Numbers
0-RITT data, 245
2G mobile communications, 89
3DES (triple DES), 59, 72–74. See also DES (Data Encryption Standard)
3G mobile communications, 91, 128
4G mobile communications, 78, 91, 128, 129

A
A5/1, 18, 88–91
Aaronson, Scott, 171, 178, 259, 269
Advanced Encryption Standard (AES), 53, 59
AddRoundKey, 60
block size, 54
vs. DES, 59, 80
and GCM, 152–154, 159, 161
implementations, 62–64
internals, 59–62
KeyExpansion, 60
MixColumns, 60
with Poly1305, 138
and provable security, 48
security of, 65
ShiftRows, 60
SubBytes, 60
and TLS 1.3, 243–244
Advanced Vector Extensions (AVX), 55
AE. See authenticated encryption (AE)
AEAD (authenticated encryption with associated data), 16, 149, 157–158
AES. See Advanced Encryption Standard (AES)
AES-CBC, 69
AESENCLAST instruction, 64
AESENC instruction, 64
AES-GCM
 efficiency, 154
 internals, 152–153
 security, 154
 and small tags, 161
 and weak hash keys, 159–161
AES native instructions (AES-NI), 63–64
AEZ, 161–162
AKA (authenticated key agreement), 205–207
algebraic attacks, 85
Alvisi, Lorenzo, 125
amplitude, 252–253
Apple, 218, 231
application-specific integrated circuit (ASIC), 79
associated data, 149
asymmetric encryption, 1, 15.
 See also RSA (Rivest–Shamir–Adleman)
attack costs, 43–44
attack models, 10
 black-box, 11–12
 for key agreement protocols, 207
 gray-box, 12
authenticated ciphers, 148
 with associated data, 149
 functional criteria, 151–152
 nonces, 149–150
 online, 151
 performance, 150–151
 permutation-based, 157–158
 security, 150
 streamability, 151
authenticated decryption, 148
authenticated Diffie–Hellman, 210–213
authenticated encryption (AE), 16, 145
 AES-GCM, 152–154, 159–161
 authenticated ciphers, 148–152
 OCB, 155–156
authenticated encryption (AE), continued
permutation-based AEAD, 157–158
SIV, 156–157
using MACs, 146–148
authenticated encryption with associated data (AEAD), 16, 149, 157–158
authenticated key agreement (AKA), 205–207
authentication tag, 16. See also authenticated encryption (AE); MACs (message authentication codes)
AVX (Advanced Vector Extensions), 55

B
backtracking resistance, 26
backward secrecy, 26
bcryptGenRandom() function, 33–34
Bellare, Mihir, 143
Bellaso, Giovan Battista, 3
Bellcore attack, 196–197
Bernstein, Daniel J., 52, 95, 100, 136, 139, 230, 231, 261
big-number libraries, 192
binary exponentiation, 192
birthday attacks, 109
birthday paradox, 109
Bitcoin, 106
bit security, 42–43
BLAKE, 120
BLAKE2, 215, 226
BLAKE2b, 123
BLAKE2s, 123
compression function, 124
design rationale, 123
blinding attacks, 189
block ciphers, 53. See also Advanced Encryption Standard (AES)
block size, 54–55
CBC mode, 67–70
codebook attacks, 55
CTR mode, 71–72
decryption algorithm, 54
ECB mode, 65–67
encryption algorithm, 54
Feistel schemes, 58–59
key schedule, 56
meet-in-the-middle attacks, 72–74
modes of operation, 65
padding oracle attacks, 74–75
rounds, 56
round keys, 56–57
security goals, 54
slide attacks, 56–57
substitution–permutation networks, 57–58
Bluetooth, 78
Boneh, Dan, 199
Bos, Joppe W., 233
broadcast attack model, 95
Brumley, David, 199
brute-force attacks, 41, 90

