

D o i n g M a t h
w i t h P y t h o n

S o l u t i o n s t o
P r o g r a mm i n g C h a l l e n g e s

C o n t e n t s

Chapter 1 Programming Solutions . 1
#1: Even-Odd Vending Machine . 1
#2: Enhanced Multiplication Table Generator . 2
#3: Enhanced Unit Converter . 3
#4: Fraction Calculator . 4
#5: Give Exit Power to the User . 5

Chapter 2 Programming Solutions . 7
#1: How Does the Temperature Vary During the Day? . 7
#2: Exploring a Quadratic Function Visually . 8
#3: Enhanced Projectile Trajectory Comparison Program . 9
#4: Visualizing Your Expenses . . 12
#5: Exploring the Relationship Between the Fibonacci Sequence and

the Golden Ratio . 13

Chapter 3 Programming Solutions . 15
#1: Better Correlation Coefficient–Finding Program . 15
#2: Statistics Calculator . 16
#3: Experiment with Other CSV Data . 17
#4: Finding the Percentile . 20
#5: Creating a Grouped Frequency Table . . 23

Chapter 4 Programming Solutions . 25
#1: Factor Finder . 25
#2: Graphical Equation Solver . 25
#3: Summing a Series . 27
#4: Solving Single-Variable Inequalities . 28

Chapter 5 Programming Solutions . 31
#1: Using Venn Diagrams to Visualize Relationships Between Sets 31
#2: Law of Large Numbers . 32
#3: How Many Tosses Before You Run Out of Money? . 32
#4: Shuffling a Deck of Cards . 33
#5: Estimating the Area of a Circle . 34

Chapter 6 Programming Solutions . 37
#1: Packing Circles into a Square . 37
#2: Drawing the Sierpiń  ski Triangle . . 37
#3: Exploring Hénon’s Function . 39
#4: Drawing the Mandelbrot Set . 41

Chapter 7 Programming Solutions . 45
#1: Verify the Continuity of a Function at a Point . 45
#2: Implement the Gradient Descent . . 46
#3: Area Between Two Curves . 48
#4: Finding the Length of a Curve . 49

Chapter 1 Programming Solutions

#1: Even-Odd Vending Machine
To solve this challenge, first convert the input to an integer, then check if it
is an even or odd number. If it’s odd, print the next nine odd numbers; if
it’s even, print the next nine even numbers. The following program is one
way to achieve that:

'''
even_odd_vending.py

Print whether the input is even or odd. If even, print the next 9 even numbers
If odd, print the next 9 odd numbers.
'''
def even_odd_vending(num):

u if (num % 2) == 0:
 print('Even')
 else:
 print('Odd')
 count = 1

v while count <= 9:
 num += 2
 print(num)
 # increment the count of numbers printed
 count += 1

if __name__ == '__main__':
 try:
 num = float(input('Enter an integer: '))
 if num.is_integer():
 even_odd_vending(int(num))
 else:
 print('Please enter an integer')
 except ValueError:
 print('Please enter a number')

The input is converted into a floating point number (instead of an
integer) so that we can use the is_integer() method to check if the input
is an integer. If it is, we use the int() function to convert it back to an inte-
ger before calling the even_odd_vending() function.

The even_odd_vending() function accepts an integer as a parameter, uses
the modulus operator (%) to check whether it is divisible by 2 u, and prints
Even or Odd depending on the result.

Whether the number is even or odd, the next number to be printed
can be obtained by adding 2 to the previous number. We do this in a while
loop v that continues until we’ve printed nine numbers. We use a label,
count, to keep track of how many numbers we have already printed.

Doing Math with Python (Programming Challenge Solutions), © 2015 by Amit Saha

2 Chapter 1 Programming Solutions

If the user enters an even number when they run the program, it will
print Even and the next nine even numbers:

Enter an integer: 2
Even
4
6
8
10
12
14
16
18
20

For an odd number, Odd will be printed along with the next nine odd
numbers.

#2: Enhanced Multiplication Table Generator
The solution to this challenge is an extension of the multiplication table
generator program we wrote earlier in the chapter and is shown here:

'''
enhanced_multi_table.py

Multiplication table printer: Enter the number and the number
of multiples to be printed
'''

def multi_table(a, n):
 for i in range(1, n+1):
 print('{0} x {1} = {2}'.format(a, i, a*i))

if __name__ == '__main__':
 try:
 a = float(input('Enter a number: '))
 n = float(input('Enter the number of multiples: '))
 if not n.is_integer() or n < 0:
 print('The number of multiples should be a positive integer')
 else:
 multi_table(a, int(n))
 except ValueError:
 print('You entered an invalid input')

Note that we check if the desired number of multiples is an integer
using the is_integer() method. If the correct inputs have been entered, we
call the multi_table() function with two parameters: a (the number whose
multiple we want to print) and n (the number of multiples we want to print).

When the program is run, it will ask for the inputs and then print the
desired number of multiples. If the user enters an invalid input, it will print
an error message and exit.

Doing Math with Python (Programming Challenge Solutions), © 2015 by Amit Saha

#3: Enhanced Unit Converter 3

#3: Enhanced Unit Converter
The solution to this challenge enhances the unit conversion program you
wrote earlier so it can convert between kilograms and pounds, and Celsius
and Fahrenheit:

'''
enhanced_unit_converter.py

Unit converter:

Kilometers and Miles
Kilograms and Pounds
Celsius and Fahrenheit
'''

def print_menu():
 print('1. Kilometers to Miles')
 print('2. Miles to Kilometers')
 print('3. Kilograms to Pounds')
 print('4. Pounds to Kilograms')
 print('5. Celsius to Fahrenheit')
 print('6. Fahrenheit to Celsius')

def km_miles():
 km = float(input('Enter distance in kilometers: '))
 miles = km / 1.609
 print('Distance in miles: {0}'.format(miles))

def miles_km():
 miles = float(input('Enter distance in miles: '))
 km = miles * 1.609
 print('Distance in kilometers: {0}'.format(km))

def kg_pounds():
 kg = float(input('Enter weight in kilograms: '))
 pounds = kg * 2.205
 print('Weight in pounds: {0}'.format(pounds))

def pounds_kg():
 pounds = float(input('Enter weight in pounds: '))
 kg = pounds / 2.205
 print('Weight in kilograms: {0}'.format(kg))

def cel_fahren():
 celsius = float(input('Enter temperature in Celsius: '))
 fahrenheit = celsius*(9 / 5) + 32
 print('Temperature in fahrenheit: {0}'.format(fahrenheit))

def fahren_cel():
 fahrenheit = float(input('Enter temperature in Fahrenheit: '))
 celsius = (fahrenheit - 32)*(5/9)
 print('Temperature in celsius: {0}'.format(celsius))

Doing Math with Python (Programming Challenge Solutions), © 2015 by Amit Saha

4 Chapter 1 Programming Solutions

if __name__ == '__main__':
 print_menu()
 choice = input('Which conversion would you like to do? ')

 if choice == '1':
 km_miles()
 if choice == '2':
 miles_km()

 if choice == '3':
 kg_pounds()
 if choice == '4':
 pounds_kg()

 if choice == '5':
 cel_fahren()
 if choice == '6':
 fahren_cel()

Four new functions have been added to our earlier program. The
kg_pounds() function accepts a mass in kilograms as input and returns the
corresponding mass in pounds. The reverse conversion is performed by the
pounds_kg() function. The cel_fahren() and fahren_cel() functions convert
Celsius to Fahrenheit and Fahrenheit to Celsius, respectively.

When the program is run, it asks the user to enter a number from 1 to
6 to choose which conversion they want to perform. Next it asks them to
input the relevant quantity, and then it outputs the converted result:

1. Kilometers to Miles
2. Miles to Kilometers
3. Kilograms to Pounds
4. Pounds to Kilograms
5. Celsius to Fahrenheit
6. Fahrenheit to Celsius
Which conversion would you like to do? 5
Enter temperature in Celsius: 37
Temperature in Fahrenheit: 98.60000000000001

If the user enters a number that is not one of the numbers recognized
by the program, it silently exits. You may want to print a helpful message to
indicate this in your solution.

#4: Fraction Calculator
For the solution to this challenge, we add functions for the different mathe-
matical operations—add(), subtract(), divide(), and multiply()—and depend-
ing on the user input, we call the relevant function.

'''
fractions_operations.py

Fraction operations
'''

Doing Math with Python (Programming Challenge Solutions), © 2015 by Amit Saha

#5: Give Exit Power to the User 5

from fractions import Fraction
def add(a, b):
 print('Result of adding {0} and {1} is {2} '.format(a, b, a+b))

def subtract(a, b):
 print('Result of subtracting {1} from {0} is {2}'.format(a, b, a-b))

def divide(a, b):
 print('Result of dividing {0} by {1} is {2}'.format(a, b, a/b))

def multiply(a, b):
 print('Result of multiplying {0} and {1} is {2}'.format(a, b, a*b))

if __name__ == '__main__':
 try:
 a = Fraction(input('Enter first fraction: '))
 b = Fraction(input('Enter second fraction: '))
 op = input('Operation to perform - Add, Subtract, Divide, Multiply: ')
 if op == 'Add':
 add(a, b)
 if op == 'Subtract':
 subtract(a, b)
 if op == 'Divide':
 divide(a, b)
 if op == 'Multiply':
 multiply(a, b)
 except ValueError:
 print('Invalid fraction entered')

When the program is run, it will ask for two fractions and the operation
to be carried out. Then it will display the result of that operation. Here is
an example with the Subtract operation:

Enter first fraction: 1/3
Enter second fraction: 2/3
Operation to perform - Add, Subtract, Divide, Multiply: Subtract
Result of subtracting 2/3 from 1/3 is -1/3

If the user enters an invalid input, such as 1, the program will print an
error message.

