inside GRUB; doing so is usually the 
easiest way to temporarily fix an erroneous boot. To permanently fix a boot 
problem, you’ll need to change the configuration (see Section 5.5.2), but 
for now, let’s go one step deeper and examine some GRUB internals with 
the command-line interface.

5.5.1 Exploring Devices and Partitions with the GRUB Command Line
As you can see in Figure 5-2, GRUB has its own device-addressing scheme. 
For example, the first hard disk found is named hd0, followed by hd1, and 
so on. Device name assignments are subject to change, but fortunately 
GRUB can search all partitions for UUIDs to find the one where the kernel 
resides, as you just saw in Figure 5-2 with the search command. 

How Linux Works (Sample Chapter) © 09/16/20 by Brian Ward



10   Chapter 5

Listing Devices

To get a feel for how GRUB refers to the devices on your system, access the 
GRUB command line by pressing C at the boot menu or configuration edi-
tor. You should get the GRUB prompt:

grub>

You can enter any command here that you see in a configuration, but to 
get started, try a diagnostic command instead: ls. With no arguments, the 
output is a list of devices known to GRUB:

grub> ls
(hd0) (hd0,msdos1)

In this case, there is one main disk device denoted by (hd0) and a single 
partition (hd0,msdos1). If there were a swap partition on the disk, it would 
show up as well, such as (hd0,msdos5). The msdos prefix on the partitions tells 
you that the disk contains an MBR partition table; it would begin with gpt 
for GPT, found on UEFI systems. (There are even deeper combinations 
with a third identifier, where a BSD disklabel map resides inside a partition, 
but you won’t normally have to worry about this unless you’re running mul-
tiple operating systems on one machine.)

To get more detailed information, use ls -l. This command can be par-
ticularly useful because it displays any UUIDs of the partition filesystems. 
For example:

grub> ls -l
Device hd0: No known filesystem detected – Sector size 512B - Total size 
32009856KiB
        Partition hd0,msdos1: Filesystem type ext* – Last modification time
          2019-02-14 19:11:28 Thursday, UUID 8b92610e-1db7-4ba3-ac2f-
30ee24b39ed0 - Partition start at 1024Kib - Total size 32008192KiB

This particular disk has a Linux ext2/3/4 filesystem on the first MBR 
partition. Systems using a swap partition will show another partition, but 
you won’t be able to tell its type from the output.

File Navigation

Now let’s look at GRUB’s filesystem navigation capabilities. Determine the 
GRUB root with the echo command (recall that this is where GRUB expects 
to find the kernel):

grub> echo $root
hd0,msdos1

To use GRUB’s ls command to list the files and directories in that root, 
you can append a forward slash to the end of the partition:

grub> ls (hd0,msdos1)/

How Linux Works (Sample Chapter) © 09/16/20 by Brian Ward



How the Linux Kernel Boots   11

Because it’s inconvenient to type the actual root partition, you can sub-
stitute the root variable to save yourself some time:

grub> ls ($root)/

The output is a short list of file and directory names on that partition’s 
filesystem, such as etc/, bin/, and dev/. This is now a completely different 
function of the GRUB ls command. Before, you were listing devices, parti-
tion tables, and perhaps some filesystem header information. Now you’re 
actually looking at the contents of filesystems. 

You can take a deeper look into the files and directories on a partition 
in a similar manner. For example, to inspect the /boot directory, start with 
the following:

grub> ls ($root)/boot

N O T E  Use the up and down arrow keys to flip through the GRUB command history and the 
left and right arrows to edit the current command line. The standard readline keys 
(CTRL-N, CTRL-P, and so on) also work.

You can also view all currently set GRUB variables with the set 
command:

grub> set
?=0
color_highlight=black/white
color_normal=white/black
--snip--
prefix=(hd0,msdos1)/boot/grub
root=hd0,msdos1

One of the most important of these variables is $prefix, the filesystem 
and directory where GRUB expects to find its configuration and auxiliary 
support. We’ll discuss GRUB configuration next.

Once you’ve finished with the GRUB command-line interface, you can 
press ESC to return to the GRUB menu. Alternatively, if you’ve set all of the 
necessary configuration for boot (including the linux and possibly initrd 
variables), you can enter the boot command to boot that configuration. In 
any case, boot your system. We’re going to explore the GRUB configuration, 
and that’s best done when you have your full system available.

