

5
M o d e l i n g t h e D e t a i l s

In Chapter 4, we blocked in the basic elements
of the projects, creating the block-in of the Jungle
Temple and modeling base meshes for sculpting the
Bat Creature and Spider Bot. In this chapter, you’ll
learn how to flesh out this framework to create fin-
ished models.

To create the final models, we need to transform
our simple geometry using a mix of techniques.
These techniques include using modifiers to add
procedural details as well as modeling elements by
hand. Our aim should be to end up with clean, well-
modeled, detailed meshes, without overcomplicat-
ing things or introducing unhelpful geometry that
could slow down renders or create artifacts.

Modeling details is great fun, but it can also be
quite repetitive, so I won’t exhaustively cover the
process of making every part. Instead, I’ll focus on
key aspects of creating certain elements of projects
that are the most interesting or tricky and leave the
rest to your imagination. We’ll begin with some
discussion of topology, discuss what constitutes
a “good” mesh, and then move on to the actual
modeling.

Topology
Topology describes the way that the edges and faces
of a mesh connect and flow across its surface. We
covered the basics of topology when creating the
base meshes for sculpting the Bat Creature and
Spider Bot—namely, creating even loops of vertices
around the arms and legs and avoiding triangular
faces. Now let’s talk about why we do things this way.

There are many ways to create meshes that have
the same basic shapes but use very different configu-
rations of faces in their construction, as you can see
in Figure 5-1.

While the shapes in Figure 5-1 are roughly the
same, the middle mesh is the most useful because
its geometry flows with the form of the face, creat-
ing loops around the eyes and the mouth and run-
ning neatly down the neck and over the head. Also,
it describes the forms of the head just as well as (or
better than) the other meshes, while using fewer
faces.

The flowing characteristics of this mesh are
also important for animation because they allow the
mesh to deform easily and smoothly. For example,

Blender Master Class
©2013, Ben Simonds

50 Chapter 5

closing the eyes or opening the mouth won’t stretch
edges awkwardly or cause parts of the mesh to inter-
sect unpleasantly. This kind of loop-based topology
also helps when creating further variations on the
shape, and it makes it easier to place UV seams and
to UV unwrap the mesh without too much stretch-
ing (see Chapter 8 for more on unwrapping).

Figure 5-1: The same head shape with three very different
meshes

Another reason that the middle mesh in
Figure 5-1 is the better choice is that its topology
is the best suited for use with the Subdivision Surface
(Subsurf) modifier. The Subdivision Surface modifier,
which we covered in Chapter 4, is used to subdivide
and smooth a mesh. The algorithm used by the
Subdivision Surface modifier, Catmull-Clark sub
division, works best when given a mesh constructed
like this one. When the Subdivision Surface modi-
fier is used with a mesh containing a lot of triangles
or long, oddly shaped faces, it can give poor results,
but when given well-constructed, flowing topology, it
produces very predictable, smooth forms.

What Is Good Topology?
Good topology for animation is usually good for
subdivision and vice versa. But what constitutes
good topology? While there are no absolute rules,
there are a few important principles. It’s a mix of
art and science.

Avoid triangles and n-gons where possible. This
is the big one. While triangles are fine in a
static mesh that you don’t intend to subdivide
or in a low-poly object for a game, if you plan
to subdivide your mesh, use as few triangles as
possible because triangles don’t subdivide as
well as quads. Equally, n-gons are converted to
triangles before being subdivided, resulting in
the same kinds of problems.

Avoid poles with lots of edges. A pole is a vertex
where three, five, or more edges meet—that
is, a point in a mesh that deviates from a grid-
like structure. Like triangles, poles can create
artifacts when subdividing a mesh. Poles with
three or five edges aren’t so bad—indeed, it’s just
about impossible to create anything but toroids
and grids without creating a few poles—but poles
with six or more edges subdivide poorly.

Create loops around important forms. This allows
you to easily select, deform, and animate your
meshes, and it also ensures they will subdivide
cleanly. For example, in Figure 5-1, the use of
edge loops that flow around the eyes makes it
easier to adjust their shape.

Align edges with the form. If your object is roughly
cylindrical, the edges of the mesh should flow
around its circumference and along its length.
If your object is roughly cuboidal, create it by
starting from a cube and adding loop cuts. In
general, try to create a mesh structure that goes
with the “grain” of the shape you are trying to
create, as shown in Figure 5-2.