#5: Give Exit Power to the User
This challenge was kept open ended to give you an opportunity to try
improving the programs so that they continued executing until the user
quit them. Here is the fraction calculator program that asks the user
whether they want to exit after every calculation:

'''
fractions_operations_exit_power.py

Fraction operations: Do not exit until asked to
'''

Doing Math with Python (Programming Challenge Solutions), © 2015 by Amit Saha

6 Chapter 1 Programming Solutions

from fractions import Fraction
def add(a, b):
 print('Result of adding {0} and {1} is {2} '.format(a, b, a+b))

def subtract(a, b):
 print('Result of subtracting {1} from {0} is {2}'.format(a, b, a-b))

def divide(a, b):
 print('Result of dividing {0} by {1} is {2}'.format(a, b, a/b))

def multiply(a, b):
 print('Result of multiplying {0} and {1} is {2}'.format(a, b, a*b))

if __name__ == '__main__':

 while True:

 try:
 a = Fraction(input('Enter first fraction: '))
 b = Fraction(input('Enter second fraction: '))
 op = input('Operation to perform - Add, Subtract, Divide, Multiply: ')
 if op == 'Add':
 add(a, b)
 if op == 'Subtract':
 subtract(a, b)
 if op == 'Divide':
 divide(a, b)
 if op == 'Multiply':
 multiply(a, b)
 except ValueError:
 print('Invalid fraction entered')
 answer = input('Do you want to exit? (y) for yes ')
 if answer == 'y':
 break

Sample output from this program is shown here:

Enter first fraction: 1/3
Enter second fraction: 4/6
Operation to perform - Add, Subtract, Divide, Multiply: Divide
Result of dividing 1/3 by 2/3 is 1/2
Do you want to exit? (y) for yes n
Enter first fraction: 2/3
Enter second fraction: 4/5
Operation to perform - Add, Subtract, Divide, Multiply: Multiply
Result of multiplying 2/3 and 4/5 is 8/15
Do you want to exit? (y) for yes y

You can find another example, the modified unit conversion program,
in the file enhanced_unit_converter_exit_power.py, along with other solutions.

Doing Math with Python (Programming Challenge Solutions), © 2015 by Amit Saha

Chapter 2 Programming Solutions

#1: How Does the Temperature Vary During the Day?
For this challenge, you needed to search for the weather of a city in
Google’s search engine and re-create a plot of the day’s temperature
forecast. Figure 1 shows an example of what you would usually see when
you search for “New York weather.”

Figure 1: Sample result when “New York weather” is entered in Google’s
search engine.

Once you have the plot, make two lists: one to store the time of day,
and the other to store the corresponding temperature forecast at that
time. Then call the plot() function to create a graph. The time of day
is shown as strings. However, if you attempt to pass in a list of strings to
the plot() function, your program will fail and give you an error. After
all, what sense does it make to state that you want a point to be plotted at
(“7 am”, 70)? Instead, assign numbers to each time of day that you want to
plot—that is, 1 for 4 am, 2 for 7 am, and so on. Then, use the xticks() func-
tion to change the labels of these numbers to match the time of day they
correspond to. Here’s the solution to the challenge:

'''
nyc_forecast_basic.py

Create a graph showing a city's temperature forecast for the day
'''

Doing Math with Python (Programming Challenge Solutions), © 2015 by Amit Saha

8 Chapter 2 Programming Solutions

import matplotlib.pyplot as plt

def plot_forecast():

 time_of_day = ['4 AM', '7 AM', '10 AM', '1 PM', '4 PM', '7PM', '10 PM']
 forecast_temp = [71, 70, 74, 80, 82, 81, 76]

u time_interval = range(1, len(time_of_day) + 1)

 plt.plot(time_interval, forecast_temp, 'o-')
v plt.xticks(time_interval, time_of_day)

 plt.show()

if __name__ == '__main__':
 plot_forecast()

We create the numbers used to represent the different times of day
at u. Then we use the xticks() function at v to remap the numbers back to
the strings, which makes the time (7 am, etc.) show up in the graph instead
of the numbers. The first argument to the function is the list of numbers,
and the second is the list of labels you want to assign to each number.

When you run the program, you will see a graph showing the day’s
temperature forecast, which will closely match what you saw in the search
engine result.

#2: Exploring a Quadratic Function Visually
To solve this challenge, first use the range() function to generate 10 inte-
gers between −100 and 100 in a list u. This will generate the integers −100,
−80, . . . 80. Then, calculate the value of the function x2 + 2x + 1 at each of
these integers and store each value in y_values. Finally, use the plot() func-
tion to plot the numbers in x_values and y_values.

'''
quad_function_plot.py

Plot a quadratic function
'''

import matplotlib.pyplot as plt

def draw_graph(x, y):
 plt.plot(x, y)
 plt.show()

if __name__ == '__main__':
 # assume values of x

u x_values = range(-100, 100, 20)
 y_values = []
 for x in x_values:
 # calculate the value of the quadratic
 # function
 y_values.append(x**2 + 2*x + 1)
 draw_graph(x_values, y_values)

Doing Math with Python (Programming Challenge Solutions), © 2015 by Amit Saha

#3: Enhanced Projectile Trajectory Comparison Program 9

When you run the program, the graph of the function will look some-
thing like Figure 2.

Figure 2: Graph of the quadratic function x2 + 2x + 1. Increasing the number
of points between −10 and 10 will make the graph appear smoother.

Because this is a quadratic function, the variation of the function with
respect to the variable x is nonlinear.

#3: Enhanced Projectile Trajectory Comparison Program
Here’s the solution to this challenge:

"""
projectile_comparison_gen.py

Compare the projectile motion of a body thrown with various combinations of initial
velocity and angle of projection
"""

import matplotlib.pyplot as plt
import math

g = 9.8

def draw_graph(x, y):
 plt.plot(x, y)
 plt.xlabel('x-coordinate')
 plt.ylabel('y-coordinate')
 plt.title('Projectile motion at different initial velocities and angles')

Doing Math with Python (Programming Challenge Solutions), © 2015 by Amit Saha

10 Chapter 2 Programming Solutions

def frange(start, final, interval):

 numbers = []
 while start < final:
 numbers.append(start)
 start = start + interval

 return numbers

def draw_trajectory(u, theta, t_flight):
 # List of x and y coordinates
 x = []
 y = []
 intervals = frange(0, t_flight, 0.001)
 for t in intervals:
 x.append(u*math.cos(theta)*t)
 y.append(u*math.sin(theta)*t - 0.5*g*t*t)

 # Create the graph
 draw_graph(x, y)

if __name__ == '__main__':

 num_trajectories = int(input('How many trajectories? '))

 velocities = []
 angles = []
 for i in range(1, num_trajectories+1):
 v = input('Enter the initial velocity for trajectory {0} (m/s): '.format(i))
 theta = input('Enter the angle of projection for trajectory {0} (degrees): '.format(i))
 velocities.append(float(v))
 angles.append(math.radians(float(theta)))

 for i in range(num_trajectories):
 # Calculate time of flight, maximum horizontal distance and
 # maximum vertical distance
 t_flight = 2*velocities[i]*math.sin(angles[i])/g
 S_x = velocities[i]*math.cos(angles[i])*t_flight
 S_y = velocities[i]*math.sin(angles[i])*(t_flight/2) - (1/2)*g*(t_flight/2)**2

u print('Initial velocity: {0} Angle of Projection: {1}'.format(velocities[i],
 math.degrees(angles[i])))

 print('T: {0} S_x: {1} S_y: {2}'.format(t_flight, S_x, S_y))
 print()

v draw_trajectory(velocities[i], angles[i], t_flight)

 # Add a legend and show the graph
 legends = []
 for i in range(0, num_trajectories):
 legends.append('{0} - {1}'.format(velocities[i], math.degrees(angles[i])))

w plt.legend(legends)
 plt.show()

Doing Math with Python (Programming Challenge Solutions), © 2015 by Amit Saha

#3: Enhanced Projectile Trajectory Comparison Program 11

When executed, the program first asks for the number of trajectories
that the user wants to compare. Then it asks for the initial velocity and
angle of projection for each trajectory. For each of these trajectories, it
prints the time of flight, range, and maximum vertical height reached u
and calls the draw_trajectory() function v, which creates a plot for each
trajectory.

To identify which trajectory corresponds to which initial velocity and
angle, we add a legend to the graph w. Finally, we call the show() function to
show the graph.

Here’s a sample run:

How many trajectories? 3
Enter the initial velocity for trajectory 1 (m/s): 25
Enter the angle of projection for trajectory 1 (degrees): 60
Enter the initial velocity for trajectory 2 (m/s): 50
Enter the angle of projection for trajectory 2 (degrees): 50
Enter the initial velocity for trajectory 3 (m/s): 30
Enter the angle of projection for trajectory 3 (degrees): 60
Initial velocity: 25.0 Angle of Projection: 59.99999999999999
T: 4.41849695808387 S_x: 55.23121197604839 S_y: 23.91581632653061

Initial velocity: 50.0 Angle of Projection: 50.0
T: 7.8167800318263065 S_x: 251.22646760515516 S_y: 74.85001133079913

Initial velocity: 30.0 Angle of Projection: 59.99999999999999
T: 5.302196349700644 S_x: 79.53294524550968 S_y: 34.438775510204074

Figure 3 shows the graph created by the program. You can see the
three different trajectories with a legend showing which trajectory belongs
to which combination of initial velocity and angle of projection.

