
17
ENCODER- AND DECODER-STYLE

TRANSFORMERS

What are the differences between encoder-
and decoder-based language transformers?

Both encoder- and decoder-style architectures use the same self-
attention layers to encode word tokens. The main difference is that

encoders are designed to learn embeddings that can be used for various
predictive modeling tasks such as classification. In contrast, decoders are
designed to generate new texts, for example, to answer user queries.

This chapter starts by describing the original transformer architecture
consisting of an encoder that processes input text and a decoder that pro-
duces translations. The subsequent sections then describe how models like
BERT and RoBERTa utilize only the encoder to understand context and
how the GPT architectures emphasize decoder-only mechanisms for text
generation.

The Original Transformer
The original transformer architecture introduced in Chapter 16 was devel-
oped for English-to-French and English-to-German language translation. It
utilized both an encoder and a decoder, as illustrated in Figure 17-1.

Machine Learning Q and AI (Sample Chapter) ©1/23/24 by Sebastian Raschka

6x

6x

LayerNorm

+

Fully connected
network

LayerNorm

+

Multi-head
attention

Input text

Tokenized text

Tokenizer

Embeddings

+Positional encoding

LayerNorm

+

LayerNorm

+

Multi-head
attention

Input text

Tokenized text

Tokenizer

Embeddings

+Positional encoding

Multi-head
attention

Fully connected
network

LayerNorm

+

Fully connected
network

Decoder

Encoder

Figure 17-1: The original transformer architecture

In Figure 17-1, the input text (that is, the sentences of the text to be trans-
lated) is first tokenized into individual word tokens, which are then encoded
via an embedding layer before they enter the encoder part (see Chapter 1 for
more on embeddings). After a positional encoding vector is added to each
embedded word, the embeddings go through amulti-head self-attention
layer. This layer is followed by an addition step, indicated by a plus sign (+)
in Figure 17-1, which performs a layer normalization and adds the original

106 Chapter 17

Machine Learning Q and AI (Sample Chapter) ©1/23/24 by Sebastian Raschka

embeddings via a skip connection, also known as a residual or shortcut con-
nection. Following this is a LayerNorm block, short for layer normalization,
which normalizes the activations of the previous layer to improve the stabil-
ity of the neural network’s training. The addition of the original embeddings
and the layer normalization steps are often summarized as theAdd&Norm
step. Finally, after entering the fully connected network—a small, multilayer
perceptron consisting of two fully connected layers with a nonlinear activa-
tion function in between—the outputs are again added and normalized before
they are passed to amulti-head self-attention layer of the decoder.

The decoder in Figure 17-1 has a similar overall structure to the en-
coder. The key difference is that the inputs and outputs are different: the
encoder receives the input text to be translated, while the decoder generates
the translated text.

Encoders
The encoder part in the original transformer, as illustrated in Figure 17-1, is
responsible for understanding and extracting the relevant information from
the input text. It then outputs a continuous representation (embedding)
of the input text, which is passed to the decoder. Finally, the decoder gener-
ates the translated text (target language) based on the continuous represen-
tation received from the encoder.

Over the years, various encoder-only architectures have been developed
based on the encoder module of the original transformer model outlined
earlier. One notable example is BERT, which stands for bidirectional en-
coder representations from transformers.

As noted in Chapter 14, BERT is an encoder-only architecture based
on the transformer’s encoder module. The BERT model is pretrained on a
large text corpus using masked language modeling and next-sentence predic-
tion tasks. Figure 17-2 illustrates the masked language modeling pretraining
objective used in BERT-style transformers.

The curious kitten deftly climbed the bookshelfInput sentence:

Pick 15 percent of the words randomly

The curious kitten deftly climbed the bookshelf

• 80 percent of the time, replace with [MASK] token

• 10 percent of the time, replace with random token (for example, ate)

• 10 percent of the time, keep unchanged

(1)

(2)

The curious kitten deftly [MASK] the bookshelfModified sentence:

Figure 17-2: BERT randomly masks 15 percent of the input tokens during pretraining.