Dealing with Difficult Topology
The rules listed above are simple, but you may run
into trouble following them from time to time, espe-
cially when trying to eliminate triangles and poles
from your models. Here are some tips for dealing
with difficult topology:

Plan ahead. Most topology woes can be sidestepped
simply by planning ahead. That’s why, for
example, we made sure there were eight vertices
in the loops around the arms and legs when
creating the base mesh for the Bat Creature: It
made joining the hands easy, as there were no
surplus edges to join together when it came to
bridging the gap. Powers of 2 (8, 16, or 32) are
often a good way to think about this, but regard-
less, try to keep to even numbers when creating
edge loops. If you are new to 3D modeling, it
can be helpful to sketch your desired mesh over
a photo or your concept art, either in GIMP or
on paper, as shown in Figure 5-3.

Two tris make a quad. You can join two adjacent
triangles to make a quad, killing two birds with
one stone. To convert multiple triangles into
quads automatically, select your mesh and press
alt-J to turn suitable pairs of triangles into
quads.

Blender Master Class
©2013, Ben Simonds

Modeling the Details 51

Rotate edges to move triangles. To rotate or “spin”
an edge, select it and press ctrl-E4Rotate Edge
CW/CCW (clockwise/counterclockwise). This
rearranges the faces around that edge, allowing
you to move triangles. You can combine this
trick with the joining adjacent triangles trick

above: By spinning edges to bring two triangles
together, you can eliminate them, as shown in
Figure 5-4.

Add an edge loop. Adding a loop cut (ctrl-R) that
ends on a triangle will turn that triangle into
a quad (or two triangles, which you can merge
into a quad). If the new edge loop terminates at
an open edge, you’ve eliminated your triangle.
If your mesh is closed, it might just move the
triangle to the other end of the edge loop, and,
if you have triangles at both ends, you can take
out two at a time (see Figure 5-5).

Split a pole in two. A pole with six edges can easily
be split into two fives by adding a face loop
between the two halves. Add further faces for
even cleaner topology, as shown in Figure 5-6.

Cut, dissolve, and join. The cut tool (K) allows
you to arbitrarily cut edges and faces to get
the topology you want. You can combine this
tool with the Dissolve operator (X4Dissolve)

 

❶

❷

❸

❹

Figure 5-2: Topology dos and don’ts: Avoid triangles ❶, avoid
poles ❷, create loops around important forms ❸, and align
edges with the forms, not against them ❹.

Figure 5-3: Sketching your topology beforehand can help you
avoid difficulties.

Blender Master Class
©2013, Ben Simonds

52 Chapter 5

to get rid of vertices’ edges without deleting
the faces they are part of. Then use the Join
Edges operator to connect two vertices that are
already part of a face but do not have an edge
connecting them. These tools are great for
arbitrarily rearranging difficult topology.

If you can’t get rid of it, hide it. If you really can’t
get rid of a triangle, hide it where it won’t cause
trouble or create subdivision artifacts, such
as inside an ear or nostril or someplace really
flat that doesn’t need to deform, as shown in
Figure 5-7.

When in doubt, start over. If you managed to make
something once, chances are you can do it again
and get it right. It might take some extra time,
but it’s usually worth it.

Modeling the Details of the Jungle
Temple
The Jungle Temple scene was already blocked in,
so next it needed to be refined to make it more
final. This process required me to think about the
shapes I wanted to create and to model more com-
plex meshes with the shapes I wanted in the final
renders.

Figure 5-4: Rotating edges to bring two triangles together allows you to eliminate them.

Figure 5-5: Adding edge loops with the Loop Cut tool (ctrl-R)
can get rid of triangles. If you add one between two triangles,
you can eliminate them both in one go. Alternatively, you
could delete one of the edge loops already present with
similar effect.

Figure 5-6: Adding faces to remove poles. Adding one face
loop across six poles reduces it to two five poles, which will
subdivide much more cleanly.

Triangle

Figure 5-7: This triangle
hidden in the corner of
an ear isn’t likely to cause
much trouble.

