
1
C r e a t i n g Y o u r F i r s t
D a t a b a s e a n d T a b l e

SQL is more than just a means for extract-
ing knowledge from data. It’s also a lan-

guage for defining the structures that hold
data so we can organize relationships in the data.

Chief among those structures is the table.
A table is a grid of rows and columns that store data. Each row holds a

collection of columns, and each column contains data of a specified type:
most commonly, numbers, characters, and dates. We use SQL to define the
structure of a table and how each table might relate to other tables in the
database. We also use SQL to extract, or query, data from tables.

Understanding tables is fundamental to understanding the data in your
database. Whenever I start working with a fresh database, the first thing I
do is look at the tables within. I look for clues in the table names and their
column structure. Do the tables contain text, numbers, or both? How many
rows are in each table?

Next, I look at how many tables are in the database. The simplest
database might have a single table. A full-bore application that handles

2 Chapter 1

customer data or tracks air travel might have dozens or hundreds. The
number of tables tells me not only how much data I’ll need to analyze, but
also hints that I should explore relationships among the data in each table.

Before you dig into SQL, let’s look at an example of what the contents
of tables might look like. We’ll use a hypothetical database for managing a
school’s class enrollment; within that database are several tables that track
students and their classes. The first table, called student_enrollment, shows
the students that are signed up for each class section:

student_id class_id class_section semester
---------- ---------- ------------- ---------
CHRISPA004 COMPSCI101 3 Fall 2017
DAVISHE010 COMPSCI101 3 Fall 2017
ABRILDA002 ENG101 40 Fall 2017
DAVISHE010 ENG101 40 Fall 2017
RILEYPH002 ENG101 40 Fall 2017

This table shows that two students have signed up for COMPSCI101, and
three have signed up for ENG101. But where are the details about each stu-
dent and class? In this example, these details are stored in separate tables
called students and classes, and each table relates to this one. This is where
the power of a relational database begins to show itself.

The first several rows of the students table include the following:

student_id first_name last_name dob
---------- ---------- --------- ----------
ABRILDA002 Abril Davis 1999-01-10
CHRISPA004 Chris Park 1996-04-10
DAVISHE010 Davis Hernandez 1987-09-14
RILEYPH002 Riley Phelps 1996-06-15

The students table contains details on each student, using the value in
the student_id column to identify each one. That value acts as a unique key
that connects both tables, giving you the ability to create rows such as the
following with the class_id column from student_enrollment and the first_
name and last_name columns from students:

class_id first_name last_name
---------- ---------- ---------
COMPSCI101 Davis Hernandez
COMPSCI101 Chris Park
ENG101 Abril Davis
ENG101 Davis Hernandez
ENG101 Riley Phelps

The classes table would work the same way, with a class_id column and
several columns of detail about the class. Database builders prefer to orga-
nize data using separate tables for each main entity the database manages
in order to reduce redundant data. In the example, we store each student’s
name and date of birth just once. Even if the student signs up for multiple

Creating Your First Database and Table 3

classes—as Davis Hernandez did—we don’t waste database space entering
his name next to each class in the student_enrollment table. We just include his
student ID.

Given that tables are a core building block of every database, in this
chapter you’ll start your SQL coding adventure by creating a table inside a
new database. Then you’ll load data into the table and view the completed
table.

Create a Database
The PostgreSQL program you downloaded in the Introduction is a database
management system, a software package that allows you to define, manage,
and query databases. When you installed PostgreSQL, it created a database
server—an instance of the application running on your computer—that
includes a default database called postgres. The database is a collection
of objects that includes tables, functions, user roles, and much more.
According to the PostgreSQL documentation, the default database is
“meant for use by users, utilities and third party applications” (see https://
www.postgresql.org/docs/current/static/app-initdb.html). In the exercises in this
chapter, we’ll leave the default as is and instead create a new one. We’ll do
this to keep objects related to a particular topic or application organized
together.

To create a database, you use just one line of SQL, shown in Listing 1-1.
This code, along with all the examples in this book, is available for down-
load via the resources at https://www.nostarch.com/practicalSQL/.

CREATE DATABASE analysis;

Listing 1-1: Creating a database named analysis

This statement creates a database on your server named analysis using
default PostgreSQL settings. Note that the code consists of two keywords—
CREATE and DATABASE—followed by the name of the new database. The state-
ment ends with a semicolon, which signals the end of the command. The
semicolon ends all PostgreSQL statements and is part of the ANSI SQL
standard. Sometimes, you can omit the semicolon, but not always, and par-
ticularly not when running multiple statements in the admin. So, using the
semicolon is a good habit to form.

