
—-1
—0
—+1

In Chapter 4, we identified hosts on a net-
work and a few running services, including

HTTP, FTP, and SSH. Each of these protocols
has its own set of tests we could perform. In this

chapter, we’ll use specialized tools on the discovered
services to find out as much as we can about them.

In the process, we’ll use bash to run security testing tools, parse their
output, and write custom scripts to scale security testing across many URLs.
We’ll fuzz with tools such as ffuf and Wfuzz, write custom security checks
using the Nuclei templating system, extract personally identifiable infor-
mation (PII) from the output of tools, and create our own quick-and-dirty
vulnerability scanners.

Scanning Websites with Nikto
Nikto is a web scanning tool available on Kali. It performs banner grabbing
and runs a few basic checks to determine if the web server uses security

5
V U L N E R A B I L I T Y S C A N N I N G

A N D F U Z Z I N G

335-127871_ch01_1P.indd 95335-127871_ch01_1P.indd 95 08/03/24 2:53 PM08/03/24 2:53 PM

Black Hat Bash (Sample Chapter) © 3/18/24 by Dolev Farhi and Nick Aleks

-1—
0—

+1—
96 Chapter 5

headers to mitigate known web vulnerabilities; these vulnerabilities include
cross-site scripting (XSS), a client-side injection vulnerability targeting web
browsers, and UI redressing (also known as clickjacking), a vulnerability that
lets attackers hijack user clicks by using decoy layers in a web page. The
security headers indicate to browsers what to do when loading certain
resources and opening URLs, protecting the user from falling victim to
an attack.

After performing these security checks, Nikto also sends requests to
possible endpoints on the server by using its built-in wordlist of common
paths. The requests can discover interesting endpoints that could be useful
for penetration testers. Let’s use Nikto to perform a basic web assessment
of the three web servers we’ve identified on the IP addresses 172.16.10.10
(p-web-01), 172.16.10.11 (p-ftp-01), and 172.16.10.12 (p-web-02).

We’ll run a Nikto scan against the web ports we found to be open on
the three target IP addresses. Open a terminal and run the following com-
mands one at a time so you can dissect the output for each IP address:

$ nikto -host 172.16.10.10 -port 8081
$ nikto -host 172.16.10.11 -port 80
$ nikto -host 172.16.10.12 -port 80

The output for 172.16.10.10 on port 8081 shouldn’t yield much interest-
ing information about discovered endpoints, but should indicate that the
server doesn’t seem to be hardened, as it doesn’t use security headers:

+ Server: Werkzeug/2.2.3 Python/3.11.1
+ The anti-clickjacking X-Frame-Options header is not present.
+ The X-XSS-Protection header is not defined. This header can hint to the user
agent to protect against some forms of XSS
+ The X-Content-Type-Options header is not set. This could allow the user
agent to render the content of the site in a different fashion to the MIME
type
--snip--
+ Allowed HTTP Methods: OPTIONS, GET, HEAD
+ 7891 requests: 0 error(s) and 4 item(s) reported on remote host

Nikto was able to perform a banner grab of the server, as indicated by
the line that starts with the word Server. It then listed a few missing security
headers. These are useful pieces of information but not enough to take over
a server just yet.

The IP address 172.16.10.11 on port 80 should give you a similar result,
though Nikto also discovered a new endpoint, /backup, and that directory
indexing mode is enabled:

+ Server: Apache/2.4.55 (Ubuntu)
--snip--
+ OSVDB-3268: /backup/: Directory indexing found.
+ OSVDB-3092: /backup/: This might be interesting...

335-127871_ch01_1P.indd 96335-127871_ch01_1P.indd 96 08/03/24 2:53 PM08/03/24 2:53 PM

Black Hat Bash (Sample Chapter) © 3/18/24 by Dolev Farhi and Nick Aleks

—-1
—0
—+1

Vulnerability Scanning and Fuzzing 97

Directory indexing is a server-side setting that, instead of a web page, lists
files located at certain web paths. When enabled, the directory indexing
setting lists the content of a directory when an index file is missing (such
as index .html or index .php). Directory indexing is interesting to find because
it could highlight sensitive files in an application, such as configuration
files with connection strings, local database files (such as SQLite files), and
other environmental files. Open the browser in Kali to http://172 .16 .10 .11 /
backup to see the content of this endpoint (Figure 5-1).

Figure 5-1: Directory indexing found on 172 .16 .10 .11/backup

Directory indexing lets you view files in the browser. You can click direc-
tories to open them, click files to download them, and so on. On the web
page, you should identify two folders: acme-hyper-branding and acme-impact-
alliance. The acme-hyper-branding folder appears to contain a file named app.py.
Download it to Kali by clicking it so it’s available for later inspection.

We’ll explore the third IP address in a moment, but first let’s use bash
automation to take advantage of directory indexing.