Blender Master Class
©2013, Ben Simonds

Modeling the Details 53

Walls
For the main walls of the Jungle
Temple, I first laid out cubes to
form the stone blocks of the wall
(see Figure 5-8). Beginning with
the bottom row, I added each
one by hand and modified its
length to give some variation.
Next, I built up the higher layers
by duplicating and scaling the
cubes. To add further variety, I
selected blocks at random, moved
them in or out from the wall a bit,
and rotated them slightly to make
the surface of the wall somewhat
more uneven. Leaving the basic
walls from the blocking-in stage
behind the new blocks provided
a filler for the gaps between the
blocks.

To add a beveled edge to the
blocks (see Figure 5-8), I sub-
divided them a couple of times
(select all [A] in Edit mode, then
W4Subdivide) and then added
a Bevel modifier and set the
“limit” method to Angle. The
limit restricts the beveling to
edges between faces at a sharp
angle, and setting the angle to
about 45° gives a nicely rounded
bevel that is heavier on the cor-
ners of the blocks than at the
edges. The sides are left alone.

* When applied, the Bevel modifier
can create errors that will turn
your geometry into triangles and
create a lot of duplicate vertices.
To fix this, apply the modifier only
once you’re finished modeling.
Then, in Edit mode, select every-
thing (A) and use the Remove
Doubles (W4Remove Doubles)
operator to eliminate duplicated
vertices. Next, use the Triangles to
Quads operator (alt-J) to return
to a cleaner mesh without so many
triangles. You can also bevel indi-
vidual edges and vertices in Edit
mode, using the Bevel operator
(W4Bevel).

Figure 5-8: Creating the stone blocks for the walls. First, I blocked in the walls
with simple cubes, which I scaled and moved to build up the wall. Next, I
damaged the walls a bit by adding some basic subdivisions and roughening
some edges. Finally, I beveled the edges of the blocks using a Bevel modifier
limited by angle.

Blender Master Class
©2013, Ben Simonds

54 Chapter 5

For the block details, I subdivided some of
the blocks and then added extra features, such as
a crack down the middle, a chunk out of a corner,
and a split. I added loop cuts or subdivided specific
parts and moved vertices around to create cracks,
dents, and chips. Because the mesh won’t be sub
divided or deformed significantly, there’s no need
to avoid triangles here; they won’t cause problems.

To prevent the blocks from looking faceted, I
set their shading mode to Smooth and then added
an Edge Split modifier to split the mesh at certain
edges in order to produce separate surfaces (see
Figure 5-9). The Edge Split modifier breaks the
mesh into separate pieces so that when shaded
smooth or when further modifiers are applied,
the edge between the pieces is preserved. You can
set Edge Split to split the mesh either along edges
tagged as Sharp in Edit mode (ctrl-E4Mark Sharp)
or along edges with sharp enough angles between
their faces. Using the angles only with a setting of
30° resulted in nice-looking blocks.

I created the other incidental blocks and paving
slabs in the same way as the walls, using the initial
block-in cubes as a guide for placement and then
deleting the old geometry once the new blocks were
placed. The final blocks are shown in Figure 5-10.

Statues
I modeled the statues in the corners by the door
of the Jungle Temple using fairly basic building
blocks and my concept art as a guide. Each part
began with a simple primitive—usually a cube or
cylinder—transformed, subdivided, and extruded
to create what I need.

As shown in Figure 5-11, each part is fairly
simple. To add beveled edges, I used the same
method that I used for the wall and floor blocks.
Adding some loop cuts around the ends of some
pieces (for example, to the “legs” and the ends
of the arms) allowed these edges to retain their
square shape and sharper corners when beveled,
without too much subdivision.

Figure 5-9: The final walls, with a Bevel and an Edge Split modifier to give them beveled edges and flat sides

Blender Master Class
©2013, Ben Simonds

Modeling the Details 55

Stone Carvings
For the stone glyphs, I used my concept art as a
single orthographic reference, loading it as a back-
ground image, as discussed in Chapter 3. Then,
beginning with a plane, I traced each piece of the
designs, sticking primarily to quads where possible.
Next, I extruded the whole design downward to give
it some thickness and deleted the new faces after-
ward to leave just the sides and front of the design.
By placing edges along the forms of the design’s
interior elements, I could move the grooves in the
design downward to create the details.