Figure 3: Trajectories of three bodies in projectile motion launched with a
different combinations of initial velocity and angle of projection

Doing Math with Python (Programming Challenge Solutions), © 2015 by Amit Saha

12 Chapter 2 Programming Solutions

#4: Visualizing Your Expenses
The solution for this challenge requires you to ask the user for a number of
categories and what each of those categories is. Then you ask for the expen-
diture in that category for that week and create a bar chart using the barh()
function. Here’s the complete program:

'''
expenditures_barchart.py

Visualizing weekly expenditure using a bar chart
'''

import matplotlib.pyplot as plt

def create_bar_chart(data, labels):
 # number of bars
 num_bars = len(data)
 # This list is the point on the y-axis where each
 # bar is centered. Here it will be [1, 2, 3..]
 positions = range(1, num_bars+1)

u plt.barh(positions, data, align='center')
 # Set the label of each bar
 plt.yticks(positions, labels)
 plt.xlabel('Amount')
 plt.ylabel('Categories')
 plt.title('Weekly expenditures')
 # Turns on the grid which may assist in visual estimation
 plt.grid()

v plt.show()

if __name__ == '__main__':
 n = int(input('Enter the number of categories: '))
 labels = []
 expenditures = []
 for i in range(n):
 category = input('Enter category: ')
 expenditure = float(input('Expenditure: '))

w labels.append(category)
x expenditures.append(expenditure)
y create_bar_chart(expenditures, labels)

The input categories are stored in the list labels w, which will also
be used for the labels in the bar chart. The corresponding expenditure
for each category is stored in the list expenditures x. We then call the
create_bar_chart() function y with the expenditures as the first argument
and labels as the second argument. This function then calls the barh() func-
tion u with the appropriate arguments, setting the axes labels and other
details, and finally calls the show() function v, which displays the bar chart
showing the expenditures for each category.

Doing Math with Python (Programming Challenge Solutions), © 2015 by Amit Saha

#5: Exploring the Relationship Between the Fibonacci Sequence and the Golden Ratio 13

Here’s a sample execution of the program:

Enter the number of categories: 4
Enter category: Food
Expenditure: 70
Enter category: Transportation
Expenditure: 35
Enter category: Entertainment
Expenditure: 30
Enter category: Phone/Internet
Expenditure: 30

Figure 4 shows the bar chart created for this input.

Figure 4: A bar chart showing the weekly expenditure in each category

#5: Exploring the Relationship Between the Fibonacci Sequence and the
Golden Ratio
For the solution to this challenge, we’ll calculate the first 100 numbers
of the Fibonacci sequence using the fibo() function mentioned in the
challenge description. Then we will calculate the consecutive difference
between these numbers, store those differences in a list, and use the plot()
function to create a graph that shows these differences. Here’s the solution:

'''
fibonacci_goldenration.py

Relationship between Fibonacci sequence and golden ratio
'''

Doing Math with Python (Programming Challenge Solutions), © 2015 by Amit Saha

14 Chapter 2 Programming Solutions

import matplotlib.pyplot as plt

def fibo(n):
 if n == 1:
 return [1]
 if n == 2:
 return [1, 1]
 # n > 2
 a = 1
 b = 1
 # first two members of the series
 series = [a, b]
 for i in range(n):
 c = a + b
 series.append(c)
 a = b
 b = c

 return series

def plot_ratio(series):
 ratios = []

u for i in range(len(series)-1):
 ratios.append(series[i+1]/series[i])
 plt.plot(ratios)
 plt.title('Ratio between Fibonacci numbers & golden ratio')
 plt.ylabel('Ratio')
 plt.xlabel('No.')
 plt.show()

if __name__ == '__main__':
 # Number of fibonacci numbers
 num = 100
 series = fibo(num)
 plot_ratio(series)

The for loop at u is the key step in the plot_ratio() function. We loop
through the numbers of the Fibonacci sequence and store the difference
between the second term and the first term, the third term and the second
term, and so on, in the list ratios. We then call the plot() function, add a
title and axes labels, and finally call the show() function to show the graph.

Doing Math with Python (Programming Challenge Solutions), © 2015 by Amit Saha

Chapter 3 Programming Solutions

#1: Better Correlation Coefficient–Finding Program
We can make a simple change to the find_corr_x_y() function so that it
checks the length of the two lists being passed to it. If they are not equal in
length, we return None. Here’s the function, along with some other changes:

'''
linear_correlation_enhanced.py

Linear correlation program

'''
def find_corr_x_y(x,y):

u if len(x) != len(y):
 print('The two sets of numbers are of unequal size')
 return None

 n = len(x)

 # find the sum of the products

v prod = [xi*yi for xi, yi in zip(x, y)]
 sum_prod_x_y = sum(prod)

 # sum of the numbers in x
 sum_x = sum(x)
 # sum of the numbers in y
 sum_y = sum(y)

 # square of the sum of the numbers in x
 squared_sum_x = sum_x**2
 # square of the sum of the numbers in y
 squared_sum_y = sum_y**2

 # find the squares of numbers in x and the
 # sum of the squares

w x_square = [xi**2 for xi in x]
 x_square_sum = sum(x_square)

 # find the squares of numbers in y and the
 # sum of the squares
 y_square = [yi**2 for yi in y]
 y_square_sum = sum(y_square)

 # numerator
 numerator = n*sum_prod_x_y - sum_x*sum_y
 denominator_term1 = n*x_square_sum - squared_sum_x
 denominator_term2 = n*y_square_sum - squared_sum_y
 denominator = (denominator_term1*denominator_term2)**0.5

Doing Math with Python (Programming Challenge Solutions), © 2015 by Amit Saha

16 Chapter 3 Programming Solutions

 correlation = numerator/denominator

 return correlation

Besides adding the check for the length of the two lists right at the
beginning u, you can see that I’ve also used list comprehensions (as
explained in Appendix B) to make some parts of the program more
compact (for example, at v and w).

Now, if you call this function with two sets of data, each containing the
same number of items, it will return the correlation coefficient as it did
before. If the two sets of data have an unequal number of items, it returns
None. When you use this function in your programs, you have to check the
return value and take appropriate action depending on the result.

corr = find_corr_x_y(x,y)
if not corr:
 print('Correlation correlation could not be calculated')
else:
 print('The correlation coefficient between x and y is {0}'.format(corr))

For example, if the return value is None, we print a message saying that
that the correlation coefficient could not be calculated.

#2: Statistics Calculator
The program that reads the numbers from the file mydata.txt and calculates
the various statistical measures is as follows:

'''
statistics_calculator.py

Read numbers from a file, calculate and print statistical measures:
mean, median, mode, variance, standard deviation
'''

u from stats import mean, median, mode, variance_sd

def read_data(filename):
 numbers = []
 with open(filename) as f:
 for line in f:
 numbers.append(float(line))

 return numbers

if __name__=='__main__':
v data = read_data('mydata.txt')

 m = mean(data)
 median = median(data)
 mode = mode(data)
 variance, sd = variance_sd(data)

Doing Math with Python (Programming Challenge Solutions), © 2015 by Amit Saha

#3: Experiment with Other CSV Data 17

 print('Mean: {0:.5f}'.format(m))
 print('Median: {0:.5f}'.format(median))
 print('Mode: {0:.5f}'.format(mode))
 print('Variance: {0:.5f}'.format(variance))
 print('Standard deviation: {0:.5f}'.format(sd))

I’ve created a module, stats.py (in the same directory as statistics_
calculator.py) that contains the functions for calculating the mean,
median, mode, variance, and standard deviation. These functions are
imported at u. These functions are the same functions we wrote in the
chapter except they are named slightly differently. The other difference
is that the function variance_sd() returns both the variance and standard
deviation as tuples. Moving these functions into a separate module means
that we can avoid defining the functions every time we want to use them.

We call the read_data() function, which reads the numbers from the file
and returns them in a list, data v. Once we have the list of numbers, we can
call the different functions to calculate the corresponding statistical mea-
sures and finally print them.