Building a Directory Indexing Scanner
What if we wanted to run a scan against a list of URLs to check whether
they enable directory indexing, then download all the files they serve? In
Listing 5-1, we use bash to carry out such a task.

directory
_indexing

_scanner.sh

#!/bin/bash
FILE="${1}"
OUTPUT_FOLDER="${2}"

1 if [[! -s "${FILE}"]]; then
 echo "You must provide a non-empty hosts file as an argument."
 exit 1
fi

if [[-z "${OUTPUT_FOLDER}"]]; then
2 OUTPUT_FOLDER="data"
fi

while read -r line; do
3 url=$(echo "${line}" | xargs)

335-127871_ch01_1P.indd 97335-127871_ch01_1P.indd 97 08/03/24 2:53 PM08/03/24 2:53 PM

Black Hat Bash (Sample Chapter) © 3/18/24 by Dolev Farhi and Nick Aleks

-1—
0—

+1—
98 Chapter 5

 if [[-n "${url}"]]; then
 echo "Testing ${url} for Directory indexing..."
 4 if curl -L -s "${url}" | grep -q -e "Index of /" -e "[PARENTDIR]"; then
 echo -e "\t -!- Found Directory Indexing page at ${url}"
 echo -e "\t -!- Downloading to the \"${OUTPUT_FOLDER}\" folder..."
 mkdir -p "${OUTPUT_FOLDER}"
 5 wget -q -r -np -R "index .html*" "${url}" -P "${OUTPUT_FOLDER}"
 fi
 fi
done < <(cat "${FILE}")

Listing 5-1: Automatically downloading files available via directory indexing

In this script, we define the FILE and OUTPUT_FOLDER variables. Their
assigned values are taken from the arguments the user passes on the com-
mand line ($1 and $2). We then fail and exit the script (exit 1) if the FILE
variable is not of the file type and of length zero (-s) 1. If the file has a
length of zero, it means the file is empty.

We then use a while loop to read the file at the path assigned to the FILE
variable. At 3, we ensure that each whitespace character in each line from
the file is removed by piping it to the xargs command. At 4, we use curl to
make an HTTP GET request and follow any HTTP redirects (using -L). We
silence verbose output from curl (using -s) and pipe it to grep to find any
instances of the strings Index of / and [PARENTDIR]. These two strings exist in
directory indexing pages. You can verify this by viewing the source HTML
page at http://172 .16 .10 .11 /backup.

If we find either string, we call the wget command 5 with the quiet
option (-q) to silence verbose output, the recursive option (-r) to download
files recursively from folders, the no-parent option (-np) to ensure we down-
load only files at the same level of hierarchy or below (subfolders), and the
reject option (-R) to exclude files starting with index .html. We then use the
target folder option (-P) to download the content to the path specified by
the user calling the script (the OUTPUT_FOLDER variable). If the user didn’t
provide a destination folder, the script will default to using the data folder
set at 2.

N O T E You can download this chapter’s scripts from https://github .com /dolevf /Black
-Hat -Bash /blob /master /ch05.

The acme-impact-alliance folder we downloaded appears to be empty.
But is it really? When dealing with web servers, you may run into what seem
to be dead ends only to find out that something is hiding there, just not in
an obvious place. Take note of the empty folder for now; we’ll resume this
exploration in a little bit.

Identifying Suspicious robots.txt Entries
After scanning the third IP address, 172.16.10.12 (p-web-02), Nikto outputs
the following:

335-127871_ch01_1P.indd 98335-127871_ch01_1P.indd 98 08/03/24 2:53 PM08/03/24 2:53 PM

Black Hat Bash (Sample Chapter) © 3/18/24 by Dolev Farhi and Nick Aleks

https://github.com/dolevf/Black-Hat-Bash/blob/master/ch05
https://github.com/dolevf/Black-Hat-Bash/blob/master/ch05

—-1
—0
—+1

Vulnerability Scanning and Fuzzing 99

+ Server: Apache/2.4.54 (Debian)
+ Retrieved x-powered-by header: PHP/8.0.28
--snip--
+ Uncommon header 'link' found, with contents: <http://172 .16 .10 .12 /wp -json />;
rel ="https://api .w .org /"
--snip--
+ Entry '/wp-admin/' in robots.txt returned a non-forbidden or redirect HTTP
code (302)
+ Entry ' /donate .php' in robots.txt returned a non-forbidden or redirect HTTP
code (200)
+ "robots.txt" contains 17 entries which should be manually viewed.
+ /wp -login .php: Wordpress login found
--snip--

Nikto was able to find a lot more information this time! It caught
missing security headers (which is extremely common to see in the wild,
unfortunately). Next, Nikto found that the server is running on Apache and
Debian and that it is powered by PHP, a backend programming language
commonly used in web applications.

It also found an uncommon link that points to http://172 .16 .10 .12 /wp -json
and found two suspicious entries in the robots.txt file—namely, /wp-admin/
and /donate .php. The robots.txt file is a special file used to indicate to web crawl-
ers (such as Google’s search engine) which endpoints to index and which
to ignore. Nikto hints that the robots.txt file may have more entries than just
these two and advises us to inspect it manually.

Finally, it also identified another endpoint at /wp -login .php, which is a
login page for WordPress, a blog platform. Navigate to the main page at
http://172 .16 .10 .12 / to confirm you’ve identified a blog.

Finding these non-indexed endpoints is useful during a penetration
test because you can add them to your list of possible targets to test. If you
open this file, you should notice a list of paths:

User-agent: *

Disallow: /cgi-bin/
Disallow: /z/j/
Disallow: /z/c/
Disallow: /stats/
--snip--
Disallow: /manual
Disallow: /manual/*
Disallow: /phpmanual/
Disallow: /category/
Disallow: /donate .php
Disallow: /amount_to_donate.txt

We identified some of these endpoints earlier (such as /donate .php and
/wp-admin), but others we didn’t see when scanning with Nikto. In Exercise 5,
you’ll use bash to automate your exploration of them.