To clean up the design, I used creasing (see
Figure 5-12). By adding a Subsurf modifier and tag-
ging edges as creased, you can create smooth objects
with sharp creases along the tagged edges. Creasing

allowed me to add tight creases to the model with-
out using more polygons than necessary. Adding an
Edge Split modifier after the Subsurf modifier then
gave a nice smooth mesh with sharp transitions at
the creased edges.

With the carvings complete, I moved on to plac-
ing them in my scene by replacing some of the rows
of stone blocks in the walls with rows of the glyphs.
To do this, I lined up all six glyphs in a row and then
used an Array modifier to repeat the design to fill
the length of the wall (see Figure 5-13).

Tagging Edges
The edges of a mesh can be tagged or marked in a
variety of ways, each of which tells different Blender
operators and modifiers how to perform operations

Figure 5-10: The rest of the stone blocks in the scene were modeled in
the same way as the walls.

Figure 5-11: The statue model exploded into its con-
stituent parts. Most are derived from simple cubes or
cylinders.

Blender Master Class
©2013, Ben Simonds

56 Chapter 5

on the mesh. The shortcut for Edge
operators, including Tagging, in Edit
mode is ctrl-E. Edges can be marked
as Sharp, which allows operators like
Bevel and Edge Split to work only on
these edges. They can also be given
a crease value, either from the ctrl-E
menu or with shift-E, which tells the
Subsurf modifier not to smooth these
edges when doing subdivision, result-
ing in nice sharp edges.

Sharp Edges and Subdivision
Creasing is one way to achieve a sharp
crease in a subdivided mesh; another
way is with support loops. Support loops
work by placing two or more edge
loops close together at the edge of a
form. When the mesh is subdivided,
the new geometry can’t be smoothed
out as much because the extra geom-
etry defines the corner more tightly
(see Figure 5-14).

Both methods have their place.
Support loops are the better choice
when you’re trying to produce nicely
beveled edges and need fine control
over precisely how your forms look.
However, if your goal is to produce
very sharp creases or you are working
with simpler models with less extra
topology, creasing is preferable. You
can always mix and match both meth-
ods as the situation demands.

Support loops are also useful
for ensuring that objects subdivide
to give the shapes you want. For
example, Figure 5-15 shows a cube
with a Subsurf modifier applied and
its wireframe visible. With no support
loops, the modifier turns it into a
sphere. With extra support loops run-
ning around the middle of the faces,
the object more closely resembles a
cube, and shifting these support loops
toward the edges of the cube makes
the corners sharper. This is useful
when modeling all sorts of surfaces.

Figure 5-12: Creating the stone carvings. I first blocked out the carvings as
individual pieces over the concept art, using primarily quads. Next, I tagged
some edges as creased (purple) to give sharp edges when subdivided. Finally,
I added Subsurf and Edge Split modifiers to give smooth carvings with sharp
edges where the edges had been tagged. The result uses fewer polygons and
simpler topology than if I had used support loops to produce sharp edges.

Blender Master Class
©2013, Ben Simonds

Modeling the Details 57

Figure 5-13: Using the Array modifier to repeat the stone carvings multiple times

Unaltered

Support
loops

Creased edges
(bold)

Figure 5-14: Two methods of getting sharp edges when work-
ing with a subdivision surface. Top: Unaltered mesh with a
gentle slope and a Subdivision Surface modifier applied.
Middle: Support loops added to give sharp edges. Bottom:
Edges creased to give sharp edges (without extra geometry).

Figure 5-15: Clockwise from top left: A cube with zero
loops, one loop, two widely spaced loops, and two evenly
spaced loops running around the middle of each side. As the
edge loops get closer to the edge, the corners become more
sharply defined.

Blender Master Class
©2013, Ben Simonds

58 Chapter 5

Plants
The plants in this scene are simple. To create them,
I began by modeling a few varieties of leaves from
planes; I scaled and subdivided the planes into leafy
shapes (see Figure 5-16). Next, I started duplicat-
ing these different leaf objects and placing them
around the scene. By creating linked duplicates with
alt-D, you can create multiple copies of the same
mesh that all update together when you change one
duplicate, which makes creating UVs and textures
much easier because you only have to do so once
for each type of plant. By scaling and rotating these
duplicates in Object mode and placing them around
the scene, you can give the impression of a lot of
variation without having to create a lot of different
meshes (see Figure 5-17).