#3: Experiment with Other CSV Data
The CSV file, USA_SP_POP_TOTL.csv, contains two columns of data: a date
and the total population from 1960-12-31 to 2012-12-31. We will read the
population and the year from the file, calculate the statistical measures,
and create the graphs:

'''
us_population_stats.py

Read the US population data from a CSV file, calculate the growth in
population in consecutive years, and compute various statistical measures

Also creates two graphs - one showing the total population over the years and
the other showing the change between consecutive years
'''

import matplotlib.pyplot as plt
import csv
from stats import mean, median, variance_sd

def read_csv(filename):

 years = []
 population = []

 with open(filename) as f:
 reader = csv.reader(f)
 next(reader)

 summer = []
 highest_correlated = []

Doing Math with Python (Programming Challenge Solutions), © 2015 by Amit Saha

18 Chapter 3 Programming Solutions

 for row in reader:
 # Extract only the year from
 # date

u year = row[0].split('-')[0]
 years.append(year)
 population.append(float(row[1]))
 # Reverse the lists because the original data lists the
 # most recent years first
 population.reverse()
 years.reverse()

 return population, years

def plot_population(population, years):
v plt.figure(1)

 xaxis_positions = range(0, len(years))
 plt.plot(population, 'r-')
 plt.title('Total population in US')
 plt.xlabel('Year')
 plt.ylabel('Population')

w plt.xticks(xaxis_positions, years, rotation=45)

def calculate_stats(population):

 # find the growth in population in consecutive years
 growth = []
 for i in range(0, len(population)-1):
 growth.append(population[i+1] - population[i])
 print('Mean growth: {0:.5f}'.format(mean(growth)))
 print('Median growth: {0:.5f}'.format(median(growth)))
 print('Variance/Sd growth: {0:.5f}, {1:.5f}'.format(*variance_sd(growth)))
 return growth

def plot_population_diff(growth, years):

 xaxis_positions = range(0, len(years)-1)
x xaxis_labels = ['{0}-{1}'.format(years[i], years[i+1])

 for i in range(len(years)-1)]
 plt.figure(2)
 plt.plot(growth, 'r-')
 plt.title('Population Growth in consecutive years')
 plt.ylabel('Population Growth')
 plt.xticks(xaxis_positions, xaxis_labels, rotation=45)

if __name__ == '__main__':
 population, years = read_csv('USA_SP_POP_TOTL.csv')
 plot_population(population, years)
 growth = calculate_stats(population)
 plot_population_diff(growth, years)
 plt.show()

Doing Math with Python (Programming Challenge Solutions), © 2015 by Amit Saha

#3: Experiment with Other CSV Data 19

The read_csv() function reads the data from the file to create two lists:
years and population, which contain the year and the corresponding popula-
tion of each year, respectively. As described earlier, the file contains a date,
but we want to extract just the year (so that the text fits in our graphs),
which is what we do at u. The split() method returns a list of words from a
string and splits the string at the specified delimiter. For example:

>>> d = '2012-09-10'
>>> d.split('-')
['2012', '09', '10']

Thus, if we wanted the year 2012, we would grab the first item in the
returned list:

>>> words = d.split('-')
>>> words[0]
'2012'

Since we read the file from the beginning and the latest dates are listed
first, we reverse both lists before returning them with the reverse() method.
The reverse() method reverses a list in place. For example, say that list =
[1, 2, 3]. Calling list.reverse() would change list to [3, 2, 1]. Once we have
the two lists of the years and the population figures, we create the first graph
that shows the population over the years in the function plot_population().
Since we plan to create two separate graphs, we create a figure explicitly by
calling the figure() function and assigning it a number, 1, at v. We plot the
population and add the years as the x-axis labels using the xticks() func-
tion w. The rotation keyword argument lets us display the labels at an angle
so that the consecutive years do not overlap. Here, we specify that the label be
at a 45-degree angle.

In the calculate_stats() function, we calculate and print the statistical
measures of the population growth using the functions that are now part
of the stats module. This function also returns the list growth, which con-
tains the growth in population over consecutive years.

The plot_population_diff() function creates a second figure and plots
the population growth over the years. We use list comprehension to create
a list of labels for the x -axis of the form 1960–1961, 1961–1962 and so on
to indicate the years x. We also specify that we want the labels to be at an
angle of 45 degrees using of the rotation keyword argument.

When you run the program, you should see two graphs side by side as
shown in Figure 5.

Doing Math with Python (Programming Challenge Solutions), © 2015 by Amit Saha

20 Chapter 3 Programming Solutions

Figure 5: Two population graphs

One window will be titled Figure 1 and the other Figure 2, and the statis-
tical measures will be printed as shown here:

Mean growth: 2562366.15385
Median growth: 2476370.00000
Variance/Sd growth: 188985554755.28406, 434724.68846

You will need to maximize the graph windows to see the x -axis labels
clearly.

#4: Finding the Percentile
The program for calculating the score at a certain percentile using the
algorithm discussed in the challenge description is as follows:

'''
percentile_score.py

Calculate the number from a list of numbers that corresponds
to a specific percentile

This implements the method described at
http://web.stanford.edu/class/archive/anthsci/anthsci192/anthsci192.1064/handouts/
calculating%20percentiles.pdf
'''

def find_percentile_score(data, percentile):
 if percentile < 0 or percentile > 100:
 return None

u data.sort()
 if percentile == 0:
 return data[0]
 if percentile == 100:
 return data[-1]

Doing Math with Python (Programming Challenge Solutions), © 2015 by Amit Saha

#4: Finding the Percentile 21

 n = len(data)
v i = ((n*percentile)/100) + 0.5

 if i.is_integer():
 real_idx = int(i-1)

w return data[real_idx]
 else:

x k = int(i)
y f = i - k

 real_idx_1 = k - 1
 real_idx_2 = k

z return (1-f)*data[real_idx_1] + f*data[real_idx_2]

def read_data(filename):
 numbers = []
 with open(filename) as f:
 for line in f:
 numbers.append(float(line))
 return numbers

if __name__ == '__main__':
 percentile = float(input('Enter the percentile score you want to calculate: '))
 data = read_data('marks.txt')
 percentile_score = find_percentile_score(data, percentile)
 if percentile_score:
 print('The score at {0} percentile: {1}'.format(percentile, percentile_score))
 else:
 print('Could not find the score corresponding to {0} percentile'.format(percentile))

The find_percentile_score() function implements the algorithm. It first
sorts the list of numbers passed to it using the sort() method u. Then,
it checks for two percentile scores: 0 and 100. If the specified percentile
score to be found is 0, it returns the first member of the sorted list and if
the specified percentile score is 100, it returns the last element. At v, we
calculate the value of i corresponding to step 2 of the algorithm. If it’s an
integer, we return the ith element from the list of numbers w. Since a list in
Python starts at 0, the element that we want will correspond to the element
at (i − 1) in the list. If the value is not an integer, we extract the integer
and the fractional parts of the number at x and y, and refer to them with
the labels k and f, respectively. We then return the number (1-f)*data[k] +
f*data[k+1] z, which corresponds to the specified percentile score.

You will find a marks.txt file in the source directory that contains a list of
scores. If you run this program, when you enter a specified percentile, it will
print the corresponding marks:

Enter the percentile score you want to calculate: 88
The score at 88.0 percentile: 19.5

However, this algorithm doesn’t work for percentiles that are greater
than 98 with this set of data. An alternative algorithm is implemented

Doing Math with Python (Programming Challenge Solutions), © 2015 by Amit Saha

22 Chapter 3 Programming Solutions

by Microsoft Excel, which you can read about at https://en.wikipedia.org/
wiki/Percentile#Microsoft_Excel_method. The following code implements this
method:

'''
percentile_score_microsoft_excel.py

Calculate the number from a list of numbers that corresponds
to a specific percentile

This implements the "Microsoft Excel Method":
https://en.wikipedia.org/wiki/Percentile#Microsoft_Excel_method

'''

def find_percentile_score(data, percentile):
 if percentile < 0 or percentile > 100:
 return None
 data.sort()
 if percentile == 0:
 return data[0]
 if percentile == 100:
 return data[-1]
 n = len(data)

u rank = (percentile/100)*(n-1) + 1
v k = int(rank)
w d = rank - k

 real_idx_1 = k-1
 real_idx_2 = k

x return data[real_idx_1] + d*(data[real_idx_2]-data[real_idx_1])

def read_data(filename):
 numbers = []
 with open(filename) as f:
 for line in f:
 numbers.append(float(line))
 return numbers

if __name__ == '__main__':
 percentile = float(input('Enter the percentile score you want to calculate: '))
 data = read_data('marks.txt')
 percentile_score = find_percentile_score(data, percentile)
 if percentile_score:
 print('The score at {0} percentile: {1}'.format(percentile, percentile_score))
 else:
 print('Could not find the score corresponding to {0} percentile'.format(percentile))

The key step in this program is at u, where we calculate the rank. Then
we extract the integer and the fractional part of the rank at v and w and
return the number corresponding to the specified percentile at x.

Doing Math with Python (Programming Challenge Solutions), © 2015 by Amit Saha

#5: Creating a Grouped Frequency Table 23

Here is a sample run of the program:

Enter the percentile score you want to calculate: 88
The score at 88.0 percentile: 19.5

As expected, both programs return the same 88 percentile score. Let’s
try finding the score corresponding to the percentile 99.6:

Enter the percentile score you want to calculate: 99.6
The score at 99.6 percentile: 20.0

#5: Creating a Grouped Frequency Table
The following program creates a grouped frequency table representing the
data in the marks.txt file:

'''
grouped_frequency.py

Create a grouped frequency table from a list of numbers
'''

def create_classes(numbers, n):
 low = min(numbers)
 high = max(numbers)

 # width of each class
 width = (high - low)/n
 classes = []
 a = low
 b = low + width
 classes = []
 while a < (high-width):
 classes.append((a, b))
 a = b
 b = a + width
 # The last class may be of size
 # less than width
 classes.append((a, high+1))
 return classes

def classify(numbers, classes):
 # Create a list with the same number of elements
 # as the number of classes
 count = [0]*len(classes)
 for n in numbers:
 for index, c in enumerate(classes):
 if n >= c[0] and n < c[1]:
 count[index] += 1
 break
 return count

Doing Math with Python (Programming Challenge Solutions), © 2015 by Amit Saha

24 Chapter 3 Programming Solutions

def read_data(filename):
 numbers = []
 with open(filename) as f:
 for line in f:
 numbers.append(float(line))
 return numbers

if __name__ == '__main__':

 num_classes = int(input('Enter the number of classes: '))
 numbers = read_data('marks.txt')

 classes = create_classes(numbers, num_classes)
 count = classify(numbers, classes)
 for c, cnt in zip(classes, count):
 print('{0:.2f} - {1:.2f} \t {2}'.format(c[0], c[1], cnt))

When the program runs, it asks the user to input the desired number
of classes and reads the data from the marks.txt file into a list, numbers. We
then call the function create_classes(), which returns the specified number
of classes referred to by the label classes and calls the classify() function,
which returns a list containing the count of the numbers in each class. We
finally print the table by going over the two lists using the zip() function.