5.5.2 GRUB Configuration
The GRUB configuration directory is usually /boot/grub or /boot/grub2. It 
contains the central configuration file, grub.cfg, an architecture-specific 
directory such as i386-pc containing loadable modules with a .mod suffix, 
and a few other items such as fonts and localization information. We won’t 
modify grub.cfg directly; instead, we’ll use the grub-mkconfig command (or 
grub2-mkconfig on Fedora). 

How Linux Works (Sample Chapter) © 09/16/20 by Brian Ward



12   Chapter 5

Reviewing grub.cfg

First, take a quick look at grub.cfg to see how GRUB initializes its menu and 
kernel options. You’ll see that the file consists of GRUB commands, which 
usually begin with a number of initialization steps followed by a series of 
menu entries for different kernel and boot configurations. The initializa-
tion isn’t complicated, but there are a lot of conditionals at the beginning 
that might lead you to believe otherwise. This first part just consists of a 
bunch of function definitions, default values, and video setup commands 
such as this:

if loadfont $font ; then
  set gfxmode=auto
  load_video
  insmod gfxterm
  --snip--

N O T E  Many variables such as $font originate from a load_env call near the beginning of 
grub.cfg.

Later in the configuration file, you’ll find the available boot configura-
tions, each beginning with the menuentry command. You should be able to 
read and understand this example based on what you learned in the pre-
ceding section:

menuentry 'Ubuntu' --class ubuntu --class gnu-linux --class gnu --class os $menuentry_id_option 
'gnulinux-simple-8b92610e-1db7-4ba3-ac2f-30ee24b39ed0' {
        recordfail
        load_video
        gfxmode $linux_gfx_mode
        insmod gzio
        if [ x$grub_platform = xxen ]; then insmod xzio; insmod lzopio; fi
        insmod part_msdos
        insmod ext2
        set root='hd0,msdos1'
        search --no-floppy --fs-uuid --set=root 8b92610e-1db7-4ba3-ac2f-30ee24b39ed0
        linux   /boot/vmlinuz-4.15.0-45-generic root=UUID=8b92610e-1db7-4ba3-ac2f-30ee24b39ed0 
ro quiet splash $vt_handoff
        initrd  /boot/initrd.img-4.15.0-45-generic
}

Examine your grub.cfg file for submenu commands containing multiple 
menuentry commands. Many distributions use the submenu command for older 
versions of the kernel so that they don’t crowd the GRUB menu.

Generating a New Configuration File

If you want to make changes to your GRUB configuration, don’t edit your 
grub.cfg file directly, because it’s automatically generated and the system 
occasionally overwrites it. You’ll set up your new configuration elsewhere 
and then run grub-mkconfig to generate the new configuration.

How Linux Works (Sample Chapter) © 09/16/20 by Brian Ward



How the Linux Kernel Boots   13

To see how the configuration generation works, look at the very begin-
ning of grub.cfg. There should be comment lines such as this:

### BEGIN /etc/grub.d/00_header ###

Upon further inspection, you’ll find that nearly every file in /etc/grub.d 
is a shell script that produces a piece of the grub.cfg file. The grub-mkconfig 
command itself is a shell script that runs everything in /etc/grub.d. Keep in 
mind that GRUB itself does not run these scripts at boot time; we run the 
scripts in user space to generate the grub.cfg file that GRUB runs.

Try it yourself as root. Don’t worry about overwriting your current con-
figuration. This command by itself simply prints the configuration to the 
standard output.

# grub-mkconfig

What if you want to add menu entries and other commands to the 
GRUB configuration? The short answer is that you should put your cus-
tomizations into a new custom.cfg file in your GRUB configuration directory 
(usually /boot/grub/custom.cfg).

The long answer is a little more complicated. The /etc/grub.d configura-
tion directory gives you two options: 40_custom and 41_custom. The first, 
40_custom, is a script that you can edit yourself, but it’s the least stable; a 
package upgrade is likely to destroy any changes you make. The 41_custom 
script is simpler; it’s just a series of commands that load custom.cfg when 
GRUB starts. If you choose this second option, your changes won’t appear 
when you generate your configuration file because GRUB does all of the 
work at boot time.

N O T E  The numbers in front of the filenames affect the processing order; lower numbers come 
first in the configuration file.

The two options for custom configuration files aren’t particularly 
extensive, and there’s nothing stopping you from adding your own scripts to 
generate configuration data. You might see some additions specific to your 
particular distribution in the /etc/grub.d directory. For example, Ubuntu 
adds memory tester boot options (memtest86+) to the configuration.