335-127871_ch01_1P.indd 99335-127871_ch01_1P.indd 99 08/03/24 2:53 PM08/03/24 2:53 PM

Black Hat Bash (Sample Chapter) © 3/18/24 by Dolev Farhi and Nick Aleks

-1—
0—

+1—
100 Chapter 5

Exercise 5: Exploring Non-indexed Endpoints
Nikto scanning returned a list of non-indexed endpoints. In this exercise,
you’ll use bash to see whether they really exist on the server. Put together a
script that will make an HTTP request to robots.txt, return the response, and
iterate over each line, parsing the output to extract only the paths. Then,
the script should make an additional HTTP request to each path and check
the status code it returns.

Listing 5-2 is an example script that can get you started. It relies on a
useful curl feature you’ll find handy in your bash scripts: built-in variables
you can reference to extract particular values from HTTP requests and
responses, such as the size of the request sent (%{size_request}), the size of
the headers returned in bytes (%{size_header}), and more.

curl_fetch
_robots_txt.sh

#!/bin/bash
TARGET _URL ="http://172 .16 .10 .12"
ROBOTS_FILE="robots.txt"

1 while read -r line; do
2 path=$(echo "${line}" | awk -F'Disallow: ' '{print $2}')
3 if [[-n "${path}"]]; then
 url="${TARGET_URL}${path}"
 status_code=$(curl -s -o /dev/null -w "%{http_code}" "${url}")
 echo "URL: ${url} returned a status code of: ${status_code}"
 fi

4 done < <(curl -s "${TARGET_URL}/${ROBOTS_FILE}")

Listing 5-2: Reading robots .txt and making requests to individual paths

At 1, we read the output from the curl command at 4 line by line. This
command makes an HTTP GET request to http://172 .16 .10 .12 /robots .txt. We
then parse each line and grab the second field (which is separated from the
others by a space) to extract the path and assign it to the path variable 2.
We check that the path variable length is greater than zero to ensure we were
able to properly parse it 3.

Then we create a url variable, which is a string concatenated from the
TARGET_URL variable plus each path from the robots.txt file, and make an HTTP
request to the URL. We use the -w (write-out) variable %{http_code} to extract
only the status code from the response returned by the web server.

To go beyond this script, try using other curl variables. You can find the
full list of variables at https://curl .se /docs /manpage .html or by running the man
curl command.

Brute-Forcing Directories with dirsearch
dirsearch is a fast directory brute-forcing tool used to find hidden paths
and files on web servers. Written in Python by Mauro Soria, dirsearch
provides features such as built-in web directory wordlists, bring-your-own-
dictionary options, advanced response filtering, and more. We’ll use it to

335-127871_ch01_1P.indd 100335-127871_ch01_1P.indd 100 08/03/24 2:53 PM08/03/24 2:53 PM

Black Hat Bash (Sample Chapter) © 3/18/24 by Dolev Farhi and Nick Aleks

https://curl.se/docs/manpage.html

—-1
—0
—+1

Vulnerability Scanning and Fuzzing 101

try to identify additional attack vectors and verify that Nikto hasn’t missed
anything obvious.

First, let’s rescan port 8081 on p-web-01 (172.16.10.10), which yielded
no discovered endpoints when scanned by Nikto. The following dirsearch
command uses the -u (URL) option to specify a base URL from which to
start crawling:

$ dirsearch -u http://172 .16 .10 .10:8081/

--snip--

Target: http://172 .16 .10 .10:8081/

[00:14:55] Starting:
[00:15:32] 200 - 371B - /upload
[00:15:35] 200 - 44B - /uploads

Great! This tool was able to pick up two previously unknown endpoints
named /upload and /uploads. This is why it’s important to double- and triple-
check your results by using more than one tool and to manually verify the
findings; tools sometimes produce false positives or use limited path-list
databases. If you navigate to the /upload page, you should see a file-upload
form. Take note of this endpoint because we’ll test it in Chapter 6.

Let’s also use dirsearch to look for attack vectors in what looked like an
empty folder on p-ftp-01, at http://172 .16 .10 .11 /backup /acme -impact -alliance:

$ dirsearch -u http://172 .16 .10 .11 /backup /acme -impact -alliance/

--snip--
Extensions: php, aspx, jsp, html, js | HTTP method: GET | Threads: 30 | Wordlist size: 10927
Target: http://172 .16 .10 .11 /backup /acme -impact -alliance/
--snip--
[22:49:53] Starting:
[22:49:53] 301 - 337B - /backup/acme-impact-alliance/js -> http://172 .16 .10 .11 /backup/
acme-impact-alliance/js/
[22:49:53] 301 - 339B - /backup/acme-impact-alliance/.git -> http://172 .16 .10 .11 /backup/
acme-impact-alliance/.git/
--snip--
[22:49:53] 200 - 92B - /backup/acme-impact-alliance/.git/config
--snip--

dirsearch inspects responses returned from the web server to identify
interesting behaviors that could indicate the existence of an asset. For
example, the tool might note whether a certain URL redirects to a new
location (specified by an HTTP status code 301) and the response size in
bytes. Sometimes you can infer information and observe behaviors solely by
inspecting this data.