Here’s a sample execution of the program:

Enter the number of classes: 4
10.50 - 12.88 4
12.88 - 15.25 4
15.25 - 17.62 7
17.62 - 21.00 10

You can see that the size of each class is approximately 2.37.

Doing Math with Python (Programming Challenge Solutions), © 2015 by Amit Saha

Chapter 4 Programming Solutions

#1: Factor Finder
The following code implements the factor finder program:

'''
factorizer.py

Factor an input expression
'''

from sympy import factor, sympify, SympifyError

def factorize(expr):
 return factor(expr)

if __name__ == '__main__':
u expr = input('Enter an expression to factorize: ')

 try:
 expr_obj = sympify(expr)
 except SympifyError:
 print('Invalid expression entered as input')
 else:
 print(factorize(expr_obj))

We ask the user to input an expression to factorize at u, convert it to a
SymPy object using sympify() function, and then call the factorize() func-
tion, in which SymPy’s factor() function is used find the factors. Here is a
sample run of the program:

Enter an expression to factorize: x**2 + 5*x + 6
(x + 2)*(x + 3)

If an invalid expression is input, an error message will be printed.

#2: Graphical Equation Solver
The following program takes in two equations expressed in the form
ax + by – k = 0 as input, attempts to find the solution to the two equations,
and creates a graph showing the two lines:

'''
graphical_eq_solve.py

Graphical equation solver
'''

from sympy import Symbol, sympify, solve, SympifyError
from sympy.plotting import plot

Doing Math with Python (Programming Challenge Solutions), © 2015 by Amit Saha

26 Chapter 4 Programming Solutions

def solve_plot_equations(eq1, eq2, x, y):
 # Solve
 solution = solve((eq1, eq2), dict=True)
 if solution:
 print('x: {0} y: {1}'.format(solution[0][x], solution[0][y]))
 else:
 print('No solution found')
 # Plot
 eq1_y = solve(eq1,'y')[0]
 eq2_y = solve(eq2, 'y')[0]
 plot(eq1_y, eq2_y, legend=True)

if __name__=='__main__':

 eq1 = input('Enter your first equation : ')
 eq2 = input('Enter your second equation: ')

 try:
 eq1 = sympify(eq1)
 eq2 = sympify(eq2)
 except SympifyError:
 print('Invalid input')
 else:
 x = Symbol('x')
 y = Symbol('y')
 # check if the expressions consist of only two variables

u eq1_symbols = eq1.atoms(Symbol)
v eq2_symbols = eq2.atoms(Symbol)

 if len(eq1_symbols)> 2 or len(eq2_symbols) > 2:
 print('The equations must have only two variables - x and y')
 elif x not in eq1_symbols or y not in eq1_symbols:
 print('First equation must have only x and y variables')
 elif x not in eq2_symbols or y not in eq2_symbols:
 print('Second equation must have only x and y variables')
 else:
 solve_plot_equations(eq1, eq2, x, y)

After we validate the input equations, we find the symbols in each
equation using the atoms() method u and v. When we call the atoms()
method using the Symbol class as a parameter, the method returns a list
of the symbols in that expression. Then, we check that the input expres-
sions contain only x and y as the symbols. If that’s the case, we call the
solve_plot_equations() function. There, we call the solve() function to
attempt to find the solution to the two equations. If no solution is found,
a message stating so is printed. Then, we express the two equations in
terms of x, and call the plot() function to create the graph.

Here is an example run of the program:

Enter your first equation : 3*x + 2*y - 3
Enter your second equation: 2*x + 3*y - 2
x: 1 y: 0

Doing Math with Python (Programming Challenge Solutions), © 2015 by Amit Saha

#3: Summing a Series 27

Figure 6 shows a graph of the two input equations that also demon-
strates the solution of the two equations (1, 0).

Figure 6: Graph showing the two input equations

#3: Summing a Series
The following program shows how to use the summation() function to imple-
ment this solution:

'''
series_summation.py

Sum an arbitrary series
'''

from sympy import summation, sympify, Symbol, pprint
def find_sum(n_term, num_terms):
 n = Symbol('n')
 s = summation(n_term, (n, 1, num_terms))
 pprint(s)

if __name__ == '__main__':
 n_term = sympify(input('Enter the nth term: '))
 num_terms = int(input('Enter the number of terms: '))

 find_sum(n_term, num_terms)

Doing Math with Python (Programming Challenge Solutions), © 2015 by Amit Saha

28 Chapter 4 Programming Solutions

We ask the user to input the nth term of the series, and the number of
terms they want to sum. We then call the find_sum() function, which calls
SymPy’s summation() function, passing the nth term as the first argument.
The second argument is a tuple consisting of the symbol, 1, and the number
of terms up to which we want to find the sum. We then pretty print the sum
using the pprint() function. Here is a sample run:

Enter the nth term: a+(n-1)*d
Enter the number of terms: 3
3·a + 3·d

#4: Solving Single-Variable Inequalities
The following program implements a generic inequality solver:

'''
isolve.py

Single variable inequality solver
'''

from sympy import Symbol, sympify, SympifyError
from sympy import solve_poly_inequality, solve_rational_inequalities
from sympy import solve_univariate_inequality, Poly
from sympy.core.relational import Relational, Equality

def isolve(ineq_obj):
 x = Symbol('x')

 expr = ineq_obj.lhs
 rel = ineq_obj.rel_op

 if expr.is_polynomial():
 p = Poly(expr, x)
 return solve_poly_inequality(p, rel)
 elif expr.is_rational_function():
 p1, p2 = expr.as_numer_denom()
 num = Poly(p1)
 denom = Poly(p2)
 return solve_rational_inequalities([[((num, denom), rel)]])
 else:
 return solve_univariate_inequality(ineq_obj , x, relational=False)

if __name__ == '__main__':
 ineq = input('Enter the inequality to solve: ')
 try:
 ineq_obj = sympify(ineq)
 except SympifyError:
 print('Invalid inequality')

Doing Math with Python (Programming Challenge Solutions), © 2015 by Amit Saha

#4: Solving Single-Variable Inequalities 29

 else:
 # We check if the input expression is an inequality here

u if isinstance(ineq_obj, Relational) and not isinstance(ineq_obj, Equality):
 print(isolve(ineq_obj))
 else:
 print('Invalid inequality')

The program asks the user to input an inequality and then converts
it into a SymPy object using the sympify() function. We then check whether
the expression is an inequality and not any arbitrary expression. We do this
by using the isinstance() Python function u to check whether the object
returned by the sympify() function is a Relational object and whether it
is not an Equality object. This check is needed because only a Relational
object has a rel_op attribute that refers to the relational operator (>, >=,
< and <=) that will be used later in the function isolve(). Once we have
checked whether the input is an inequality, we call the isolve() function.

In the isolve() function, we use the functions is_polynomial() and
is_rational_function() to check if the inequality is a polynomial or a rational
function and call the appropriate inequality-solver function. If it is neither,
we call the solve_univariate_inequality() function.

Here is a sample execution for a polynomial inequality:

Enter the inequality to solve: -x**2 + 4 < 0
[(-oo, -2), (2, oo)]

Here is a sample run for a rational inequality:

Enter the inequality to solve: ((x-1)/(x+2)) > 0
(-oo, -2) U (1, oo)

And here is a sample run for an expression that is neither a polynomial
inequality nor a rational inequality:

Enter the inequality to solve: sin(x) - 0.6 > 0
(0.643501108793284, 2.49809154479651)

Doing Math with Python (Programming Challenge Solutions), © 2015 by Amit Saha

Doing Math with Python (Programming Challenge Solutions), © 2015 by Amit Saha

Chapter 5 Programming Solutions

#1: Using Venn Diagrams to Visualize Relationships Between Sets
Here’s the solution to this challenge:

"""
venn_sports.py

Is football the favorite sport in my class too?
Let's find out using a Venn diagram
"""

from sympy import FiniteSet
from matplotlib_venn import venn2
import matplotlib.pyplot as plt
import csv

def read_csv(filename):

 football = []
 others = []

 with open(filename) as f:
 reader = csv.reader(f)
 next(reader)
 for row in reader:
 if row[1] == '1':
 football.append(row[0])
 if row[2] == '1':
 others.append(row[0])

 return football, others

def draw_venn(f, o):
 venn2(subsets=(f, o), set_labels=('Football', 'Others'))
 plt.show()

if __name__ == '__main__':
 football, others = read_csv('sports.csv')

u f = FiniteSet(*football)
v o = FiniteSet(*others)

 draw_venn(f, o)

The key step is creating the two sets—the set of students who like foot-
ball and the set of students who like another sport—by reading the data
from sports.csv, which is created by compiling the results from the survey.
This file is read by the read_csv() function, which creates two lists made up
of student IDs (football and others), and returns them.