There are two ways to duplicate a mesh in
Object mode. One way is to create a simple copy,
which then becomes a unique object (shift-D); the
other is to duplicate a linked copy (alt-D), which
retains the same mesh data and materials as the
original and updates along with it. You can still
apply different modifiers to a linked duplicate and
move, scale, and rotate it independently in Object
mode, but its mesh data and materials, as well as
other data, will remain linked with the original
object; if you edit one, the changes are applied
to both.

Both methods are extremely useful for different
tasks. Basically, you should use simple duplicates in
the following situations:

•	 You want to edit the new object independently.

•	 You plan on recombining the new mesh with
other elements in the scene.

•	 You want to keep the old mesh as a backup or
alternative.

You should use linked duplicates if the following
is true:

•	 You want to create many copies of a single object
and don’t want to edit them individually.

•	 You want only one set of UVs and materials for
multiple objects.

When you select a linked duplicate, you can see
how many users (copies) of that object are using
the same datablock by examining its object data
properties in the Properties panel (see Figure 5-18).
You can also make the object unique by clicking the
number icon next to the datablock’s name. Making
the object unique creates a new mesh datablock that

Figure 5-16: The plants were all made with very simple
meshes (shown with a Subdivision Surface modifier applied).

Figure 5-17: Duplicating the different plant components and
placing them around the scene. Varying the scale and rota-
tion of the duplicates can go a long way toward making them
distinctive.

Blender Master Class
©2013, Ben Simonds

Modeling the Details 59

is now independent of the one it was copied from,
allowing you to edit the object’s mesh and change its
materials separately (as if it were a simple copy).

IvyGen
The IvyGen add-on for Blender is a procedural
generator that allows you to quickly create ivy-like
vines that creep over your scene (see Figure 5-19).
To use it, first enable it from the User Preferences
editor (File4User Preferences) and then look
under the Add-On tab in the Add Curve category.
Once you have enabled the add-on, you should have
the option to grow ivy on a selected object via the
Add menu (shift-A4Curve4AddIvyToMesh in
Object mode).

Figure 5-19: Using IvyGen to generate procedural vines. The parameters for how your ivy will grow are in the
Tool Options region on the left when using IvyGen. For clarity here, I’ve added a green material for the leaves
and a brown material for the vines.

Figure 5-18: Checking the number of users of a mesh
datablock. Click the number (4 in this case) next to the
datablock’s name to create a new copy that you can edit
independently. The F icon will create a “fake” user of
that datablock, which will save the object and prevent it
from being deleted when you save the .blend file, even
if there are no instances of that mesh in the scene.

Blender Master Class
©2013, Ben Simonds

60 Chapter 5

In order for IvyGen to generate vines, it
needs a single mesh object for them to grow
over, so we need to create a new mesh that
includes all of the geometry we want to grow
vines over. To do so, select all of the objects
you want the ivy to cover, duplicate them
(shift-D), apply any modifiers (using the
Convert to Mesh operator in Object mode—
alt-C), and merge them into one object
(ctrl-J). The result should be one object. If
your scene has a high poly count, you might
want to skip applying modifiers that increase
the poly count a lot in order to give you a
lower-poly mesh to grow ivy over; unfortu-
nately, this may come at the cost of some
accuracy in how it will grow.

Later, once you’ve finished growing your
ivy, delete this duplicate or move it to another
layer so that it doesn’t get in your way (M).

Next, place the 3D cursor where you want
the ivy to start and activate IvyGen with the
Add Curve menu (shift-A4Add Curve4Add
Ivy To Mesh). The IvyGen allows you to tweak
numerous parameters to determine how the
ivy looks, the most important of which are
the Max Ivy Length option, which determines
how far the ivy spreads, and the Ivy Size and
Leaf Size options, which determine the thick-
ness of the vines and the size of the leaves.
The leaf probability option determines the
leaf density. Other options, like Float Length
and Adhesion Length, determine how far the
vines can reach out from the wall and how
they are affected by gravity.