This time, we’ve identified a subfolder within the acme-impact-alliance
folder named .git. A folder with this name usually indicates the existence of
a Git repository on the server. Git is a source code management tool, and in
this case, it likely manages code running locally on the remote server.

335-127871_ch01_1P.indd 101335-127871_ch01_1P.indd 101 08/03/24 2:53 PM08/03/24 2:53 PM

Black Hat Bash (Sample Chapter) © 3/18/24 by Dolev Farhi and Nick Aleks

-1—
0—

+1—
102 Chapter 5

Use dirsearch again to perform brute forcing against the second direc-
tory, /backup/acme-hyper-branding. Save the results into their own folder, then
check them. You should find a Git repository there too.

Exploring Git Repositories
When you find a Git repository, it’s often useful to run a specialized Git
cloner that pulls the repository and all its associated metadata so you can
inspect it locally. For this task, we’ll use Gitjacker.

Cloning the Repository
Gitjacker’s command is pretty simple. The first argument is a URL, and the
-o (output) argument takes a folder name into which the data will be saved
if Gitjacker succeeds at pulling the repository:

$ gitjacker http://172 .16 .10 .11 /backup /acme -impact -alliance/ -o acme-impact-alliance-git

--snip--
Target: http://172 .16 .10 .11 /backup /acme -impact -alliance/
Output Dir: acme-impact-alliance-git
Operation complete.

Status: Success
Retrieved Objects: 3242
--snip--

As you can see, the tool returned a successful status and a few thousand
objects. At this point, you should have a folder named acme-impact-alliance-git:

$ ls -la ./acme-impact-alliance-git

--snip--
128 -rw-r--r-- 1 kali kali 127309 Mar 17 23:15 comment .php
 96 -rw-r--r-- 1 kali kali 96284 Mar 17 23:15 comment -template .php
 16 -rw-r--r-- 1 kali kali 15006 Mar 17 23:15 compat .php
 4 drwxr-xr-x 2 kali kali 4096 Mar 17 23:15 customize
--snip--
 12 -rw-r--r-- 1 kali kali 10707 Mar 17 23:15 customize .php
 4 -rw-r--r-- 1 kali kali 705 Mar 17 23:15 donate .php
 4 -rw-r--r-- 1 kali kali 355 Mar 17 23:15 robots.txt
--snip--

Notice some familiar filenames in this list? We saw donate .php and robots
.txt earlier, when we scanned the 172.16.10.12 (p-web-02) host.

Viewing Commits with git log
When you run into a Git repository, you should attempt a git log command
to see the history of Git code commits made to the repository, as they may

335-127871_ch01_1P.indd 102335-127871_ch01_1P.indd 102 08/03/24 2:53 PM08/03/24 2:53 PM

Black Hat Bash (Sample Chapter) © 3/18/24 by Dolev Farhi and Nick Aleks

—-1
—0
—+1

Vulnerability Scanning and Fuzzing 103

include interesting data we could use as attackers. In source code manage-
ment, a commit is a snapshot of the code’s state that is taken before the code
is pushed to the main repository and made permanent. Commit informa-
tion could include details about who made the commit and a description of
the change (such as whether it was a code addition or deletion):

$ cd acme-impact-alliance-git
$ git log

commit 3822fd7a063f3890e78051e56bd280f00cc4180c (HEAD -> master)
Author: Kevin Peterson <kpeterson@acme -impact -alliance .com>
--snip--

 commit code

As you can see, we’ve identified a person who has committed code to
the Git repository: Kevin Peterson, at kpeterson@acme -impact -alliance .com.
Take note of this information because this account could exist in other
places found during the penetration test.

Try running Gitjacker again to hijack the Git repository that lives on the
second folder, at /backup/acme-hyper-branding. Then execute another git log
command to see who committed code to this repository, as we did before.
The log should reveal the identity of a second person: Melissa Rogers, at
mrogers@acme -hyper -branding .com.

You may sometimes run into Git repositories with many contributors
and many commits. We can use Git’s built-in --pretty=format option to easily
extract all this metadata, like so:

$ git log --pretty=format:"%an %ae"

The %ae (author name) and %ae (email) fields are built-in placeholders
in Git that allow you to specify values of interest to include in the output. To
see the list of all available variables, reference https://git -scm .com /docs /pretty
-formats# _pretty _formats.

Filtering git log Information
Even without the pretty formatting, bash can filter git log output with a
single line:

$ git log | grep Author | grep -oP '(?<=Author:).*' | sort -u | tr -d '<>'

This bash code runs git log, uses grep to search for any lines that start
with the word Author, and then pipes the results to another grep command,
which uses regular expressions (-oP) to filter anything after the word Author:
and print only the words that matched. This filtering leaves us with the Git
commit author’s name and email.

Because the same author could have made multiple commits, we use
sort to sort the list and use the -u option to remove any duplicated lines,

335-127871_ch01_1P.indd 103335-127871_ch01_1P.indd 103 08/03/24 2:53 PM08/03/24 2:53 PM

Black Hat Bash (Sample Chapter) © 3/18/24 by Dolev Farhi and Nick Aleks

https://git-scm.com/docs/pretty-formats#_pretty_formats
https://git-scm.com/docs/pretty-formats#_pretty_formats

-1—
0—

+1—
104 Chapter 5

leaving us with a list free of duplicated entries. Finally, since the email is
surrounded by the characters <> by default, we trim these characters by
using tr -d '<>'.