C
CA (certificate authority), 238–240, 247–248
cache-timing attacks, 63
Caesar cipher, 2–3
CAESAR competition, 161
Canetti, Ran, 143
carry-less multiplication (CLMUL), 153
CBC. See cipher block chaining (CBC)
CBC-MAC, 134
CCA (chosen-ciphertext attackers), 11
CCM (counter with CBC-MAC), 162, 243
CDH (computational Diffie–Hellman), 204
certificate authority (CA), 238–240, 247–248
certificate chain, 239, 247
ChaCha20, 95, 120, 138, 243–244
chaining values, 112
Chinese remainder theorem (CRT), 195–196
chosen-ciphertext attackers (CCA), 11
chosen-message attacks, 129
chosen-plaintext attackers (CPA), 11
Chrome browser, 118, 231
Chuang, Isaac, 269
ciphers, 1
cipher-based MAC (CMAC), 134–135
cipher block chaining (CBC), 67–69.
ciphertext stealing, 70
padding, 69–70
padding oracle attacks, 74
ciphertext, 2
ciphertext-only attackers (COA), 11
ciphertext stealing, 70
C language, 63
Clay Mathematics Institute, 46, 171
client certificate, 246
clique problem, 169
CLMUL (carry-less multiplication), 153
closest vector problem (CVP), 264–265
CMAC (cipher-based MAC), 134–135
CMAC-AES, 157
ciphertext-only attackers (COA), 11
code-based cryptography, 263–264
codebook attacks, 55, 90–91
Codenomicon, 248
coding problems, 179
Cohen, Henri, 233
Cold War, 53
collision resistance, 109, 113
complexity. See computational complexity
complexity class, 168
complex numbers, 253
compression functions, 111
in BLAKE2, 124
Davies–Meyer construction, 114
in Merkle–Damgård construction, 112–113
in SHA-1, 117
cryptographic security, 39. See also security
CTR (counter mode), 71–72, 91, 152
cube attacks, 85
Curve448, 244
Curve25519, 230–231, 244
Curve41417, 231
CVP (closest vector problem), 264–265
cyclic redundancy checks (CRCs), 106

D
Dahlin, Mike, 125
Damgård, Ivan, 111, 126
Data Encryption Standard. See DES (Data Encryption Standard)
Datagram Transport Layer Security (DTLS), 237
Davies–Meyer construction, 114, 117, 124
decisional Diffie–Hellman (DDH) assumption, 205
problem, 204–205
decryption, 2
dedicated hardware, 79
DeMillo, Richard A., 199
DES (Data Encryption Standard), 53, 80
3DES, 59, 72–74
vs. AES, 59, 80
block size, 54
double DES, 73
Feistel schemes in, 58–59
deterministic random bit generator (DRBG), 14, 25, 78
/dev/random, 32–33
/dev/urandom, 30–32
Diehard, 29
differential cryptanalysis, 98–99
Diffie, Whitfield, 201
Diffie–Hellman problem, 178
Diffie–Hellman (DH) protocol, 201
anonymous, 209–210
authenticated, 210–213
CDH problem, 204
DDH problem, 204–205
function, 202
Diffie–Hellman (DH) protocol, continued
 generating parameters, 202–203
 and key agreement, 205–208, 225–229
MQV protocol, 213–214
 and shared secrets, 202, 214–215
in TLS, 215, 242–243
twin problem, 205
unsafe group parameters, 215–216
diffusion, 57
digest, 106
digiNotar, 248
digital signatures, 106, 182, 188–189
discrete logarithm problem (DLP), 174–176
 and CDH problem, 204
ECDLP, 224–225
 and Shor’s algorithm, 259, 260
distribution. See probability distribution
drand48, 28
DRBG (deterministic random bit generator), 14, 25, 78
DTLS (Datagram Transport Layer Security), 237
Durumeric, Zakir, 36