Executing SQL in pgAdmin
As part of the Introduction to this book, you also installed the graphical
administrative tool pgAdmin (if you didn’t, go ahead and do that now). For
much of our work, you’ll use pgAdmin to run (or execute) the SQL state-
ments we write. Later in the book, I’ll show you how to run SQL statements
in a terminal window using the PostgreSQL command-line program psql,
but getting started is a bit easier with a graphical interface.

4 Chapter 1

We’ll use pgAdmin to run the SQL in Listing 1-1 that creates the data-
base. Then, we’ll connect to the new database and create a table. Follow
these steps:

1.	 Run PostgreSQL. If you’re using Windows, the installer set PostgreSQL
to launch every time you boot up. On a Mac, you must double-click
Postgres.app in your Applications folder.

2.	 Launch pgAdmin. As you did in the Introduction, in the left verti-
cal pane (the object browser) expand the plus sign to the left of
the Servers node to show the default server. Depending on how you
installed PostgreSQL, the default server may be named localhost or
PostgreSQL x, where x is the version of the application.

3.	 Double-click the server name. If you supplied a password during instal-
lation, enter it at the prompt. You’ll see a brief message that pgAdmin is
establishing a connection.

4.	 In pgAdmin’s object browser, expand Databases and click once on the
postgres database to highlight it, as shown in Figure 1-1.

Figure 1-1: Connecting to the default postgres database

5.	 Open the Query Tool by choosing Tools4Query Tool.

6.	 In the SQL Editor pane (the top horizontal pane), type or copy the
code from Listing 1-1.

7.	 Click the lightning bolt icon to execute the SQL. PostgreSQL cre-
ates the database, and in the Output pane in the Query Tool under
Messages you’ll see a notice indicating the query returned successfully,
as shown in Figure 1-2.

Creating Your First Database and Table 5

Figure 1-2: Creating the analysis database

8.	 To see your new database, right-click Databases in the object browser.
From the pop-up menu, select Refresh, and the analysis database will
appear in the list, as shown in Figure 1-3.

Figure 1-3: The analysis database displayed in the object
browser

6 Chapter 1

Good work! You now have a database called analysis, which you can use
for the majority of the exercises in this book. In your own work, it’s gener-
ally a best practice to create a new database for each project to keep tables
with related data together.

Connecting to the Analysis Database
Before you create a table, you must ensure that pgAdmin is connected to
the analysis database rather than to the default postgres database.

To do that, follow these steps:

1.	 Close the Query Tool by clicking the X at the top right of the tool.

2.	 In the object browser, click once on the analysis database.

3.	 Reopen the Query Tool by choosing Tools4Query Tool.

4.	 You should now see the label analysis on postgres@localhost at the top of
the Query Tool window. (Again, instead of localhost, your version may
show PostgreSQL.)

Now, any code you execute will apply to the analysis database.

Create a Table
As I mentioned earlier, tables are where data lives and its relationships are
defined. When you create a table, you assign a name to each column (some-
times referred to as a field or attribute) and assign it a data type. These are the
values the column will accept—such as text, integers, decimals, and dates—
and the definition of the data type is one way SQL enforces the integrity of
data. For example, a column defined as date will take data in one of several
standard formats, such as YYYY-MM-DD. If you try to enter characters not in a
date format, for instance, the word peach, you’ll receive an error.

Data stored in a table can be accessed and analyzed, or queried, with
SQL statements. You can sort, edit, and view the data, and easily alter the
table later if your needs change.

Let’s make a table in the analysis database.

The CREATE TABLE Statement
For this exercise, we’ll use an often-discussed piece of data: teacher salaries.
Listing 1-2 shows the SQL to create a table called teachers:

 CREATE TABLE teachers (
 id bigserial,
 first_name varchar(25),
 last_name varchar(50),
 school varchar(50),
 hire_date date,

Creating Your First Database and Table 7

 salary numeric
);

Listing 1-2: Creating a table named teachers with six columns

This table definition is far from comprehensive. For example, it’s miss-
ing several constraints that would ensure that columns that must be filled do
indeed have data or that we’re not inadvertently entering duplicate values.
I cover constraints in detail in Chapter 7, but in these early chapters I’m
omitting them to focus on getting you started on exploring data.

