Doing Math with Python

Use Programming to Explore Algebra, Statistics, Calculus, and More!

by Amit Saha
errata updated to print 7

Page	Error	Correction	Print corrected
8	. . . they take a string as input ('1') and return a number (2 or 2.0)	\ldots. . they take a string as input ('1') and return a number (1 or 1.0)	Print 3
47	The x -axis of the graph displays the force, and the y -axis displays the distance	The x -axis of the graph displays the distance, and the y -axis displays the force	Print 7
48	Figure 2-12: Visualization of the relationship between the gravitational force and the squared distance	Figure 2-12: Visualization of the relationship between the gravitational force and the distance	Print 3
52	At \mathbf{Q}, we calculate the time of flight and then call the frange() function with the values for start, final, and increment set to 0 , t _flight, and 0.001 , respectively.	At \boldsymbol{Q}, we calculate the time of flight and then call the frange() function with the values for start, final, and interval set to 0 , t _flight, and 0.001 , respectively.	Print 7
55	The for loop starting at © calculates the value of the function above for each of these values and uses the label y to refer to the list of results.	The for loop starting at $\mathbf{2}$ calculates the value of the function above for each of these values and uses the label y to refer to the result.	Print 3
76	Ice cream sales and crime are correlated because they both go up as the weather gets hotter during the summer.	Ice cream sales and crime rate are correlated because they both go up as the weather gets hotter during the summer.	Print 3
77	```y_square=[] for yi in y: y_square.append(yi**2)```	```y_square=[] for yi in y: y_square.append(yi**2)```	Print 7
87	Insertion	If you are unable to access the service, download a copy of the file from bttps://github.com/doingmathwithpython/code/blob/master/chapter3/solutions /correlatesummer.csv.	Print 7
97	$\begin{aligned} & \text { >>> factors = factor(expr) } \\ & \text { >>> expand(factors) } \\ & \text { x**2 - y**2 } \end{aligned}$	>>> from sympy import expand >>> factors = factor(expr) >>> expand(factors) x**2 - y**2	Print 3

Page	Error	Correction	Print corrected
99	```1 series = x 2 for i in range(2, n+1): 3 series = series + (x**i)/i pprint(series)```	```(1) series = x (2) for i in range(2, n+1): 3 series = series + (x**i)/i pprint(series)```	Print 4
112	from sympy import Symbol, sympify, solve	from sympy import Symbol, sympify, solve, SympifyError	Print 4
115	... (using the first letter of the color in each case).	... (using the first letter of the color in each case, except black for which you use 'k').	Print 7
132	def probability(space, event): return len(event)/len(space)	```from sympy import FiniteSet def probability(space, event): return len(event)/len(space)```	Print 7
132	for num in s: 3 if check_prime(num): primes.append(num)	```for num in space: 3 if check_prime(num): primes.append(num)```	Print 2
135	Deletion	import matplotlib. pyplot as plt	Print 7
139	probability $=[1 / 6,1 / 6,1 / 3,2 / 3]$	probability $=[1 / 6,1 / 6,1 / 3,1 / 3]$	Print 2

Page	Error	Correction	Print corrected
164-165	Transformation 1 (0.85 probability): $\begin{aligned} & x_{n+1}=0.85 x_{n}+0.04 y_{n} \\ & y_{n+1}=-0.04 y_{n}+0.85 y_{n}+1.6 \end{aligned}$ Transformation 2 (0.07 probability): $\begin{aligned} & x_{n+1}=0.2 x_{n}-0.26 y_{n} \\ & y_{n+1}=0.23 y_{n}+0.22 y_{n}+1.6 \end{aligned}$ Transformation 3 (0.07 probability): $\begin{aligned} & x_{n+1}=-0.15 x_{n}-0.28 x_{n} \\ & y_{n+1}=0.26 y_{n}+0.24 y_{n}+0.44 \end{aligned}$ Transformation 4 (0.01 probability): $\begin{aligned} & x_{n+1}=0 \\ & y_{n+1}=0.16 y_{n} \end{aligned}$	Transformation 1 (0.85 probability): $\begin{aligned} & x_{1}=0.85 x+0.04 y \\ & y_{1}=-0.04 x+0.85 y+1.6 \end{aligned}$ Transformation 2 (0.07 probability): $\begin{aligned} & x_{1}=0.2 x-0.26 y \\ & y_{1}=0.23 x+0.22 y+1.6 \end{aligned}$ Transformation 3 (0.07 probability): $\begin{aligned} & x_{1}=-0.15 x+0.28 y \\ & y_{1}=0.26 x+0.24 y+0.44 \end{aligned}$ Transformation 4 (0.01 probability): $\begin{aligned} & x_{1}=0 \\ & y_{1}=0.16 y \end{aligned}$	Print 3
194	abs(x_old - x_new) > epsilon	abs(x_old - x_new) <= epsilon	Print 3
195	from sympy import Derivative, Symbol, sympify	from sympy import Derivative, Symbol, sympify, SympifyError	Print 4
213	URL replacement	Anaconda (bttps://wwww.anaconda.com/distribution) . . .	Print 3