E
ECB (electronic codebook), 65–67
ECC (elliptic-curve cryptography), 217
ECDH (elliptic-curve Diffie-Hellman), 226, 232–233
ECDSA. See elliptic curve digital signature algorithm (ECDSA)
ECDLP (elliptic curve discrete logarithm problem), 224–225
ECIES (elliptic curve integrated encryption scheme), 229
Ed448-Goldilocks, 231
Einstein–Podolsky–Rosen (EPR) paradox, 252
elliptic curves, 217–218, 244
 addition law, 221
 Curve448, 244
 Curve25519, 230–231
 Curve4417, 231
 Edwards curves, 219
 groups, 224
 with integers, 210–220
 NIST curves, 230
 order, 224
 point at infinity, 222, 224
 point doubling, 222–223
 point multiplying, 223
 prime curves, 230
 Weierstrass form, 218
elliptic curve digital signature algorithm (ECDSA), 226
 and bad randomness, 232
 vs. RSA signatures, 227–228
 signature generation, 226
 signature verification, 226–227
elliptic curve discrete logarithm problem (ECDLP), 224–225
elliptic curve integrated encryption scheme (ECIES), 229
embarassingly parallel, 43, 90
Encapsulating Security Payload (ESP), 241
encrypt-and-MAC, 146–147
encryption, 1
 asymmetric, 15
 at-rest, 15
 in-transit, 15
 randomized, 13
 security, 9
encrypt-then-MAC, 147–148, 152
entanglement, 252, 255
entropy, 23–24, 35–36
entropy pool, 25
EPR (Einstein–Podolsky–Rosen) paradox, 252
error-correcting codes, 263
ESP (Encapsulating Security Payload), 241
eSTREAM competition, 86, 103
 th roots, 185
Euler’s theorem, 198
Euler’s totient function, 183
exponentiation, 192, 194
extended Euclidean algorithm, 184

F
factorials, 6
factoring methods, 172
factoring problem, 46, 171
and NP-completeness, 173–174
solving with Shor’s algorithm, 259–260
factorization, 172–173, 176–177
fast correlation attacks, 85
fault injection, 196–197
FDH (Full Domain Hash), 190–191
feedback shift registers (FSRs), 80–82
cycle, 82
feedback function, 80
linear, 83–85
nonlinear, 86
period, 82
Feistel schemes, 58–59
Ferguson, Niels, 26, 161
FHE (fully homomorphic encryption), 17
field-programmable gate array (FPGA), 79
filtered LFSR, 85
first-preimage resistance, 108
fixed points, 114
Flame, 126
forgery attacks, 128
format-preserving encryption (FPE), 16–17
Fortuna, 26–27
forward secrecy, 26, 208
in authenticated DH, 211
in TLS 1.3, 246–247
Fouque, Pierre-Alain, 143
FOX, 58
FPGA (field-programmable gate array), 79
frequency analysis, 4
Frey, Gerhard, 233
FSRs. See feedback shift registers (FSRs)
full diffusion, 99
Full Domain Hash (FDH), 190–191
fully homomorphic encryption (FHE), 17

G
GCD (greatest common divisor), 36, 184, 195, 260
GCHQ (Government Communications Headquarters), 202
GCM (Galois Counter Mode), 146, 152, 161. See also AES-GCM
gcm_ghash_clmul function, 153
general number field sieve (GNFS), 173, 204
getrandom() system call, 33
GHASH, 152–154, 159–160
Gilbert, E.N., 136
Git, 105
GitHub, 51
Gmail, 248
GMR-1, 103
GMR-2, 103
GNFS (general number field sieve), 173, 204
GNU Multiple Precision (GMP), 192
GnuPG, 52
Go, 140, 191, 193
Goldberg, Ian, 35
Goldwasser, Shafi, 19
Google, 118, 248
Chrome, 231
Internet Authority, 239
GOST, 53, 59
Govaerts, René, 126
Government Communications Headquarters (GCHQ), 202
Grain-128a, 86–88
graphics processing unit (GPU), 91
greatest common divisor (GCD), 36, 184, 195, 260
Grøstl, 120
groups, 174
axioms, 175
commutativity, 175
cyclic, 175
finite, 175
generator, 175
in RSA, 182–183
Grover’s algorithm, 260
GSM mobile communication, 78
guess-and-determine attacks, 89–90