Encoder- and Decoder-Style Transformers 107

Machine Learning Q and AI (Sample Chapter) ©1/23/24 by Sebastian Raschka

As Figure 17-2 demonstrates, the main idea behind masked language
modeling is to mask (or replace) random word tokens in the input sequence
and then train the model to predict the original masked tokens based on the
surrounding context.

In addition to the masked language modeling pretraining task illustrated
in Figure 17-2, the next-sentence prediction task asks the model to predict
whether the original document’s sentence order of two randomly shuffled
sentences is correct. For example, say that two sentences, in random order,
are separated by the [SEP] token (SEP is short for separate). The brackets are
a part of the token’s notation and are used to make it clear that this is a spe-
cial token as opposed to a regular word in the text. BERT-style transformers
also use a [CLS] token. The [CLS] token serves as a placeholder token for
the model, prompting the model to return a True or False label indicating
whether the sentences are in the correct order:

• “[CLS] Toast is a simple yet delicious food. [SEP] It’s often served
with butter, jam, or honey.”

• “[CLS] It’s often served with butter, jam, or honey. [SEP] Toast is a
simple yet delicious food.”

The masked language and next-sentence pretraining objectives allow
BERT to learn rich contextual representations of the input texts, which can
then be fine-tuned for various downstream tasks like sentiment analysis,
question answering, and named entity recognition. It’s worth noting that
this pretraining is a form of self-supervised learning (see Chapter 2 for more
details on this type of learning).

RoBERTa, which stands for robustly optimized BERT approach, is an
improved version of BERT. It maintains the same overall architecture as
BERT but employs several training and optimization improvements, such
as larger batch sizes, more training data, and eliminating the next-sentence
prediction task. These changes have resulted in RoBERTa achieving better
performance on various natural language understanding tasks than BERT.

Decoders
Coming back to the original transformer architecture outlined in Figure 17-1,
the multi-head self-attention mechanism in the decoder is similar to the one
in the encoder, but it is masked to prevent the model from attending to fu-
ture positions, ensuring that the predictions for position i can depend only
on the known outputs at positions less than i. As illustrated in Figure 17-3,
the decoder generates the output word by word.

108 Chapter 17

Machine Learning Q and AI (Sample Chapter) ©1/23/24 by Sebastian Raschka

(3)

(2)

Tr
a
n
s
la

te

w
o
rd b
y

w
o
rd

Encoder Decoder

[S
T
A

R
T
]

 [
M

A
S
K
]

U
e
b
e
rs

e
tz

e

… … …
 [

M
A

S
K
]

 [
M

A
S
K
]

Tr
a
n
s
la

te

w
o
rd b
y

w
o
rd

Encoder Decoder

[S
T
A

R
T
]

U
e
b
e
rs

e
tz

e

U
e
b
e
rs

e
tz

e

W
o
rt

… …
 [

M
A

S
K
]

 [
M

A
S
K
]

Tr
a
n
s
la

te

w
o
rd b
y

w
o
rd

Encoder Decoder

[S
T
A

R
T
]

U
e
b
e
rs

e
tz

e

W
o
rt

fu
e
r

…

U
e
b
e
rs

e
tz

e

W
o
rt

[M

A
S
K
]

Tr
a
n
s
la

te

w
o
rd b
y

w
o
rd

Encoder Decoder

[S
T
A

R
T
]

U
e
b
e
rs

e
tz

e

W
o
rt

fu
e
r

W
o
rt

U
e
b
e
rs

e
tz

e

W
o
rt

fu
e
r

(4)

(1)

Figure 17-3: The next-sentence prediction task used in the original transformer

This masking (shown explicitly in Figure 17-3, although it occurs inter-
nally in the decoder’s multi-head self-attention mechanism) is essential to
maintaining the transformer model’s autoregressive property during train-
ing and inference. This autoregressive property ensures that the model gen-
erates output tokens one at a time and uses previously generated tokens as
context for generating the next word token.