Keep tweaking IvyGen’s settings and
pressing Update Ivy to regenerate your ivy
with any new settings until you’re happy with
the look of your foliage. Keep in mind that the
higher you set the Max Ivy Length, the longer
the ivy will take to generate. Also, if you want
to cover a large area, it’s easier to run IvyGen
repeatedly using different starting locations
in order to create multiple ivy meshes. For
example, in the Jungle Temple scene, I hid the
starting locations in the corners of the scene
in a couple of different starting locations and
let my ivy grow out from there. You can see
the final results in Figure 5-21.

IvyGen also creates automatic UV coordi-
nates for the leaves and vines it generates, as

Figure 5-20: Adding puddles to the scene by first creating depres-
sions in the main ground plane mesh and then adding a second flat
plane to intersect with it

Figure 5-21: The final modeled Jungle Temple scene

Blender Master Class
©2013, Ben Simonds

Modeling the Details 61

well as assigning material slots to them. This feature
will greatly speed up texturing and assigning materi-
als to your ivy later. (See Chapters 8 and 12 for more
on UV unwrapping and materials.)

Ground/Soil
To make the ground a bit more interesting, I sub-
divided it a couple of times and roughened it up
a bit with the Sculpt tools, which I’ll discuss in
detail in Chapter 6. Next, I added a new plane
(this time keeping it unsubdivided and perfectly
flat) and placed it just below the average height
of the ground so that some of the deeper areas
poked down through it. This produces the effect
of puddles on the ground (see Figure 5-20).

Additionally, I created piles of dirt in the cor-
ners of the scene simply by creating a plane, sub-
dividing it several times, and using proportional
editing to add lumps. By combining this with a bit of
sculpting to build up dirt in the cracks and corners
between the blocks and other elements, I was able
to give the surroundings more of an aged look. The
final scene is shown in Figure 5-21.

* While the following flows from the modeling tech-
niques already discussed, the parts we are creating fit
in alongside the sculpted and retopologized meshes
we will be working on in Chapters 6 and 7. You can
follow along with this part first or skip forward to
Chapters 6 and 7 on sculpting and retopology and
then return to this later.

Modeling the Details of the
Spider Bot
For the Spider Bot, I needed to create the other
mechanical parts of the body that will complete
the model when combined with the main body and
leg pieces I will be sculpting and retopologizing
in Chapters 6 and 7. The aim was to create some
feasible mechanical-looking parts, such as joints,
wires, and so forth, that complete the look of the
Spider Bot.

Joints
The joints were all designed from the same basic
template: a cylinder for the central part, which
allows them to move freely, with struts coming out
that attach to the legs (see Figure 5-22). To produce
the struts, I began with a curve object to make the

basic shape a 2D curve, used the Extrude setting
to give it some thickness, and then converted it to
a mesh. Blender’s default curve-filling topology is
full of skinny triangles, which do not subdivide at all
well, so I deleted these faces and filled in the front
and back by hand to produce nicer topology (see
Figure 5-23).

Wires
The wires are all created from 3D Bézier curves
modeled around the legs and other areas to add
interest and connect the parts (see Figure 5-24).
To add further detail, I converted some wires to
meshes to allow me to add some loop cuts and
extrusions (see Figure 5-25).

For some of the more elaborate wires, I com-
bined the Array and Curve modifiers to duplicate a
single mesh along a curve (see Figure 5-26). First,
I modeled a single unit (the ring-shaped object in
Figure 5-26), and then I added an Array modifier
and a Curve modifier to duplicate that unit and
deform it to the shape of the curve.

Figure 5-22: The leg joints. Both joints were created using a
mix of cylinders for the simple parts and curves (converted
into meshes) for the longer pieces. Adding support loops
around the edges of the cylindrical parts allows them to sub
divide much better.

Blender Master Class
©2013, Ben Simonds

62 Chapter 5

Figure 5-25: Initially, I modeled these
tubes using curves. Then I converted the
curves to meshes to allow me to add
some loop cuts and scale them in to
create grooves.

Figure 5-26: A more complex curved object, made by combining an Array modifier
to duplicate the base unit (the ring-shaped object) and a Curve modifier to deform
the resulting stack along a curve. I also used an Edge Split modifier and a Mirror
modifier to mirror the results to the other side of the model.

Figure 5-24: Creating the wires for the underside of the legs. These were made with 3D
Bézier curves and given thickness using the Bevel setting in the Object Data panel.