H
Hadamard gate, 256–257
Halderman, Alex, 36, 233
hardness assumption, 174
hard problems, 163. See also computational complexity
closest vector problem, 264
discrete logarithm problem, 174–176
factoring problem, 171–174
learning with errors, 264
hard problems, continued
multivariate quadratic
 equations, 265
 \textbf{NP}-complete problem, 169–170
 and provable security, 46–47
\textbf{P} vs. \textbf{NP} problem, 170–171
short integer solution, 264
hardware, 63, 102
hash-based cryptography, 266–267
hash-based MACs, 132–133
hash functions, 105. \textit{See also}
 Merkle–Damgård (M–D) construction
 3-collisions, 113
collisions in, 109–111
 compression functions, 112
 Davies–Meyers construction, 114
 in digital signatures, 106
 iterative, 111
keyed, 127
multicollisions, 113
noncryptographic, 106
preimage resistance, 107–109
 in proof-of-storage protocols, 125–126
 and \textbf{P} vs. \textbf{NP} problem, 171
security notions, 106
 sponge functions, 115–116
 universal, 136–137
unpredictability, 107
hash values, 106
 Heartbleed, 248–249
 Hellman, Martin, 201
Heninger, Nadia, 36, 233
heuristic security, 48–49
HMAC-based KDF (HKDF), 215, 244
HMACs (hash-based MACs), 132–133
host-based intrusion detection system (HIDS), 105
HTTPS, 237
 insecure, 154, 178
 keys for, 49, 52
 over TLS, 94, 215, 236
IKE (Internet Key Exchange), 134
 imaginary number, 253
 IND-CPA, 13–14
 indistinguishability, 126
 indistinguishability (IND), 12–13, 129
 informational security, 40
 initial value (IV), 67–69, 112, 135
 integrated encryption scheme (IES), 229
 integrity, of data, 16, 106, 128
 Intel, 30
 Internet Engineering Task Force (IETF), 152
 Internet Key Exchange (IKE), 134
 internet of things (IoT), 235
 intractable problems. \textit{See hard problems}
 invalid curve attack, 232
 invasive attacks, 12
 ion traps, 262
 ipad, 132
 IPSec (Internet Protocol Security), 128, 132, 134, 148, 152
 iterative hashing, 111
 IV (initial value), 67–69, 112, 135

J
Jager, Tibor, 233
Java, 19
JH, 120
Jovanovic, Philipp, 158

K
KDF. \textit{See} key derivation function (KDF)
Keccak 121–123. \textit{See also} SHA-3
Kelsey, John, 26, 38, 45
Kerckhoffs, Auguste, 4, 10
Kerckhoffs’s principle, 10–11
key agreement protocols, 49, 202, 205
 AKA, 205–207
 attack models, 207
 breaches, 207, 211, 214
data leaks, 207, 212
eavesdroppers, 207, 211
forward secrecy, 208
 performance, 208
 security goals, 207–208
key confirmation, 212, 214
key control, 208

I
iCloud, 248
 identity gate, 256
IES (integrated encryption scheme), 229
IETF (Internet Engineering Task Force), 152
key derivation function (KDF), 49
in DH functions, 202, 215
in ECIES, 229
in TLS 1.3, 243–244
key generation, 49–50
key-generation algorithm, 50
key scheduling algorithms (KSAs), 11, 92
key wrapping, 50
knapsack problem, 169
known-message attack, 128
known-plaintext attackers (KPA), 11
known-plaintext attacks (KPAs), 89
Knudsen, Lars, 47
Kohno, Tadayoshi, 26
Kotla, Ramakrishna, 125
Kozierok, Charles, 237
Krawczyk, Hugo, 143, 216
Krovetz, Ted, 156
KSAs (key scheduling algorithms), 11, 92
Kupyna, 116