Over the years, researchers have built upon the original encoder-decoder
transformer architecture and developed several decoder-only models that
have proven highly effective in various natural language processing tasks. The
most notable models include the GPT family, which we briefly discussed in
Chapter 14 and in various other chapters throughout the book.

Encoder- and Decoder-Style Transformers 109

Machine Learning Q and AI (Sample Chapter) ©1/23/24 by Sebastian Raschka

GPT stands for generative pretrained transformer. The GPT series com-
prises decoder-only models pretrained on large-scale unsupervised text data
and fine-tuned for specific tasks such as text classification, sentiment analy-
sis, question answering, and summarization. The GPT models, including at
the time of writing GPT-2, GPT-3, and GPT-4, have shown remarkable per-
formance in various benchmarks and are currently the most popular archi-
tecture for natural language processing.

One of the most notable aspects of GPT models is their emergent prop-
erties. Emergent properties are the abilities and skills that a model devel-
ops due to its next-word prediction pretraining. Even though these models
were taught only to predict the next word, the pretrained models are capa-
ble of text summarization, translation, question answering, classification,
and more. Furthermore, these models can perform new tasks without up-
dating the model parameters via in-context learning, which we’ll discuss in
more detail in Chapter 18.

Encoder-Decoder Hybrids
Next to the traditional encoder and decoder architectures, there have been
advancements in the development of new encoder-decoder models that lev-
erage the strengths of both components. These models often incorporate
novel techniques, pretraining objectives, or architectural modifications to
enhance their performance in various natural language processing tasks.
Some notable examples of these new encoder-decoder models include
BART and T5.

Encoder-decoder models are typically used for natural language pro-
cessing tasks that involve understanding input sequences and generating
output sequences, often with different lengths and structures. They are
particularly good at tasks where there is a complex mapping between the
input and output sequences and where it is crucial to capture the relation-
ships between the elements in both sequences. Some common use cases for
encoder-decoder models include text translation and summarization.

Terminology
All of these methods—encoder-only, decoder-only, and encoder-decoder
models—are sequence-to-sequence models (often abbreviated as seq2seq).
While we refer to BERT-style methods as “encoder-only,” the description
may be misleading since these methods also decode the embeddings into out-
put tokens or text during pretraining. In other words, both encoder-only
and decoder-only architectures perform decoding.

However, the encoder-only architectures, in contrast to decoder-only
and encoder-decoder architectures, don’t decode in an autoregressive fash-
ion. Autoregressive decoding refers to generating output sequences one to-
ken at a time, conditioning each token on the previously generated tokens.
Encoder-only models do not generate coherent output sequences in this
manner. Instead, they focus on understanding the input text and producing
task-specific outputs, such as labels or token predictions.

110 Chapter 17

Machine Learning Q and AI (Sample Chapter) ©1/23/24 by Sebastian Raschka

Contemporary Transformer Models
In brief, encoder-style models are popular for learning embeddings used
in classification tasks, encoder-decoder models are used in generative tasks
where the output heavily relies on the input (for example, translation and
summarization), and decoder-only models are used for other types of gener-
ative tasks, including Q&A. Since the first transformer architecture emerged,
hundreds of encoder-only, decoder-only, and encoder-decoder hybrids have
been developed, as diagrammed in Figure 17-4.