Inspecting Repository Files
The repository contains a file called app.py. Let’s inspect its contents by
viewing it in a text editor. You should see that the file contains web server
code written with Python’s Flask library:

import os, subprocess

from flask import (
 Flask,
 send_from_directory,
 send_file,
 render_template,
 request
)

@app.route('/')

--snip--

@app.route('/files/<path:path>')

--snip--

@app.route('/upload', methods = ['GET', 'POST'])

--snip--

@app.route('/uploads', methods=['GET'])

--snip--

@app.route('/uploads/<path:file_name>', methods=['GET'])

--snip--

The interesting parts here are the endpoints that are exposed via @app
.route(). You can see that the application exposes endpoints such as /, /files,
/upload, and /uploads.

Remember that when we scanned the target IP address range by using
dirsearch and Nikto, we saw two endpoints, named /upload and /uploads, on
p-web-01 (172.16.10.10:8081). Because this Python file includes the same
endpoints, this source code likely belongs to the application running on
the server.

You may be asking yourself why we didn’t find the /files endpoint in our
scans. Well, web scanners often rely on response status codes returned by

335-127871_ch01_1P.indd 104335-127871_ch01_1P.indd 104 08/03/24 2:53 PM08/03/24 2:53 PM

Black Hat Bash (Sample Chapter) © 3/18/24 by Dolev Farhi and Nick Aleks

—-1
—0
—+1

Vulnerability Scanning and Fuzzing 105

web servers to determine whether certain endpoints exist. If you run the
following curl command with the -I (HEAD request) option, you’ll see that
the /files endpoint returns the HTTP status code 404 Not Found:

$ curl -I http://172 .16 .10 .10:8081 /files

HTTP/1.1 404 NOT FOUND
--snip--

Web scanners interpret these 404 errors as indicating that an endpoint
doesn’t exist. Yet the reason we get 404 errors here is that, when called
directly, /files doesn’t serve any requests. Instead, it serves requests for web
paths appended to /files, such as /files/abc.jpg or /files/salary.docx.

Vulnerability Scanning with Nuclei
Nuclei is one of the most impressive open source vulnerability scanners
released in recent years. Its advantage over other tools stems from its com-
munity-powered templating system, which reduces false positives by match-
ing known patterns against responses it receives from network services and
files. It also reduces barriers to writing vulnerability checks, as it doesn’t
require learning how to code. You can also easily extend it to do custom
security checks.

Nuclei naturally supports common network services, such as HTTP,
DNS, and network sockets, as well as local file scanning. You can use it to
send HTTP requests, DNS queries, and raw bytes over the network. Nuclei
can even scan files to find credentials (for example, when you’ve identified
an open Git repository and want to pull it locally to find secrets).

As of this writing, Nuclei has more than 8,000 templates in its database.
In this section, we’ll introduce Nuclei and how to use it.

Understanding Templates
Nuclei templates are based on YAML files with the following high-level
structure:

ID A unique identifier for the template.

Metadata Information about the template, such as a description, an
author, a severity, and tags (arbitrary labels that can group multiple
templates, such as injection or denial of service).

Protocol The mechanism that the template uses to make its requests;
for example, http is a protocol type that uses HTTP for web requests.

Operators Used for matching patterns against responses received by
a template execution (matchers) and extracting data (extractors), similarly
to the filtering performed by tools like grep.

Here is a simple example of a Nuclei template that uses HTTP to find
the default Apache HTML welcome page. Navigate to http://172 .16 .10 .11 / to
see what this page looks like.

335-127871_ch01_1P.indd 105335-127871_ch01_1P.indd 105 08/03/24 2:53 PM08/03/24 2:53 PM

Black Hat Bash (Sample Chapter) © 3/18/24 by Dolev Farhi and Nick Aleks

-1—
0—

+1—
106 Chapter 5

id: detect-apache-welcome-page

1 info:
 name: Apache2 Ubuntu Default Page
 author: Dolev Farhi and Nick Aleks
 severity: info
 tags: apache

http:
 - method: GET
 path:
 2 - '{{BaseURL}}'
 3 matchers:
 - type: word
 words:
 - "Apache2 Ubuntu Default Page: It works"
 part: body

We define the template metadata, such as the template’s name, author,
severity, and so on 1. We then instruct Nuclei to use an HTTP client when
executing this template 2. We also declare that the template should use the
GET method. Next, we define a variable that will be swapped with the tar-
get URL we’ll provide to Nuclei on the command line at scan time. Then,
we define a single matcher of type word 3 and a search pattern to match
against the HTTP response body coming back from the server, defined by
part: body.

As a result, when Nuclei performs a scan against an IP address that
runs some form of a web server, this template will make a GET request to its
base URL (/) and look for the string Apache2 ubuntu Default Page: It works in
the response. If it finds this string in the response’s body, the check will be
considered successful because the pattern matched.

We encourage you to explore Nuclei’s templating system at https://nuclei
.projectdiscovery .io /templating -guide, as you can easily use Nuclei with bash to
perform continuous assessments.