The code begins with the two SQL keywords  CREATE and TABLE that,
together with the name teachers, signal PostgreSQL that the next bit of
code describes a table to add to the database. Following an opening paren-
thesis, the statement includes a comma-separated list of column names
along with their data types. For style purposes, each new line of code is on
its own line and indented four spaces, which isn’t required, but it makes the
code more readable.

Each column name represents one discrete data element defined by a
data type. The column id  is of data type bigserial, a special integer type
that auto-increments every time you add a row to the table. The first row
receives the value of 1 in the id column, the second row 2, and so on. bigse-
rial and other serial types are PostgreSQL-specific implementations, but
most database systems have a similar feature.

Next, we create columns for the teacher’s first and last name, and the
school where they teach . Each is of the data type varchar, a text column
with a maximum length specified by the number in parentheses. We’re
assuming that no one in the database will have a last name of more than
50 characters. Although this is a safe assumption, you’ll discover over time
that exceptions will always surprise you.

The teacher’s hire_date  is set to the data type date, and the salary
column  is a numeric. I’ll cover data types more thoroughly in Chapter 3,
but this table shows some common examples of data types. The code block
wraps up  with a closing parenthesis and a semicolon.

Now that you have a sense of how SQL looks, let’s run this code in
pgAdmin.

Making the Teachers Table
You have your code and you’re connected to the database, so you can make
the table using the same steps we did when we created the database:

1.	 Open the pgAdmin Query Tool (if it’s not open, click once on the
analysis database in pgAdmin’s object browser, and then choose
Tools4Query Tool).

2.	 Copy the CREATE TABLE script from Listing 1-2 into the SQL Editor.

3.	 Execute the script by clicking the lightning bolt icon.

8 Chapter 1

If all goes well, you’ll see a message in the pgAdmin Query Tool’s bottom
output pane that reads, Query returned successfully with no result in 84 msec.
Of course, the number of milliseconds will vary depending on your system.

Now, find the table you created. Go back to the main pgAdmin win-
dow and, in the object browser, right-click the analysis database and choose
Refresh. Choose Schemas4public4Tables to see your new table, as shown
in Figure 1-4.

Figure 1-4: The teachers table in the object browser

Creating Your First Database and Table 9

Expand the teachers table node by clicking the plus sign to the left of
its name. This reveals more details about the table, including the column
names, as shown in Figure 1-5. Other information appears as well, such
as indexes, triggers, and constraints, but I’ll cover those in later chapters.
Clicking on the table name and then selecting the SQL menu in the pgAd-
min workspace will display the SQL used to make the teachers table.

Congratulations! So far, you’ve built a database and added a table to it.
The next step is to add data to the table so you can write your first query.

Insert Rows into a Table
You can add data to a PostgreSQL
table in several ways. Often, you’ll
work with a large number of rows, so
the easiest method is to import data
from a text file or another database
directly into a table. But just to get
started, we’ll add a few rows using an
INSERT INTO ... VALUES statement that
specifies the target columns and the
data values. Then we’ll view the data
in its new home.

The INSERT Statement
To insert some data into the table,
you first need to erase the CREATE TABLE
statement you just ran. Then, follow-
ing the same steps as you did to cre-
ate the database and table, copy the
code in Listing 1-3 into your pgAdmin
Query Tool:

 INSERT INTO teachers (first_name, last_name, school, hire_date, salary)
 VALUES ('Janet', 'Smith', 'F.D. Roosevelt HS', '2011-10-30', 36200),
 ('Lee', 'Reynolds', 'F.D. Roosevelt HS', '1993-05-22', 65000),
 ('Samuel', 'Cole', 'Myers Middle School', '2005-08-01', 43500),
 ('Samantha', 'Bush', 'Myers Middle School', '2011-10-30', 36200),
 ('Betty', 'Diaz', 'Myers Middle School', '2005-08-30', 43500),
 ('Kathleen', 'Roush', 'F.D. Roosevelt HS', '2010-10-22', 38500);

Listing 1-3: Inserting data into the teachers table

This code block inserts names and data for six teachers. Here, the
PostgreSQL syntax follows the ANSI SQL standard: after the INSERT INTO
keywords is the name of the table, and in parentheses are the columns to be
filled . In the next row vis the VALUES keyword and the data to insert into
each column in each row. You need to enclose the data for each row in a set
of parentheses, and inside each set of parentheses, use a comma to separate

Figure 1-5: Table details for teachers

10 Chapter 1

each column value. The order of the values must also match the order of
the columns specified after the table name. Each row of data ends with a
comma, and the last row ends the entire statement with a semicolon .