L

lattice-based cryptography, 264–265
lattice problems, 179
learning with errors (LWE), 264, 267
least significant bit (LSB), 165, 193
length-extension attacks, 125, 131
Let’s Encrypt, 249
Leurent, Gaëtan, 143
linear code, 263
linear combination, 28
linear feedback shift registers (LFSRs), 83
in A5/1, 88–89
filtered, 85
in Grain-128a, 87–88
polynomials, 83
security, 84
linear transformation, 265
Linux, 32, 66, 239
Lipton, Richard J., 199
logarithm, 23, 42
long-term key, 211
lower bound, 41
low-exponent attacks, 195
LSB (least significant bit), 165, 193
Lucifer, 58
LWE (learning with errors), 264, 267

M

MACs (message authentication codes), 127
authentication tag, 128
CBC-MAC, 134–135
chosen-message attacks, 129
CMAC, 134
dedicated designs, 136
encrypt-and-MAC, 146–147
encrypt-then-MAC, 147–148, 152
forgery attacks, 128
HMAC, 132–133
MAC-then-encrypt, 147
vs. PRFs, 130
replay attacks, 129
timing attacks, 140–142
Wegman–Carter, 137–138
MacBook, 194
MAC-then-encrypt, 147
MacWilliams, F.J., 136
malleability, 186
man-in-the-middle attacks, 206, 209–210, 236
mask generating function, 188
matrix multiplication, 256
McEliece cryptosystem, 263
MD5, 116, 126
M–D construction. See Merkle–Damgård (M–D) construction
measurement (quantum physics), 252, 255
MediaWiki, 36
meet-in-the-middle (MitM) attacks, 72–74
memory, 44
memory footprint, 55
Menezes–Qu–Vanstone (MQV), 213–214, 226
Merkle, Ralph, 111, 126, 202
Merkle–Damgård (M–D) construction, 111
length-extension attacks, 125, 131
multicollisions, 113
padding, 112–113
security, 113
Merkle’s puzzles, 202
Mersenne Twister (MT) algorithm, 28, 36
message authentication codes.
See MACs (message authentication codes)
Micali, Silvio, 19
Microsoft, 65
Microsoft Windows CryptoAPI, 194
misuse resistance, 150
MitM (meet-in-the-middle) attacks, 72–74
mode of operation, 4, 5, 65
Moore, Jonathan, 233
most significant bit (MSB), 28, 135, 138, 215
MQ (multivariate quadratics), 265
MQV (Menezes–Qu–Vanstone), 213–214, 226
MT (Mersenne Twister) algorithm, 28, 36
mt_rand, 28
multicollisions, 113
multivariate cryptography, 265–266
multivariate problems, 179
multivariate quadratics (MQ), 265

N
Naehrig, Michael, 233
National Institute of Standards and Technology (NIST), 29, 53, 59, 120–121
National Security Agency (NSA), 59, 116, 213, 251
Netscape, 35, 237
network-based intrusion detection systems (NIDS), 105
Neves, Samuel, 123, 158
NFSR (nonlinear feedback shift register), 86
Nguyen, Phong Q., 143
Nielsen, Michael, 269
NIST (National Institute of Standards and Technology), 29, 53, 59, 120–121
NM (non-malleability), 13
nonces, 71–72, 78–79
predictability, 149–150
reuse, 101
in TLS records, 241
WEP insecurity and, 93–94
nondeterministic polynomial time class. See NP (nondeterministic polynomial time) class
nonlinear equation, 29
nonlinear feedback shift register (NFSR), 86
non-malleability (NM), 13
nonrepudiation, 188
non-uniform distribution, 23
NP (nondeterministic polynomial time) class, 166–169
NP-complete problem, 169–170
NP-hard problem, 170
NSA (National Security Agency), 59, 116, 213, 251
NSS library, 199
number field sieve, 204