Writing a Custom Template
Let’s write a simple template that finds the Git repositories we discovered
earlier, on p-ftp-01 (172.16.10.11). We’ll define multiple BaseURL paths to rep-
resent the two paths we’ve identified. Then, using Nuclei’s matchers, we’ll
define a string ref: refs/heads/master to match the response body returned
by the scanned server:

git-finder.yaml id: detect-git-repository

info:
 name: Git Repository Finder
 author: Dolev Farhi and Nick Aleks
 severity: info
 tags: git

335-127871_ch01_1P.indd 106335-127871_ch01_1P.indd 106 08/03/24 2:53 PM08/03/24 2:53 PM

Black Hat Bash (Sample Chapter) © 3/18/24 by Dolev Farhi and Nick Aleks

https://nuclei.projectdiscovery.io/templating-guide
https://nuclei.projectdiscovery.io/templating-guide

—-1
—0
—+1

Vulnerability Scanning and Fuzzing 107

http:
 - method: GET
 path:
 - '{{BaseURL}}/backup/acme-hyper-branding/.git/HEAD'
 - '{{BaseURL}}/backup/acme-impact-alliance/.git/HEAD'
 matchers:
 - type: word
 words:
 - "ref: refs/heads/master"
 part: body

This template works just like the one in the previous example, except this
time, we provide two paths to check against: /backup/acme-hyper-branding/
.git/HEAD and /backup/acme-impact-alliance/.git/HEAD. The matcher defines
the string we expect to see in the HEAD file. You can confirm the match by
making a curl request to the Git repository at 172.16.10.11:

$ curl http://172 .16 .10 .11 /backup /acme-hyper-branding/.git/HEAD

ref: refs/heads/master

Download this custom Nuclei template from the book’s GitHub repository.

Applying the Template
Let’s run Nuclei against p-ftp-01 (172.16.10.11) with the custom template we just
wrote. Nuclei stores its built-in templates in the folder ~/.local/nuclei-templates.
First, run the following command to update Nuclei’s template database:

$ nuclei -ut

Next, save the custom template into the folder ~/.local/nuclei-templates/
custom and give it a name such as git-finder.yaml.

In the following command, the -u (URL) option specifies the address,
and -t (template) specifies the path to the template:

$ nuclei -u 172.16.10.11 -t ~/.local/nuclei-templates/custom/git-finder.yaml

--snip--
[INF] Targets loaded for scan: 1
[INF] Running httpx on input host
[INF] Found 1 URL from httpx
[detect-git-repository] [http] [info] http://172 .16 .10 .11 /backup /acme-hyper-branding/.git/HEAD
[detect-git-repository] [http] [info] http://172 .16 .10 .11 /backup /acme -impact -alliance /.git/HEAD

As you can see, we were able to identify the two Git repositories with the
custom template.

Running a Full Scan
When not provided with a specific template, Nuclei will use its built-in tem-
plates during the scan. Running Nuclei is noisy, so we recommend tailoring

335-127871_ch01_1P.indd 107335-127871_ch01_1P.indd 107 08/03/24 2:53 PM08/03/24 2:53 PM

Black Hat Bash (Sample Chapter) © 3/18/24 by Dolev Farhi and Nick Aleks

-1—
0—

+1—
108 Chapter 5

the execution to a specific target. For instance, if you know a server is run-
ning Apache, you could select just the Apache-related templates by specify-
ing the -tags option:

$ nuclei -tags apache,git -u 172.16.10.11

Run nuclei -tl to get a list of all available templates.
Let’s run a full Nuclei scan against the three IP addresses in the

172.16.10.0/24 network by using all its built-in templates:

$ nuclei -u 172.16.10.10:8081
$ nuclei -u 172.16.10.11
$ nuclei -u 172.16.10.12

--snip--
[tech-detect:google-font-api] [http] [info] http://172 .16 .10 .10:8081
[tech-detect:python] [http] [info] http://172 .16 .10 .10:8081
[http-missing-security-headers:access-control-allow-origin] [http] [info]
http://172 .16 .10 .10:8081
[http-missing-security-headers:content-security-policy] [http] [info]
http://172 .16 .10 .10:8081
--snip--

Nuclei tries to optimize the number of total requests made by using
clustering. When multiple templates call the same web path (such as /backup),
Nuclei consolidates these into a single request to reduce network overhead.
However, Nuclei could still send thousands of requests during a single scan.
You can control the number of requests sent by specifying the rate limit
option (-rl), followed by an integer indicating the number of allowed
requests per second.