Figure 5-23: Creating the strut ele-
ments of the legs with curves and
then filling in the flat surfaces of
the resulting mesh with cleaner
topology

Blender Master Class
©2013, Ben Simonds

Modeling the Details 63

Coupling
For the coupling between the body and abdo-
men, I initially created the shape with curves and
then duplicated it and converted the duplicate to a
mesh (alt-C). Because Blender’s default curve fill-
ing creates ugly, long triangles that don’t deform
well, I fixed the topology by hand by deleting the
inside faces and filling in the shape manually (see
Figure 5-27).

Other Parts
I placed the Spider Bot’s eyes using Blender’s
Snapping tools: I turned on Snapping to Faces,
added spheres in Object mode, and then snapped
them to the surface of the head. The fangs are
simply cubes, extruded and with loop cuts added to
make constrictions where they bend. I added some
further embellishments using a mix of Blender’s
modeling tools and retopology techniques. (See
Chapter 7 for these parts and the finished model.)

Modeling the Details of the
Bat Creature
The final Bat Creature will consist only of
one mesh for the body, which we’ll discuss in

Chapter 6, but it will need eyes, teeth, and fin-
gernails, too. As these wouldn’t be sculpted or
retopologized in any way, I aimed straight for the
final mesh.

Eyes
There are many ways to model eyes, but in general
it helps to model some of the internal structure of
the eye first to allow the rendered eye to catch light
and reflections realistically. My model for the eye
(see Figure 5-28) consisted of an outer layer, which
will have a transparent material and which makes up
the cornea and the reflective surface of the eye, and
an inner layer, which will later be textured with the
pupil, iris, and sclera (the white of the eye).

Both the inner and outer layers are made in the
same way, beginning with a UV sphere (in Object
mode shift-A4Mesh4UVSphere) and then using
proportional edit to push in the end of the sphere
for the inner part or to push it out a little for the
outer part to add a bulge to the cornea. For the
inner part, after pushing the surface in with pro-
portional editing, I extruded back the most central
faces to create a pit for the pupil. For the cornea, I
deleted the end triangular faces of the UV sphere
and replaced them with a subdivided plane to avoid
artifacts when a Subdivision Surface modifier is
added (see the left of Figure 5-27). Using the To
Sphere operator (alt-shift-S) can help you regain
the spherical shape of the eye after adjusting its
topology.

Teeth and Nails
Both the teeth and nails were derived from cubes
(see Figure 5-29). To create the teeth, I began with
a cube, scaled it down, and extruded from the bot-
tom. By repeatedly scaling down the bottom of the
tooth and then extruding again, I was able to refine
the tooth into a point. I then positioned and dupli-
cated the teeth and used a Mirror modifier to fill in
the other side of the mouth.

For the nails, I flattened the cube a bit, added a
loop cut down the middle, and moved it out a little
to give the nail a bit of a curve. I then repeated the
same process I had used for the teeth, refining them
into a point and then placing them by hand and
duplicating as many as I needed.

Figure 5-27: Creating the coupling. I converted the curve
object (right) into a mesh and then deleted some of the edge
loops around the edges to even out the distribution of faces.
I filled the inner faces with nicer topology by hand. Then,
using proportional editing, I added a bend in the middle.

Blender Master Class
©2013, Ben Simonds

64 Chapter 5

In Review

This completes our discussion of modeling the
Jungle Temple scene and adding some extra details
to the Spider Bot and Bat Creature projects. You’ve
learned how to use a variety of Blender’s modeling
tools, including modifying existing meshes with
modifiers, applying the results of these modifiers
so you can edit the results, modeling with curves

and adjusting the results, and modeling parts from
scratch using primitives and extrusions to build up
complex forms.

In the next chapter, we will move on to sculpt-
ing in Blender using the Multiresolution modifier
and Sculpt tools to create detailed organic and
hard-surface forms. In Chapter 7, you’ll learn how
to retopologize these forms using Blender’s model-
ing tools in order to create your models.

Figure 5-28: Modeling the eye. Left: The outer layer. Note the grid topology at the end of the cornea. Middle: The inner layer.
Right: The two combined in wireframe view, shown from the side.

Figure 5-29: Modeling the teeth and nails

Blender Master Class
©2013, Ben Simonds