O
OAEP. See Optimal Asymmetric Encryption Padding (OAEP)
OCB (offset codebook)
 efficiency, 156
 internals, 155–156
 security, 156
one-time pad, 7
 encrypting with, 7–8
 security, 8–9, 13, 40
one-way function, 107
opad, 132
OpenSSH, 136, 217, 231
OpenSSL toolkit
 generating DH parameters, 203
 generating keys, 30, 49, 177–178
 GHASH bug, 153
 Heartbleed, 248–249
 unsafe DH group parameters, 215–216
Optimal Asymmetric Encryption Padding (OAEP), 52, 186
 encoded message, 187
 mask generating function, 188

P
P (polynomial time) class, 166–168, 168–169
padding, 19, 69–70, 112–113
 OAEP, 52, 186–188
 zero padding, 241
padding oracle attacks, 19, 74–75
parallelism, 43
parallelizability, 151, 154, 156
parent process ID (PPID), 35
password, 49, 129
Paterson, Kenny, 103
Peikert, Chris, 268
perfect secrecy, 7
period, 259
permutation, 4–5, 111
 permutation-based AEAD, 157–158
 pseudorandom, 54
 security, 5, 7
 in sponge functions, 115–116
 trapdoor, 181–182, 183
PID (process ID), 35
pigeonhole principle, 109
PKCS (Public-Key Cryptography Standards), 186
plaintext, 2
PLD (programmable logic device), 79
Poly1305, 136–138, 139
Poly1305-AES, 138
polynomials, 83
 multiplication, 153
 primitive, 83–84
polynomial time (P) class, 166–168, 168–169
post-quantum cryptography, 252, 263
code-based, 263–264
hash-based, 266–267
lattice-based, 264–265
multivariate, 265–266
Post-Quantum Crypto Project, 269
post-quantum security, 261
power-analysis attacks, 193
PPID (parent process ID), 35
PQCrypto, 269
precomputation, 44, 208
prediction resistance, 26
preimage resistance, 107–109
Preneel, Bart, 126
pre-shared key (PSK), 243, 245
PRFs. See pseudorandom functions (PRFs)
prime numbers, 172
prime number theorem, 172
private keys, 15, 181
PRNGs. See pseudorandom number generators (PRNGs)
Probabilistic Signature Scheme (PSS), 189–190, 191
probability, 9, 22
probability distribution, 22–23
process ID (PID), 35
programmable logic device (PLD), 79
proof-of-storage protocols, 125–126
proof-of-work, 106
provable security, 46–48
pseudorandom functions (PRFs), 127
 vs. MACs, 130
 security, 129
pseudorandom number generators (PRNGs), 24–26
cryptographic, 27–28
entropy and, 35–36
Fortuna, 26–27
generating on Unix, 30–32
generating on Windows, 33–34
hardware-based, 34–35
non-cryptographic, 27–28, 36–37
security, 26
pseudorandom permutation (PRP), 54, 58, 138
PSPACE, 168
PSK (pre-shared key), 243, 245
PSS (Probabilistic Signature Scheme), 189–190, 191
public-key cryptography, 15
Public-Key Cryptography Standards (PKCS), 186
public-key distribution scheme, 201
public keys, 181
P vs. NP, 170–171
PyCrypto, 62
Pythagorean theorem, 253
Python language, 62, 66, 71, 92, 198

Q
Qualys, 249
quantum bit (qubit), 252
quantum byte, 255
quantum circuits, 255
quantum computers, 174, 251
quantum gates, 255, 256
quantum mechanics, 252
quantum random number generators (QRNGs), 25
quantum speed-up, 257
 exponential, 258
 quadratic, 258
quarter-round function, 96
qubit (quantum bit), 252