The full scan results in a lot of findings, so append the output to a file
(using >>) so you can examine them one by one. As you’ll see, Nuclei can
identify vulnerabilities, but it can also fingerprint the target server and the
technologies running on it. Nuclei should have highlighted findings seen
previously as well as a few new ones. Here are some of the issues it detected:

• An FTP server with anonymous access enabled on 172.16.10.11 port 21

• A WordPress login page at 172 .16 .10 .12 /wp -login .php

• A WordPress user-enumeration vulnerability (CVE-2017-5487) at
http://172 .16 .10 .12 / ?rest _route = /wp /v2 /users/

Let’s manually confirm these three findings to ensure there are no false
positives. Connect to the identified FTP server at 172.16.10.11 by issuing the
following ftp command. This command will connect to the server by using
the anonymous user and an empty password:

$ ftp ftp://anonymous:@172 .16 .10 .11

Connected to 172.16.10.11.
220 (vsFTPd 3.0.5)

335-127871_ch01_1P.indd 108335-127871_ch01_1P.indd 108 08/03/24 2:53 PM08/03/24 2:53 PM

Black Hat Bash (Sample Chapter) © 3/18/24 by Dolev Farhi and Nick Aleks

—-1
—0
—+1

Vulnerability Scanning and Fuzzing 109

331 Please specify the password.
230 Login successful.
Remote system type is UNIX.
Using binary mode to transfer files.
200 Switching to Binary mode.

We were able to connect! Let’s issue an ls command to verify that we
can list files and directories on the server:

ftp> ls
229 Entering Extended Passive Mode (|||33817|)
150 Here comes the directory listing.
drwxr-xr-x 1 0 0 4096 Mar 11 05:23 backup
-rw-r--r-- 1 0 0 10671 Mar 11 05:22 index .html
226 Directory send OK.

We see an index .html file and a backup folder. This is the same folder that
stores the two Git repositories we saw earlier, except now we have access to
the FTP server where these files actually live.

Next, open a browser to http://172 .16 .10 .12 /wp -login .php from your Kali
machine. You should see the page in Figure 5-2.

Figure 5-2: The WordPress login page

335-127871_ch01_1P.indd 109335-127871_ch01_1P.indd 109 08/03/24 2:53 PM08/03/24 2:53 PM

Black Hat Bash (Sample Chapter) © 3/18/24 by Dolev Farhi and Nick Aleks

-1—
0—

+1—
110 Chapter 5

Finally, verify the third finding: the WordPress user-enumeration
vulnerability, which allows you to gather information about WordPress
accounts. By default, every WordPress instance exposes an API endpoint
that lists WordPress system users. The endpoint usually doesn’t require
authentication or authorization, so a simple GET request should return the
list of users.

We’ll use curl to send this request and then pipe the response to jq to
prettify the JSON output that comes back. The result should be an array of
user data:

$ curl -s http://172 .16 .10 .12 / ?rest _route = /wp /v2 /users | jq

[
 {
 "id": 1,
 "name": "jtorres",
 "url": "http://172 .16 .10 .12",
 "description": "",
 "link": "http://172 .16 .10 .12 /author /jtorres /",
 "slug": "jtorres",
 },
--snip--
]

As you can see, the blog has a single user, jtorres. This can be a good tar-
get to brute-force later. If this curl command had returned many users, you
could have parsed only the usernames with jq (Listing 5-3).

$ curl -s http://172 .16 .10 .12 / ?rest _route = /wp /v2 /users/ | jq .[].name

Listing 5-3: Extracting usernames from an HTTP response

All three findings were true positives, which is great news for us. Table 5-1
recaps the users we’ve identified so far.

Table 5-1: Identity Information Gathered from Repositories and WordPress

Source Name Email

acme-impact-alliance Git repository Kevin Peterson kpeterson@acme -impact -alliance .com

acme-hyper-branding Git repository Melissa Rogers mrogers@acme -hyper -branding .com

WordPress account J . Torres jtorres@acme -impact -alliance .com

Because the jtorres account was found on the ACME Impact Alliance
website and we already know the email scheme used by the website, it’s
pretty safe to assume that the jtorres email is jtorres@acme -impact -alliance .com.

335-127871_ch01_1P.indd 110335-127871_ch01_1P.indd 110 08/03/24 2:53 PM08/03/24 2:53 PM

Black Hat Bash (Sample Chapter) © 3/18/24 by Dolev Farhi and Nick Aleks

—-1
—0
—+1

Vulnerability Scanning and Fuzzing 111

Exercise 6: Parsing Nuclei’s Findings
Nuclei’s scan output is a little noisy and can be difficult to parse with bash,
but not impossible. Nuclei allows you to pass a -silent parameter to show
only the findings in the output. Before you write a script to parse it, con-
sider Nuclei’s output format:

[template] [protocol] [severity] url [extractor]

Each field is enclosed in square brackets [] and separated by spaces.
The template field is a template name (taken from the name of the template
file); the protocol shows the protocol, such as HTTP; and the severity shows
the severity of the finding (informational, low, medium, high, or critical).
The fourth field is the URL or IP address, and the fifth field is metadata
extracted by the template’s logic using extractors.

Now you should be able to parse this information with bash. Listing 5-4
shows an example script that runs Nuclei, filters for a specific severity of
interest, parses the interesting parts, and emails you the results.

nuclei-notifier.sh #!/bin/bash
EMAIL _TO ="security@blackhatbash .com"
EMAIL _FROM ="nuclei -automation@blackhatbash .com"

for ip_address in "$@"; do
 echo "Testing ${ip_address} with Nuclei..."
1 result=$(nuclei -u "${ip_address}" -silent -severity medium,high,critical)
 if [[-n "${result}"]]; then
 2 while read -r line; do
 template=$(echo "${line}" | awk '{print $1}' | tr -d '[]')
 url=$(echo "${line}" | awk '{print $4}')
 echo "Sending an email with the findings ${template} ${url}"
 sendemail -f "${EMAIL_FROM}" \
 3 -t "${EMAIL_TO}" \
 -u "[Nuclei] Vulnerability Found!" \
 -m "${template} - ${url}"

 4 done <<< "${result}"
 fi
done

Listing 5-4: Scanning with Nuclei and sending yourself the results

Let’s dissect the code to better understand what it’s doing. We use a for
loop to iterate through values in the $@ variable, a special value you learned
about in Chapter 1 that contains the arguments passed to the script on the
command line. We assign each argument to the ip_address variable.