To write and install a newly generated GRUB configuration file, you 
can write the configuration to your GRUB directory with the -o option to 
grub-mkconfig, like this:

# grub-mkconfig -o /boot/grub/grub.cfg

As usual, back up your old configuration and make sure that you’re 
installing to the correct directory.

Now we’re going to get into some of the more technical details of 
GRUB and boot loaders. If you’re tired of hearing about boot loaders and 
the kernel, skip to Chapter 6.

How Linux Works (Sample Chapter) © 09/16/20 by Brian Ward



14   Chapter 5

5.5.3 GRUB Installation
Installing GRUB is more involved than configuring it. Fortunately, you 
won’t normally have to worry about installation because your distribution 
should handle it for you. However, if you’re trying to duplicate or restore 
a bootable disk, or preparing your own boot sequence, you might need to 
install it on your own.

Before proceeding, read Section 5.8.3 to get an idea of how PCs boot and 
determine whether you’re using MBR or UEFI boot. Next, build the GRUB 
software set and determine where your GRUB directory will be; the default 
is /boot/grub. You may not need to build GRUB if your distribution does it 
for you, but if you do, see Chapter 16 for how to build software from source 
code. Make sure that you build the correct target: it’s different for MBR or 
UEFI boot (and there are even differences between 32-bit and 64-bit EFI).

Installing GRUB on Your System

Installing the boot loader requires that you or an installer program deter-
mine the following:

•	 The target GRUB directory as seen by your currently running system. 
As just mentioned, that’s usually /boot/grub, but it might be different if 
you’re installing GRUB on another disk for use on another system.

•	 The current device of the GRUB target disk.

•	 For UEFI booting, the current mount point of the EFI system partition 
(usually /boot/efi).

Remember that GRUB is a modular system, but in order to load mod-
ules, it must read the filesystem that contains the GRUB directory. Your task 
is to construct a version of GRUB capable of reading that filesystem so that 
it can load the rest of its configuration (grub.cfg) and any required modules. 
On Linux, this usually means building a version of GRUB with its ext2.mod 
module (and possibly lvm.mod) preloaded. Once you have this version, all 
you need to do is place it on the bootable part of the disk and place the rest 
of the required files into /boot/grub.

Fortunately, GRUB comes with a utility called grub-install (not to be 
confused with install-grub, which you might find on some older systems), 
which performs most of the work of installing the GRUB files and configu-
ration for you. For example, if your current disk is at /dev/sda and you want 
to install GRUB on that disk’s MBR with your current /boot/grub directory, 
use this command:

# grub-install /dev/sda

W A R N I N G  Incorrectly installing GRUB may break the bootup sequence on your system, so don’t 
take this command lightly. If you’re concerned, research how to back up your MBR 
with dd, back up any other currently installed GRUB directory, and make sure that 
you have an emergency bootup plan.

How Linux Works (Sample Chapter) © 09/16/20 by Brian Ward



How the Linux Kernel Boots   15

Installing GRUB Using MBR on an External Storage Device

To install GRUB on a storage device outside the current system, you must 
manually specify the GRUB directory on that device as your current system 
now sees it. For example, say you have a target device of /dev/sdc and that 
device’s root filesystem containing /boot (for example, /dev/sdc1) is mounted 
on /mnt of your current system. This implies that when you install GRUB, 
your current system will see the GRUB files in /mnt/boot/grub. When run-
ning grub-install, tell it where those files should go as follows:

# grub-install --boot-directory=/mnt/boot /dev/sdc

On most MBR systems, /boot is a part of the root filesystem, but some 
installations put /boot into its own separate filesystem. Make sure that you 
know where your target /boot resides.

Installing GRUB with UEFI

UEFI installation is supposed to be easier, because all you have to do is copy 
the boot loader into place. But you also need to “announce” the boot loader 
to the firmware—that is, save the loader configuration to the NVRAM—
with the efibootmgr command. The grub-install command runs this if it’s 
available, so normally you can install GRUB on a UEFI system like this:

# grub-install --efi-directory=efi_dir –-bootloader-id=name

Here, efi_dir is where the UEFI directory appears on your current sys-
tem (usually /boot/efi/EFI, because the UEFI partition is typically mounted 
at /boot/efi) and name is an identifier for the boot loader.