R
rand, 28
randomness, 21
random number generators (RNGs), 24–25
random oracle, 107
Ray, Marsh, 65
RC4, 79, 92–93
 broken implementation, 101–102
 in TLS, 94–95
 in WEP, 93–94
RDRAND instruction, 34–35
RDSEED instruction, 34
reduction, 46
replay attacks, 129, 206
Rho method, 110–111
Rijndael, 59
ring-LWE, 267
Rivest, Ron, 92, 103
Rivest–Shamir–Adleman. See RSA
 (Rivest–Shamir–Adleman)
Rogaway, Phillip, 155, 156, 157
RNGs (random number generators), 24–25
root of unity, 198
rounds, 48
round trips, 208
round-trip times (RTT), 245
RSA (Rivest–Shamir–Adleman), 181–182
 Bellcore attack, 196–197
 CRT, 195–196
 vs. ECDSA, 227–228
 encryption, 185
 and factoring problem, 46–47, 177
 FDH, 190–191
 groups, 182–183
 implementations, 191–192
 key generation, 184–185
 modulus, 182
 OEAP, 186–188
 private exponents, 197–199
 private keys, 50, 183, 184
 problem, 204
 PSS, 189–190, 191
 public exponents, 183
 public keys, 183
 secret exponents, 183
 security, 185
 shared moduli, 197
 signatures, 188–189
 small exponents, 194–195
 speed, 194–196
 square-and-multiply, 192–193
 textbook encryption, 185–186
textbook signature, 188
 trapdoor permutation, 183
RSAES-OAEP, 186
RSA Security, 92
RTT (round-trip times), 245
S
Saarinen, Markku-Juhani O., 121, 166
safe prime, 203
SageMath, 176, 184
Salsa20, 95
 attacking, 99–100
 column-round function, 97
 double-round function, 97
 internal state, 96
 and nonlinear relations, 98–99
 quarter-round function, 96
 row-round function, 97
Salsa20/8, 99
salt, 190
sandwich MAC, 133
satellite phone (satphone), 102
S-boxes (substitution boxes), 57
scheduling problems, 170
Schneier, Bruce, 26, 38, 121
Schwenk, Jörg, 233
searchable encryption, 17
search algorithm, 164
second-preimage resistance, 108
secret-prefix MAC, 130, 133
secret-suffix MAC, 131
secure channel, 201, 236
secure cookie, 246
Secure Hash Algorithms (SHAs), 116
Secure Hash Algorithm with Keccak
 (SHAKE), 121
Secure Shell (SSH), 51–52, 128, 132,
 147, 148, 152, 226, 240
Secure Socket Layer (SSL), 35, 235, 237
security
 bit, 42–43
 computational, 40–41
 cryptographic, 39
 goals, 10, 12–13
 heuristic, 46, 48–49
 informational, 40
 levels, choosing, 44–45
 margin, 48–49
 notions, 10, 13–15
post-quantum, 261
proof, 46
provable, 46–48
semantic, 13, 18
session key, 205
SHA-0, 116–117
SHA-1, 116, 244
attacks, 118–119
collision, 118
internals, 117–118
SHA-2, 119, 120, 125
SHA-3, 115, 121–123, 215
competition, 120–121
security, 123
Zoo, 126
SHA-224, 119–120
SHA-256, 119–120, 226
compression function, 119
security, 120
SHA-384, 120
SHA-512, 120
SHAs (Secure Hash Algorithms), 116
SHAKE (Secure Hash Algorithm with Keccak), 121
Shannon, Claude, 8
Shor, Peter, 259
Shor’s algorithm, 259–260
short integer solution (SIS), 264
Shrimpton, Tom, 157
side-channel attacks, 12, 140, 264, 269
Signal, 268
signatures, 106, 182, 188–189
SIM card, 206
Simon’s problem, 258
Simple Mail Transfer Protocol (SMTP), 237
SipHash, 139–140, 142