Doing Math with Python (Programming Challenge Solutions), © 2015 by Amit Saha

32 Chapter 5 Programming Solutions

We then create two sets corresponding to each category to represent
the two groups of students u and v and call the draw_venn() function,
which draws the Venn diagram.

#2: Law of Large Numbers
For this challenge, we roll a die a specified number of times to see how the
average value gets closer to the theoretical expected value of 3.5. Here’s the
program:

'''
law_ln.py

Verify the law of large numbers using a six-sided die roll as an example
'''
import random

def roll(num_trials):
 rolls = []
 for t in range(num_trials):
 rolls.append(random.randint(1, 6))
 return sum(rolls)/num_trials

if __name__ == '__main__':
 expected_value = 3.5
 print('Expected value: {0}'.format(expected_value))
 for trial in [100, 1000, 10000, 100000, 500000]:
 avg = roll(trial)
 print('Trials: {0} Trial average {1}'.format(trial, avg))

The roll() function simulates rolling a six-sided die a certain number
of times as specified by the argument num_trials and returns the average
value rolled. Call this function with the number of rolls set to 100, 1000,
10000, 100000, and 500000 to see how the average value gets closer to the
expected value of 3.5:

Expected value: 3.5
Trials: 100 Trial average 3.49
Trials: 1000 Trial average 3.519
Trials: 10000 Trial average 3.4966
Trials: 100000 Trial average 3.50036
Trials: 500000 Trial average 3.501474

#3: How Many Tosses Before You Run Out of Money?
The solution to this challenge is as follows:

'''
game_tosses.py

A player wins 1$ for every head and loses 1.5$ for every tail.

Doing Math with Python (Programming Challenge Solutions), © 2015 by Amit Saha

#4: Shuffling a Deck of Cards 33

The game is over when the player's balance reaches 0$
'''
import random

def play(start_amount):

 win_amount = 1
 loss_amount = 1.5

 cur_amount = start_amount
 tosses = 0

u while cur_amount > 0:
 tosses += 1

v toss = random.randint(0, 1)
 if toss == 0:
 cur_amount += win_amount
 print('Heads! Current amount: {0}'.format(cur_amount))
 else:
 cur_amount -= loss_amount
 print('Tails! Current amount: {0}'.format(cur_amount))
 print('Game over :(Current amount: {0}. Coin tosses: {1}'.
 format(cur_amount, tosses))

if __name__ == '__main__':
 start_amount = float(input('Enter your starting amount: '))
 play(start_amount)

When the program runs, it asks the user to enter a starting point and
then calls the play() function to start the game.

Then, using a while loop, it continues tossing a coin until the current
amount (cur_amount) is less than or equal to 0 u. The coin toss is simulated
using the random.randint() function so that either a 0 or 1 is returned v. For
every heads (that is, the number 0), we add 1 to the current amount, and
for every tails (the number 1), we deduct 1.5. We keep a count of the total
number of coin tosses via the label tosses.

#4: Shuffling a Deck of Cards
Here’s the 52 card shuffle program:

'''
shuffle_enhanced.py

Shuffle a deck of 52 cards
'''
import random

class Card:
 def __init__(self, suit, rank):
 self.suit = suit
 self.rank = rank

Doing Math with Python (Programming Challenge Solutions), © 2015 by Amit Saha

34 Chapter 5 Programming Solutions

def initialize_deck():
 suits = ['Clubs', 'Diamonds', 'Hearts', 'Spades']
 ranks = ['Ace', '2', '3','4', '5', '6', '7', '8', '9', '10', 'Jack', 'Queen', 'King']
 cards = []
 for suit in suits:
 for rank in ranks:

u card = Card(suit, rank)
 cards.append(card)
 return cards

def shuffle_and_print(cards):
v random.shuffle(cards)
w for card in cards:

 print('{0} of {1}'.format(card.rank, card.suit))

if __name__ == '__main__':
 cards = initialize_deck()
 shuffle_and_print(cards)

Each card in the deck is represented as an object of the Card class. We
initialize the deck of 52 cards in the initalize_deck() function by creating a
Card object for each combination of rank and suit and store each object in
a list cards u. We call the shuffle_and_print() function with this list of cards
in which we use the random.shuffle() function to shuffle the cards v. Finally,
we print each of the cards w.

#5: Estimating the Area of a Circle
The program that simulates throwing darts to estimate the area of a circle
is as follows:

'''
estimate_circle_area.py

Estimate the area of a circle
'''
import math
import random

def estimate(radius, total_points):
 center = (radius, radius)

 in_circle = 0
 for i in range(total_points):
 x = random.uniform(0, 2*radius)
 y = random.uniform(0, 2*radius)
 p = (x, y)
 # distance of the point created from circle's center
 d = math.sqrt((p[0]-center[0])**2 + (p[1]-center[1])**2)
 if d <= radius:
 in_circle += 1
 area_of_square = (2*radius)**2
 return (in_circle/total_points)*area_of_square

Doing Math with Python (Programming Challenge Solutions), © 2015 by Amit Saha

#5: Estimating the Area of a Circle 35

if __name__ == '__main__':
 radius = float(input('Radius: '))
 area_of_circle = math.pi*radius**2
 for points in [10**3, 10**5, 10**6]:
 print('Area: {0}, Estimated ({1}): {2}'.
 format(area_of_circle, points, estimate(radius, points)))

The estimate() function accepts two arguments—the radius of the
circle and the number of virtual darts we want to throw at the dartboard.
Then, we simulate throwing a dart at a square board of size 2*radius using
the random.uniform() function to generate the x - and the y -coordinates of
point p, where the dart hits the board. If the distance between this point
and the center of the circle is less than or equal to the radius, it means that
the dart landed within the circle, and we increase the count of darts that
fell within the circle. Finally, we return the fraction of the number of vir-
tual darts that fell within the circle multiplied by the area of the square.
This is the estimated area of the circle.

As we increase the number of virtual darts, the estimated area gets
closer to the theoretically calculated area of the circle:

Radius: 1
Area: 3.141592653589793, Estimated (1000): 3.14
Area: 3.141592653589793, Estimated (100000): 3.14756
Area: 3.141592653589793, Estimated (1000000): 3.143504

The program to estimate the value of π has just a slight change from
the previous program:

'''
estimate_pi.py

Estimate the value of pi
'''
import math
import random

def estimate(total_points):
 radius = 1
 center = (radius, radius)

 in_circle = 0
 for i in range(total_points):
 x = random.uniform(0, 2*radius)
 y = random.uniform(0, 2*radius)
 p = (x, y)
 # distance from circle's center
 d = math.sqrt((p[0]-center[0])**2 + (p[1]-center[1])**2)
 if d <= radius:
 in_circle += 1
 return (in_circle/total_points)*4

Doing Math with Python (Programming Challenge Solutions), © 2015 by Amit Saha

36 Chapter 5 Programming Solutions

if __name__ == '__main__':
 for points in [10**3, 10**5, 10**6]:
 print('Known value: {0}, Estimated ({1}): {2}'.
 format(math.pi, points, estimate(points)))

The estimate() function takes a total number of virtual darts that we
want to simulate throwing at a dartboard. Similar to the program for esti-
mating the area of a circle, we keep count of the number of virtual darts
that fall within the circle and return the fraction of the total darts that fell
in the circle multiplied by 4. This is the estimated value of π. The estimate
gets better as the number of darts increases.

Doing Math with Python (Programming Challenge Solutions), © 2015 by Amit Saha

Chapter 6 Programming Solutions

#1: Packing Circles into a Square
The solution to the program is as shown here:

'''
circle_in_square.py

Circles in a square
'''

from matplotlib import pyplot as plt

def draw_square():
 square = plt.Polygon([(1, 1), (5, 1), (5, 5), (1, 5)], closed=True)
 return square

def draw_circle(x, y):
 circle = plt.Circle((x, y), radius=0.5, fc='y')
 return circle

if __name__ == '__main__':

 ax = plt.gca()
 s = draw_square()
 ax.add_patch(s)
 y = 1.5

u while y < 5:
 x = 1.5

v while x < 5:
w c = draw_circle(x, y)
x ax.add_patch(c)

 x += 1.0
 y += 1.0

 plt.axis('scaled')
 plt.show()

First we add a square (each side of the square has a length of 4) to the
figure by creating a Polygon object with the draw_square() function. Then,
using two while loops at u and v, we add circles, each with a radius of 0.5,
so that they all lie inside the square. At w we draw the circle and at x we
add the circle to the figure.