Notice that certain values that we’re inserting are enclosed in single
quotes, but some are not. This is a standard SQL requirement. Text and
dates require quotes, and are known as literals; numbers, including integers
and decimals, don’t require quotes. I’ll highlight this requirement as it
comes up in examples. Also, note the date format we’re using: a four-digit
year is followed by the month and date, and each part is joined by a hyphen.
This is the international standard for date formats; using it will help you
avoid confusion. (Why is it best to use the format YYYY-MM-DD? Check out
https://xkcd.com/1179/ to see a great comic about it.) PostgreSQL supports
many additional date formats, and I’ll use several in examples.

You might be wondering about the id column, which is the first column
in the table. When you created the table, your script specified that column
to be the serial data type. So as PostgreSQL inserts each row, it automati-
cally fills the id column with an auto-incrementing integer. I’ll cover that in
detail in Chapter 5 when I discuss data types.

Now, run the code. This time the message in the Query Tool should
include the words Query returned successfully: 6 rows affected.

Viewing the Data
You can take a quick look at the data you just loaded into the teachers table
using pgAdmin. In the object browser, locate the table and right-click. In
the pop-up menu, choose View Data4View All Rows. As Figure 1-6 shows,
you’ll see the six rows of data in the table with each column filled by the
values in the SQL statement.

Figure 1-6: Viewing table data directly in pgAdmin

Notice that even though you didn’t insert a value for the id column,
each teacher has an id number assigned.

pgAdmin lets you view data using this interface in a few ways, but we’ll
focus on writing SQL to handle those tasks.

https://xkcd.com/1179/

Creating Your First Database and Table 11

When Code Goes Bad
There may be a universe where code always works, but unfortunately, we
haven’t invented a machine capable of transporting us there. Errors hap-
pen. Whether you make a typo or mix up the order of operations, com-
puter languages are unforgiving about syntax. For example, if you forget
a comma in the code in Listing 1-3, PostgreSQL squawks back an error:

ERROR: syntax error at or near “(“
LINE 5: ('Samuel', 'Cole', 'Myers Middle School', '2005-08-01', 43...
 ^
********** Error **********

Fortunately, the error message hints at what’s wrong and where: a syn-
tax error is near an open parenthesis on line 5. But sometimes error mes-
sages can be more obscure. In that case, you do what the best coders do: a
quick internet search for the error message. Most likely, someone else has
experienced the same issue and might know the answer.

Formatting SQL for Readability
SQL requires no special formatting to run, so you’re free to use your own
psychedelic style of uppercase, lowercase, and random indentations. But
that won’t win you any friends when others need to work with your code
(and sooner or later someone will). For the sake of readability and being a
good coder, it’s best to follow these conventions:

•	 Uppercase SQL keywords, such as SELECT. Some SQL coders also upper-
case the names of data types, such as TEXT and INTEGER. I use lowercase
characters for data types in this book to separate them in your mind
from keywords, but you can uppercase them if desired.

•	 Avoid CamelCase and instead use lowercase_and_underscores for object
names, such as tables and column names (see more details about case
in Chapter 7).

•	 Indent clauses and code blocks for readability using either two or four
spaces. Some coders prefer tabs to spaces; use whichever works best for
you or your organization.

We’ll explore other SQL coding conventions as we go through the
book, but these are the basics.

Wrapping Up
You accomplished quite a bit in this first chapter: you created a database
and a table, and then loaded data into it. You’re on your way to adding
SQL to your data analysis toolkit! In the next chapter, you’ll use this set of
teacher data to learn the basics of querying a table using SELECT.

12 Chapter 1

Try It Yourself
Here are two exercises to help you explore concepts related to databases,
tables, and data relationships:

1.	 Imagine you’re building a database to catalog all the animals at your
local zoo. You want one table to track the kinds of animals in the col-
lection and another table to track the specifics on each animal. Write
CREATE TABLE statements for each table that include some of the columns
you need. Why did you include the columns you chose?

2.	 Now create INSERT statements to load sample data into the tables. How
can you view the data via the pgAdmin tool? Create an additional INSERT
statement for one of your tables. Purposely omit one of the required com-
mas separating the entries in the VALUES clause of the query. What is the
error message? Would it help you find the error in the code?