SipRound function, 139–140
SIS (short integer solution), 264
SIV (synthetic IV), 156–157
Skein, 121
slide attacks, 56–57
sliding window method, 193
Sloane, N.J., 136
SM3, 116
SMTP (Simple Mail Transfer Protocol), 237
SNOW3G, 91
Somorovsky, Juraj, 233
space complexity, 168
SPHINCS, 267
SPNs (substitution–permutation networks), 57–58, 60
sponge functions, 111, 115, 142
absorbing phase, 115
capacity, 116
squeezing phase, 116
square-and-multiply, 192–193
SSH (Secure Shell), 51–52, 128, 132, 147, 148, 152, 226, 240
SSL (Secure Socket Layer), 35, 235, 237
SSL Labs, 249
statistical test, 29
Stevens, Marc, 118
streamability, 151, 154, 156
stream ciphers, 77
counter-based, 79
cipher and decryption, 78
hardware-oriented, 79–80
keystream, 78
nonce reuse, 101
software-oriented, 91
stateful, 79
Streebog, 116
substitutions, 4–5
substitution boxes (S-boxes), 57
substitution–permutation networks (SPNs), 57–58, 60
superconducting circuits, 262
superposition, 252
symmetric encryption, 1, 15, 16
synthetic IV (SIV), 156–157
T
tags, 16. See also authenticated encryption (AE); MACs (message authentication codes)
TE (tweakable encryption), 17
TEA, 126
TestU01, 29
time complexity, 168
time-memory trade-off (TMTO) attacks, 18, 44, 90–91
timing attacks, 141, 193, 199, 269
TLS (Transport Layer Security), 78, 35, 128, 130, 147, 235
ClientHello, 242, 244, 245
and Diffie–Hellman, 215
downgrade protection, 244
handshake, 237, 238–240, 241–243
TLS (Transport Layer Security), continued
history of, 237
RC4 in, 92, 94–95
record, 240
record payload, 240
record protocol, 237, 240–241
security, 236, 246–247, 247–249
ServerHello, 242, 245
session resumption, 245
single round-trip handshake, 245
version 1.3 algorithms, 243–244
version 1.3 improvements, 244–245
zero padding, 241
TLS Working Group (TLSWG), 249
TMTO (time-memory trade-off) attacks, 18, 44, 90–91
TOFU (trust-on-first-use), 240
traffic analysis, 241
Transport Layer Security. See TLS
trapdoors, 182
trapdoor permutations, 181–182, 183
traveling salesman problem, 169
triple DES (3DES), 59, 72–74
trusted third party, 238
trust-on-first-use (TOFU), 240
Turing Award, 202
tweakable encryption (TE), 17

U
UDP (User Datagram Protocol), 237
unforgeability, 128
uniform distribution, 23
unitary matrix, 257
universal hash functions, 136–137
Unix, 30
unpredictability, 107
upper bound, 42

V
Vandewalle, Joos, 126
van Oorschot, Paul C., 126
Vigenère, Blaise de, 3
Vigenère cipher, 3–4
virtual private network (VPN), 94

W
Wagner, David, 35, 38, 56, 101
Wegman–Carter MAC, 137–138, 152
Weierstrauss form, 218
WEP (Wireless Encryption Protocol), 92, 93–94
Wiener, Michael, 52, 126, 199
Wi-Fi, 77
Wilcox-O’Hearn, Zooko, 123
Windows, 30
Winnerlein, Christian, 123
Winternitz one-time signature (WOTS), 266–267
Wireless Encryption Protocol (WEP), 92, 93–94
WPA2, 162
Wustrow, Eric, 36, 233

X
Xbox, 126
XOR swap, 101–102

Y
Yao, Andrew C., 216
Yarrow, 26

Z
Zhao, Yunlei, 216
ZUC, 91