#2: Drawing the Sierpiń  ski Triangle
The program to draw the Sierpiń    ski triangle is as follows:

'''
sierpinski.py

Doing Math with Python (Programming Challenge Solutions), © 2015 by Amit Saha

38 Chapter 6 Programming Solutions

Draw the Sierpinski triangle
'''
import random
import matplotlib.pyplot as plt

def transformation_1(p):
 x = p[0]
 y = p[1]
 x1 = 0.5*x
 y1 = 0.5*y
 return x1, y1

def transformation_2(p):
 x = p[0]
 y = p[1]
 x1 = 0.5*x + 0.5
 y1 = 0.5*y + 0.5
 return x1, y1

def transformation_3(p):
 x = p[0]
 y = p[1]
 x1 = 0.5*x + 1
 y1 = 0.5*y
 return x1, y1

def get_index(probability):
 r = random.random()
 c_probability = 0
 sum_probability = []
 for p in probability:
 c_probability += p
 sum_probability.append(c_probability)
 for item, sp in enumerate(sum_probability):
 if r <= sp:
 return item
 return len(probability)-1

def transform(p):
 # list of transformation functions
 transformations = [transformation_1, transformation_2, transformation_3]
 probability = [1/3, 1/3, 1/3]
 # pick a random transformation function and call it
 tindex = get_index(probability)
 t = transformations[tindex]
 x, y = t(p)
 return x, y

def draw_sierpinski(n):
 # We start with (0, 0)
 x = [0]
 y = [0]

 x1, y1 = 0, 0

Doing Math with Python (Programming Challenge Solutions), © 2015 by Amit Saha

#3: Exploring Hénon’s Function 39

 for i in range(n):
 x1, y1 = transform((x1, y1))
 x.append(x1)
 y.append(y1)
 return x, y

if __name__ == '__main__':
 n = int(input('Enter the desired number of points'
 'in the Sierpinski Triangle: '))
 x, y = draw_sierpinski(n)
 # Plot the points
 plt.plot(x, y, 'o')
 plt.title('Sierpinski with {0} points'.format(n))
 plt.show()

Similar to the program we wrote to draw the Barnsley fern, this pro-
gram has three different functions—transformation_1(), transformation_2(),
and transformation_3()—that correspond to the three possible transfor-
mations, one of which is selected with an equal probability during each
transformation.

When the program is run, it asks the user to enter the desired number
of points in the triangle. This also corresponds to the number of iterations
or transformations our initial point (0, 0) undergoes.

Experiment with the number of points to see different triangles.

#3: Exploring Hénon’s Function
The program that graphs the Hénon function with 20,000 points is as
follows:

'''
henon.py

Plot 20,000 iterations of the Henon function
'''

import matplotlib.pyplot as plt

def transform(p):
 x,y = p
 x1 = y + 1.0 - 1.4*x**2
 y1 = 0.3*x

 return x1, y1

if __name__ == '__main__':
 p = (0, 0)
 x = [p[0]]
 y = [p[1]]
 for i in range(20000):
 p = transform(p)

Doing Math with Python (Programming Challenge Solutions), © 2015 by Amit Saha

40 Chapter 6 Programming Solutions

 x.append(p[0])
 y.append(p[1])
 plt.plot(x, y, 'o')
 plt.show()

The initial point (0, 0) undergoes transformation for 20,000 points.
The transformation in this case is implemented by the transform() func-
tion. We store the coordinates of each of the points in two lists, x and y,
and finally plot the data.

The program to animate drawing the Hénon function requires a bit
more effort:

'''
henon_animation.py

Animating 20000 iterations of the Henon function

'''

import matplotlib.pyplot as plt
from matplotlib import animation

def transform(p):
 x,y = p
 x1 = y + 1.0 - 1.4*x**2
 y1 = 0.3*x

 return x1, y1

def update_points(i, x, y, plot):
 plot.set_data(x[:i], y[:i])
 return plot,

if __name__ == '__main__':
 p = (0, 0)
 x = [p[0]]
 y = [p[1]]
 for i in range(10000):
 p = transform(p)
 x.append(p[0])
 y.append(p[1])

 fig = plt.gcf()
 ax = plt.axes(xlim = (min(x), max(x)),
 ylim = (min(y), max(y)))

 u plot = plt.plot([], [], 'o')[0]
 anim = animation.FuncAnimation(fig, update_points,
 fargs=(x, y, plot),
 frames = len(x),
 interval = 25)
 plt.title('Henon Function Animation')
 plt.show()

Doing Math with Python (Programming Challenge Solutions), © 2015 by Amit Saha

#4: Drawing the Mandelbrot Set 41

First we create two lists to store the coordinates of all the points.
Then, we create an empty plot by calling the plot() function with two
empty lists u. Recall that matplotlib’s plot() function returns a list of
objects (Chapter 2), and in this case there is only one object, which we
retrieve using the index 0. We create a label, plot, to refer to that object.
Then, we create the FuncAnimation object with the relevant arguments. The
animation will use the number of points to set the number of frames.
Frame 1 will have only the first point, frame 2 will have the first two points,
and so on. The update_points() function updates the figure each frame. In
the update_points() function, we use matplotlib’s set_data() function to add
points to plot. In frame i we specify that we want the first i points stored in
the x and y lists.

When you run the program, you should see an animation showing all
the points lined along the curves.

#4: Drawing the Mandelbrot Set
The program drawing the Mandelbrot set is shown here:

'''
mandelbrot.py

Draw a Mandelbrot set

Using "Escape time algorithm" from:
http://en.wikipedia.org/wiki/Mandelbrot_set#Computer_drawings

Thanks to http://www.vallis.org/salon/summary-10.html for some important
ideas for implementation.

'''
import matplotlib.pyplot as plt
import matplotlib.cm as cm

Subset of the complex plane we are considering
x0, x1 = -2.5, 1
y0, y1 = -1, 1

def initialize_image(x_p, y_p):
 image = []
 for i in range(y_p):
 x_colors = []
 for j in range(x_p):
 x_colors.append(0)
 image.append(x_colors)
 return image

def mandelbrot_set():
 # Number of divisions along each axis
 n = 400
 # Maximum iterations
 max_iteration=1000

Doing Math with Python (Programming Challenge Solutions), © 2015 by Amit Saha

42 Chapter 6 Programming Solutions

 image = initialize_image(n, n)

 # Generate a set of equally spaced points in the region
 # above
 dx = (x1-x0)/(n-1)
 dy = (y1-y0)/(n-1)

 u x_coords = [x0 + i*dx for i in range(n)]
 v y_coords = [y0 + i*dy for i in range(n)]

 for i, x in enumerate(x_coords):
 for k, y in enumerate(y_coords):
 z1 = complex(0, 0)
 iteration = 0
 c = complex(x, y)

w while (abs(z1) < 2 and iteration < max_iteration):
 z1 = z1**2 + c
 iteration += 1

x image[k][i] = iteration
 return image

if __name__ == '__main__':
 image = mandelbrot_set()

y plt.imshow(image, origin='lower', extent=(x0, x1, y0,y1),
 cmap=cm.Greys_r, interpolation='nearest')
 plt.show()

The function mandelbrot_set() draws the Mandelbrot set in the region
enclosed by the points (−2.5, −1) and (1, 1) for a total of 1,600 equally dis-
tributed points. We use the initialize_image() function as discussed in the
problem description to initialize a list of lists, which are then populated
with the appropriate color.

We generate 400 equally spaced points along each axis at u and v.
Then, using two for loops, we iterate over each of the 1,600 points, assign-
ing a color to each one. To assign a color, we first create a complex num-
ber that corresponds to each of these points using the complex() function.
Then, we use a while loop w to implement steps 4 and 5 of the algorithm as
described in the problem description. When the while loop exits, the itera-
tion value determines the color of the point x.

Finally, we return the list of lists, image, which is passed as an argument
to the imshow() function y. The extent keyword argument specifies the
region we considered for drawing the set, and we pass in the x -coordinate
of the points followed by the y -coordinates. When you run the program,
you should see the Mandelbrot set (Figure 7).

Doing Math with Python (Programming Challenge Solutions), © 2015 by Amit Saha

#4: Drawing the Mandelbrot Set 43

Figure 7: Mandelbrot set drawn by plotting 1,600 points in the region bounded by
(−2.5, −1.0) and (1.0, 1.0).

If you change the number of points along each axis and play around
with the number of iterations, you can observe the effect of each change on
the final figures you see.

Doing Math with Python (Programming Challenge Solutions), © 2015 by Amit Saha

Doing Math with Python (Programming Challenge Solutions), © 2015 by Amit Saha

Chapter 7 Programming Solutions

#1: Verify the Continuity of a Function at a Point
The solution to this challenge finds the limit of a function at a given point
from both the positive and negative directions and evaluates the function at
that point. The solution is as follows:

'''
verify_continuity.py

Verify the continuity of a function
'''

from sympy import Limit, Symbol, sympify, SympifyError

def check_continuity(f, var, a):
u l1 = Limit(f, var, a, dir='+').doit()
v l2 = Limit(f, var, a, dir='-').doit()

 f_val = f.subs({var:a})

 if l1 == l2 and f_val == l1:
 print('{0} is continuous at {1}'.format(f, a))
 else:
 print('{0} is not continuous at {1}'.format(f, a))

if __name__ == '__main__':
 f = input('Enter a function in one variable: ')
 var = input('Enter the variable: ')
 a = float(input('Enter the point to check the continuity at: '))
 try:
 f = sympify(f)
 except SympifyError:
 print('Invalid function entered')
 else:
 var = Symbol(var)
 d = check_continuity(f, var, a)

The check_continuity() function accepts a function, the variable of the
function, and the point at which the continuity is to be checked. It then
evaluates the limit from both directions using dir while creating the Limit
object at u and v, and evaluates the function at the given point using the
subs() method. Next, it checks if the limits l1 and l2 are equal and if so, it
checks if they are equal to the value of the function at that point. If both
the conditions are true, the function is continuous at that point.