Unfortunately, many problems can crop up when you’re installing a 
UEFI boot loader. For example, if you’re installing to a disk that will eventu-
ally end up in another system, you have to figure out how to announce that 
boot loader to the new system’s firmware. And there are differences in the 
install procedure for removable media. 

But one of the biggest problems is UEFI secure boot.

 5.6 UEFI Secure Boot Problems
One newer problem affecting Linux installations is dealing with the secure boot 
feature found on recent PCs. When active, this UEFI mechanism requires 
any boot loader to be digitally signed by a trusted authority in order to run. 
Microsoft has required hardware vendors shipping Windows 8 and later 
with their systems to use secure boot. The result is that if you try to install an 
unsigned boot loader on these systems, the firmware will reject the loader and 
the operating system won’t load.

Major Linux distributions have no problem with secure boot because 
they include signed boot loaders, usually based on a UEFI version of GRUB. 
Often there’s a small signed shim that goes between UEFI and GRUB; UEFI 
runs the shim, which in turn executes GRUB. Protecting against booting 

How Linux Works (Sample Chapter) © 09/16/20 by Brian Ward



16   Chapter 5

unauthorized software is an important feature if your machine is not in a 
trustworthy environment or needs to meet certain security requirements, 
so some distributions go a step further and require that the entire boot 
sequence (including the kernel) be signed.

There are some disadvantages to secure boot systems, especially for 
someone experimenting with building their own boot loaders. You can get 
around the secure boot requirement by disabling it in the UEFI settings. 
However, this won’t work cleanly for dual-boot systems since Windows won’t 
run without secure boot enabled.

 5.7 Chainloading Other Operating Systems
UEFI makes it relatively easy to support loading other operating systems 
because you can install multiple boot loaders in the EFI partition. However, 
the older MBR style doesn’t support this functionality, and even if you do 
have UEFI, you may still have an individual partition with an MBR-style 
boot loader that you want to use. Instead of configuring and running a 
Linux kernel, GRUB can load and run a different boot loader on a specific 
partition on your disk; this is called chainloading.

To chainload, create a new menu entry in your GRUB configuration 
(using one of the methods described in the section “Generating a New 
Configuration File”). Here’s an example for a Windows installation on the 
third partition of a disk:

menuentry "Windows" {
 insmod chain
 insmod ntfs
 set root=(hd0,3)
 chainloader +1
}

The +1 option tells chainloader to load whatever is at the first sector of a 
partition. You can also get it to directly load a file, by using a line like this to 
load the io.sys MS-DOS loader:

menuentry "DOS" {
 insmod chain
 insmod fat
 set root=(hd0,3)
 chainloader /io.sys
}

 5.8 Boot Loader Details
Now we’ll look quickly at some boot loader internals. To understand how 
boot loaders like GRUB work, first we’ll survey how a PC boots when you 
turn it on. Because they must address the many inadequacies of traditional 

How Linux Works (Sample Chapter) © 09/16/20 by Brian Ward



How the Linux Kernel Boots   17

PC boot mechanisms, boot loading schemes have several variations, but 
there are two main ones: MBR and UEFI.

5.8.1 MBR Boot
In addition to the partition information described in Section 4.1, the MBR 
includes a small area of 441 bytes that the PC BIOS loads and executes after 
its Power-On Self-Test (POST). Unfortunately, this space is inadequate to 
house almost any boot loader, so additional space is necessary, resulting 
in what is sometimes called a multistage boot loader. In this case the initial 
piece of code in the MBR does nothing other than load the rest of the boot 
loader code. The remaining pieces of the boot loader are usually stuffed 
into the space between the MBR and the first partition on the disk. This 
isn’t terribly secure because anything can overwrite the code there, but 
most boot loaders do it, including most GRUB installations.

This scheme of shoving the boot loader code after the MBR doesn’t 
work with a GPT-partitioned disk using the BIOS to boot because the GPT 
information resides in the area after the MBR. (GPT leaves the traditional 
MBR alone for backward compatibility.) The workaround for GPT is to 
create a small partition called a BIOS boot partition with a special UUID 
(21686148-6449-6E6F-744E-656564454649) to give the full boot loader code a 
place to reside. However, this isn’t a common configuration, because GPT is 
normally used with UEFI, not the traditional BIOS. It’s usually found only 
in older systems that have very large disks (greater than 2TB); these are too 
large for MBR.