Original transformer

Encoder

Microsoft DeBERTa (2020)

Google
BERT (2018)

ALBERT (2020)

Meta RoBERTa (2019)

Decoder

Eleuther AI

GPT-J (2021)

GPT-NeoX (2022)

GPT-Neo (2023)

Google

XLNet (2019)

LaMDA (2021)

PaLM (2022)

Gopher (2022)

Sparrow (2022)

Chinchilla (2022)

Minerva (2022)

Bard (2023)

OpenAI

GPT-1 (2018)

GPT-2 (2019)

GPT-3 (2020)

CodeX (2021)

InstructGPT (2022)

ChatGPT (2022)

GPT-4 (2023)

Meta

OPT (2022)

Galactica (2022)

LLaMA (2023)

Encoder-Decoder

Meta BART (2020)

Google

Flan-T5 (2022)

Flan-UL2 (2023)

T5 (2022)

Figure 17-4: Some of the most popular large language transformers organized by
architecture type and developer

While encoder-only models have gradually become less popular, decoder-
only models like GPT have exploded in popularity, thanks to breakthroughs
in text generation via GPT-3, ChatGPT, and GPT-4. However, encoder-only

Encoder- and Decoder-Style Transformers 111

Machine Learning Q and AI (Sample Chapter) ©1/23/24 by Sebastian Raschka

models are still very useful for training predictive models based on text em-
beddings as opposed to generating texts.

Exercises
17-1. As discussed in this chapter, BERT-style encoder models are pretrained

using masked language modeling and next-sentence prediction pretrain-
ing objectives. How could we adopt such a pretrained model for a clas-
sification task (for example, predicting whether a text has a positive or
negative sentiment)?

17-2. Can we fine-tune a decoder-only model like GPT for classification?

References
• The Bahdanau attention mechanism for RNNs: Dzmitry Bahdanau,

Kyunghyun Cho, and Yoshua Bengio, “Neural Machine Translation
by Jointly Learning to Align and Translate” (2014), https://arxiv.org/
abs/1409.0473.

• The original BERT paper, which popularized encoder-style trans-
formers with a masked word and a next-sentence prediction pre-
training objective: Jacob Devlin et al., “BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding” (2018),
https://arxiv.org/abs/1810.04805.

• RoBERTa improves upon BERT by optimizing training procedures,
using larger training datasets, and removing the next-sentence pred-
iction task: Yinhan Liu et al., “RoBERTa: A Robustly Optimized BERT
Pretraining Approach” (2019), https://arxiv.org/abs/1907.11692.

• The BART encoder-decoder architecture: Mike Lewis et al., “BART:
Denoising Sequence-to-Sequence Pre-training for Natural Language
Generation, Translation, and Comprehension” (2018), https://arxiv
.org/abs/1910.13461.

• The T5 encoder-decoder architecture: Colin Raffel et al., “Exploring
the Limits of Transfer Learning with a Unified Text-to-Text Trans-
former” (2019), https://arxiv.org/abs/1910.10683.

• The paper proposing the first GPT architecture: Alec Radford et al.,
“Improving Language Understanding by Generative Pre-Training”
(2018), https://cdn.openai.com/research-covers/language-unsupervised/
language_understanding_paper.pdf.

• The GPT-2 model: Alec Radford et al., “Language Models Are Unsu-
pervised Multitask Learners” (2019), https://www.semanticscholar.org/
paper/Language-Models-are-Unsupervised-Multitask-Learners-Radford
-Wu/9405cc0d6169988371b2755e573cc28650d14dfe.

• The GPT-3 model: Tom B. Brown et al., “Language Models Are Few-
Shot Learners” (2020), https://arxiv.org/abs/2005.14165.

112 Chapter 17

Machine Learning Q and AI (Sample Chapter) ©1/23/24 by Sebastian Raschka

https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/1910.10683
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://www.semanticscholar.org/paper/Language-Models-are-Unsupervised-Multitask-Learners-Radford-Wu/9405cc0d6169988371b2755e573cc28650d14dfe
https://www.semanticscholar.org/paper/Language-Models-are-Unsupervised-Multitask-Learners-Radford-Wu/9405cc0d6169988371b2755e573cc28650d14dfe
https://www.semanticscholar.org/paper/Language-Models-are-Unsupervised-Multitask-Learners-Radford-Wu/9405cc0d6169988371b2755e573cc28650d14dfe
https://arxiv.org/abs/2005.14165