Doing Math with Python (Programming Challenge Solutions), © 2015 by Amit Saha

46 Chapter 7 Programming Solutions

#2: Implement the Gradient Descent
As noted in the problem statement, the only difference between the solu-
tion for this challenge and the program implementing gradient ascent is
how the next point is created. The following program implements the gra-
dient descent algorithm to find the minimum value of a function:

'''
grad_descent.py

Use gradient descent to find the minimum value of a
single variable function. This also checks for the existence
of a solution for the equation f'(x)=0 and plots the intermediate
points traversed.
'''

from sympy import Derivative, Symbol, sympify, solve
import matplotlib.pyplot as plt

def grad_descent(x0, f1x, x):
 # check if f1x=0 has a solution
 if not solve(f1x):
 print('Cannot continue, solution for {0}=0 does not exist'.
format(f1x))
 return None
 epsilon = 1e-6
 step_size = 1e-4
 x_old = x0

u x_new = x_old–step_size*f1x.subs({x: x_old}).evalf()

 # list to store the X values traversed
 X_traversed = []

v while abs(x_old - x_new) > epsilon:
w X_traversed.append(x_new)

 x_old = x_new
 x_new = x_old - step_size*f1x.subs({x:x_old}).evalf()

 return x_new, X_traversed

def frange(start, final, interval):

 numbers = []
 while start < final:
 numbers.append(start)
 start = start + interval

 return numbers

Doing Math with Python (Programming Challenge Solutions), © 2015 by Amit Saha

#2: Implement the Gradient Descent 47

def create_plot(X_traversed, f, var):
 # First create the graph of the function itself
 x_val = frange(-1, 1, 0.01)
 f_val = [f.subs({var:x}) for x in x_val]
 plt.plot(x_val, f_val, 'bo')
 # calculate the function value at each of the intermediate
 # points traversed
 f_traversed = [f.subs({var:x}) for x in X_traversed]
 plt.plot(X_traversed, f_traversed, 'r.')
 plt.legend(['Function', 'Intermediate points'], loc='best')
 plt.show()

if __name__ == '__main__':

 f = input('Enter a function in one variable: ')
 var = input('Enter the variable to differentiate with respect to: ')
 var0 = float(input('Enter the initial value of the variable: '))
 try:
 f = sympify(f)
 except SympifyError:
 print('Invalid function entered')
 else:
 var = Symbol(var)
 d = Derivative(f, var).doit()
 var_min, X_traversed = grad_descent(var0, d, var)
 if var_min:
 print('{0}: {1}'.format(var.name, var_min))
 print('Minimum value: {0}'.format(f.subs({var:var_min})))

x create_plot(X_traversed, f, var)

At u we create the point. As in the program for gradient ascent,
we continue exploring new points until the new point and the current
point differ by a value less than 1e − 6 v. We also store all the points in a
list, X_traversed w, so that we can plot all the intermediate points in the
create_plot() function. A sample execution of the program would look
like this:

Enter a function in one variable: 3*x**2 + 2*x
Enter the variable to differentiate with respect to: x
Enter the initial value of the variable: 0.1
x: -0.331668643986980
Minimum value: -0.333325019761474

Figure 8 shows the graph of this example.

Doing Math with Python (Programming Challenge Solutions), © 2015 by Amit Saha

48 Chapter 7 Programming Solutions

Figure 8: Graph showing the function 3x2 + 2x and how gradient descent finds the mini-
mum of the function

#3: Area Between Two Curves
Here’s the solution for this challenge:

'''
area_curves.py

Find the area enclosed by two curves between two points
'''

from sympy import Integral, Symbol, SympifyError, sympify

def find_area(f, g, var, a, b):
 a = Integral(f-g, (var, a, b)).doit()
 return a

if __name__ == '__main__':
 f = input('Enter the upper function in one variable: ')
 g = input('Enter the lower function in one variable: ')
 var = input('Enter the variable: ')
 l = float(input('Enter the lower bound of the enclosed region: '))
 u = float(input('Enter the upper bound of the enclosed region: '))

 try:
 f = sympify(f)
 g = sympify(g)

Doing Math with Python (Programming Challenge Solutions), © 2015 by Amit Saha

#4: Finding the Length of a Curve 49

 except SympifyError:
 print('One of the functions entered is invalid')
 else:
 var = Symbol(var)
 print('Area enclosed by {0} and {1} is: {2} '.
 format(f, g, find_area(f, g, var, l, u)))

When the program runs, it asks the user to input two functions (the
lower and upper bounds of the variable) and calls the find_area() function
with these values. The find_area() function then calculates the integral

by creating the Integral object, which is the area enclosed by the two curves
between a and b. An example execution of the program is as follows:

Enter the upper function in one variable: x+1
Enter the lower upper function in one variable: x*exp(-x**2)
Enter the variable: x
Enter the lower bound of the enclosed region: 0
Enter the upper bound of the enclosed region: 2
Area enclosed by x + 1 and x*exp(-x**2) is: 3.50915781944437

I should note that this challenge describes a specific case of finding the
area between curves. You can learn about other cases at http://tutorial.math
.lamar.edu/Classes/CalcI/AreaBetweenCurves.aspx and write programs to solve
them. This example demonstrates solving an adaptation of this website’s
Example 2 using our program.

#4: Finding the Length of a Curve
This solution finds the length of a function between two points:

'''
length_curve.py

Find the length of a curve between two points
'''

from sympy import Derivative, Integral, Symbol, sqrt, SympifyError, sympify

def find_length(fx, var, a, b):
 deriv = Derivative(fx, var).doit()
 length = Integral(sqrt(1+deriv**2), (var, a, b)).doit().evalf()
 return length

if __name__ == '__main__':
 f = input('Enter a function in one variable: ')
 var = input('Enter the variable: ')
 l = float(input('Enter the lower limit of the variable: '))
 u = float(input('Enter the upper limit of the variable: '))

Doing Math with Python (Programming Challenge Solutions), © 2015 by Amit Saha

http://tutorial.math.lamar.edu/Classes/CalcI/AreaBetweenCurves.aspx
http://tutorial.math.lamar.edu/Classes/CalcI/AreaBetweenCurves.aspx

50 Chapter 7 Programming Solutions

 try:
 f = sympify(f)
 except SympifyError:
 print('Invalid function entered')
 else:
 var = Symbol(var)
 print('Length of {0} between {1} and {2} is: {3} '.
 format(f, l, u, find_length(f, var, l, u)))

A sample of the program is shown here using the example in the chal-
lenge description as the input:

Enter a function in one variable: 2*x**2 + 3*x + 1
Enter the variable: x
Enter the lower limit of the variable: -5
Enter the upper limit of the variable: 10
Length of 2*x**2 + 3*x + 1 between -5.0 and 10.0 is: 268.372650946022

Another example, using input from Khan Academy (https://www
.khanacademy.org/math/integral-calculus/solid_revolution_topic/arc-length/v/
arc-length-example-2), is as follows:

Enter a function in one variable: x**3/6 + 1/(2*x)
Enter the variable: x
Enter the lower limit of the variable: 1
Enter the upper limit of the variable: 2
Length of x**3/6 + 1/(2*x) between 1.0 and 2.0 is: 1.41666666666667

Doing Math with Python (Programming Challenge Solutions), © 2015 by Amit Saha

https://www.khanacademy.org/math/integral-calculus/solid_revolution_topic/arc-length/v/arc-length-example-2
https://www.khanacademy.org/math/integral-calculus/solid_revolution_topic/arc-length/v/arc-length-example-2
https://www.khanacademy.org/math/integral-calculus/solid_revolution_topic/arc-length/v/arc-length-example-2

	Chapter 1 Programming Solutions
	#1: Even-Odd Vending Machine
	#2: Enhanced Multiplication Table Generator
	#3: Enhanced Unit Converter
	#4: Fraction Calculator
	#5: Give Exit Power to the User

	Chapter 2 Programming Solutions
	#1: How Does the Temperature Vary During the Day?
	#2: Exploring a Quadratic Function Visually
	#3: Enhanced Projectile Trajectory Comparison Program
	#4: Visualizing Your Expenses
	#5: Exploring the Relationship Between the Fibonacci Sequence and the Golden Ratio

	Chapter 3 Programming Solutions
	#1: Better Correlation Coefficient–Finding Program
	#2: Statistics Calculator
	#3: Experiment with Other CSV Data
	#4: Finding the Percentile
	#5: Creating a Grouped Frequency Table

	Chapter 4 Programming Solutions
	#1: Factor Finder
	#2: Graphical Equation Solver
	#3: Summing a Series
	#4: Solving Single-Variable Inequalities

	Chapter 5 Programming Solutions
	#1: Using Venn Diagrams to Visualize Relationships Between Sets
	#2: Law of Large Numbers
	#3: How Many Tosses Before You Run Out of Money?
	#4: Shuffling a Deck of Cards
	#5: Estimating the Area of a Circle

	Chapter 6 Programming Solutions
	#1: Packing Circles into a Square
	#2: Drawing the Sierpin´  ski Triangle
	#3: Exploring Hénon’s Function
	#4: Drawing the Mandelbrot Set

	Chapter 7 Programming Solutions
	#1: Verify the Continuity of a Function at a Point
	#2: Implement the Gradient Descent
	#3: Area Between Two Curves
	#4: Finding the Length of a Curve

	__RefHeading__1638_810724216
	__RefHeading__1638_810724216
	__RefHeading__1638_810724216
	__RefHeading__4433_484204779
	__RefHeading__4435_484204779
	__RefHeading__4437_484204779
	__RefHeading__4439_484204779
	__RefHeading__1638_810724216
	__RefHeading__1638_810724216
	__RefHeading__1638_810724216
	__RefHeading__1638_810724216
	Blank Page