5.8.2 UEFI Boot
PC manufacturers and software companies realized that the traditional PC 
BIOS is severely limited, so they decided to develop a replacement called 
Extensible Firmware Interface (EFI), which we’ve already discussed a bit in 
a few places in this chapter. EFI took a while to catch on for most PCs, but 
today it’s the most common, especially now that Microsoft requires secure 
boot for Windows. The current standard is Unified EFI (UEFI), which 
includes features such as a built-in shell and the ability to read partition 
tables and navigate filesystems. The GPT partitioning scheme is part of the 
UEFI standard.

Booting is radically different on UEFI systems compared to MBR. For 
the most part, it’s much easier to understand. Rather than executable boot 
code residing outside of a filesystem, there’s always a special VFAT file-
system called the EFI System Partition (ESP), which contains a directory 
named EFI. The ESP is usually mounted on your Linux system at /boot/efi, 
so you’ll probably find most of the EFI directory structure starting at /boot/
efi/EFI. Each boot loader has its own identifier and a corresponding subdi-
rectory, such as efi/microsoft, efi/apple, efi/ubuntu, or efi/grub. A boot loader 
file has a .efi extension and resides in one of these subdirectories, along 
with other supporting files. If you go exploring, you might find files such as 
grubx64.efi (the EFI version of GRUB) and shimx64.efi.

How Linux Works (Sample Chapter) © 09/16/20 by Brian Ward



18   Chapter 5

N O T E  The ESP differs from a BIOS boot partition, described in Section 5.8.1, and has a dif-
ferent UUID. You shouldn’t encounter a system with both.

There’s a wrinkle, though: you can’t just put old boot loader code into 
the ESP, because the old code was written for the BIOS interface. Instead, 
you must provide a boot loader written for UEFI. For example, when using 
GRUB, you must install the UEFI version of GRUB rather than the BIOS 
version. And, as explained earlier in “Installing GRUB with UEFI,” you 
must announce new boot loaders to the firmware.

Finally, as Section 5.6 noted, we have to contend with the “secure boot” 
issue.

5.8.3 How GRUB Works
Let’s wrap up our discussion of GRUB by looking at how it does its work:

1. The PC BIOS or firmware initializes the hardware and searches its boot-
order storage devices for boot code.

2. Upon finding the boot code, the BIOS/firmware loads and executes it. 
This is where GRUB begins.

3. The GRUB core loads.

4. The core initializes. At this point, GRUB can now access disks and 
filesystems. 

5. GRUB identifies its boot partition and loads a configuration there.

6. GRUB gives the user a chance to change the configuration.

7. After a timeout or user action, GRUB executes the configuration (the 
sequence of commands in the grub.cfg file, as outlined in Section 5.5.2).

8. In the course of executing the configuration, GRUB may load addi-
tional code (modules) in the boot partition. Some of these modules 
may be preloaded.

9. GRUB executes a boot command to load and execute the kernel as spec-
ified by the configuration’s linux command.

Steps 3 and 4 of this sequence, where the GRUB core loads, can be 
complicated due to the inadequacies of traditional PC boot mechanisms. 
The biggest question is “Where is the GRUB core?” There are three basic 
possibilities:

•	 Partially stuffed between the MBR and the beginning of the first 
partition

•	 In a regular partition

•	 In a special boot partition: a GPT boot partition, ESP, or elsewhere

In all cases except where you have an UEFI/ESP, the PC BIOS loads 
512 bytes from the MBR, and that’s where GRUB starts. This little piece 
(derived from boot.img in the GRUB directory) isn’t yet the core, but it con-
tains the start location of the core and loads the core from this point.

How Linux Works (Sample Chapter) © 09/16/20 by Brian Ward



How the Linux Kernel Boots   19

However, if you have an ESP, the GRUB core goes there as a file. The 
firmware can navigate the ESP and directly execute all of GRUB or any other 
operating system loader located there. (You might have a shim in the ESP 
that goes just before GRUB to handle secure boot, but the idea is the same.)

Still, on most systems, this isn’t the complete picture. The boot loader 
might also need to load an initial RAM filesystem image into memory 
before loading and executing the kernel. That’s what the initrd configura-
tion parameter specifies, and we’ll cover it in Section 6.8. But before you 
learn about the initial RAM filesystem, you should learn about the user 
space start—that’s where the next chapter begins.

How Linux Works (Sample Chapter) © 09/16/20 by Brian Ward



How Linux Works (Sample Chapter) © 09/16/20 by Brian Ward