Next, we run a Nuclei scan, passing it the -severity argument to scan
for vulnerabilities categorized as either medium, high, or critical, and save
the output to the result variable 1. At 2, we read the output passed to the
while loop at 4 line by line. From each line, we extract the first field, using
the tr -d '[]' command to remove the [] characters for a cleaner output.
We also extract the fourth field from each line, which is where Nuclei

335-127871_ch01_1P.indd 111335-127871_ch01_1P.indd 111 08/03/24 2:53 PM08/03/24 2:53 PM

Black Hat Bash (Sample Chapter) © 3/18/24 by Dolev Farhi and Nick Aleks

-1—
0—

+1—
112 Chapter 5

stores the vulnerable URL. At 3, we send an email containing the relevant
information.

To run this script, save it to a file and pass the IP addresses to scan on
the command line:

$ nuclei-notifier.sh 172.16.10.10:8081 172.16.10.11 172.16.10.12 172.16.10.13

To make this script your own, try having Nuclei output JSON data by
using the -j option. Then pipe this output to jq, as shown in Chapter 4.

Fuzzing for Hidden Files
Now that we’ve identified the potential location of files, let’s use fuzzing tools
to find hidden files on p-web-01 (http://172 .16 .10 .10:8081 /files). Fuzzers generate
semi-random data to use as part of a payload. When sent to an application,
these payloads can trigger anomalous behavior or reveal covert information.
You can use fuzzers against web servers to find hidden paths or against local
binaries to find vulnerabilities such as buffer overflows or DoS.

Creating a Wordlist of Possible Filenames
Fuzzing tools in the context of web application enumeration work best when
fed custom wordlists tailored to your target. These lists could contain the
name of the company, the individuals you’ve identified, relevant locations,
and so on. These tailored wordlists can help you identify user accounts to
attack, network and application services, valid domain names, covert files,
email addresses, and web paths, for example.

Let’s use bash to write a custom wordlist containing potential filenames
of interest (Listing 5-5).

$ echo -e acme-hyper-branding-{0..100}.{txt,csv,pdf,jpg}"\n" | sed 's/ //g' >
files_wordlist.txt

Listing 5-5: Using brace expansion to create multiple files with various extensions

This command creates files with probable file extensions tailored to our
target’s name, ACME Hyper Branding. It uses echo with brace expansion
{0..100} to create arbitrary strings ranging from 0 to 100 and then appends
these to the company name. We also use brace expansion to create multiple
file extension types, such as .txt, .csv, .pdf, and .jpg. The -e option, for echo,
enables us to interpret backslash (\) escapes. This means that \n will be
interpreted as a newline. We then pipe this output to the sed command to
remove all whitespace from the output for a cleaner list.

Use head to view the created files:

$ head files_wordlist.txt

acme-hyper-branding-0.txt
acme-hyper-branding-0.csv

335-127871_ch01_1P.indd 112335-127871_ch01_1P.indd 112 08/03/24 2:53 PM08/03/24 2:53 PM

Black Hat Bash (Sample Chapter) © 3/18/24 by Dolev Farhi and Nick Aleks

—-1
—0
—+1

Vulnerability Scanning and Fuzzing 113

acme-hyper-branding-0.pdf
acme-hyper-branding-0.jpg
acme-hyper-branding-1.txt
acme-hyper-branding-1.csv
acme-hyper-branding-1.pdf
acme-hyper-branding-1.jpg
acme-hyper-branding-2.txt
acme-hyper-branding-2.csv

As you can see, this command’s output follows the format acme-hyper
-branding-<some_number>.<some_extension>.

Fuzzing with ffuf
ffuf (an acronym for Fuzz Faster U Fool) is a versatile and blazing-fast web
fuzzing tool. We’ll use fuff to discover potential files under the /files end-
point that could contain interesting data.

The following ffuf command uses the -c (color) option to highlight the
results in the terminal, the -w (wordlist) option to specify a custom wordlist,
the -u (URL) option to specify a path, and the full URL to the endpoint to
fuzz. We run ffuf against p-web-01 (172.16.10.10):

$ ffuf -c -w files_wordlist.txt -u http://172 .16 .10 .10:8081 /files/FUZZ

:: Method : GET
:: URL : http://172 .16 .10 .10:8081 /files/FUZZ
:: Wordlist : FUZZ: files_wordlist.txt
:: Follow redirects : false
:: Calibration : false
:: Timeout : 10
:: Threads : 40
:: Matcher : Response status: 200,204,301,302,307,401,403,405,500
__

acme-hyper-branding-5.csv [Status: 200, Size: 432, Words: 31, Lines: 9, Duration: 32ms]
:: Progress: [405/405] :: Job [1/1] :: 0 req/sec :: Duration: [0:00:00] :: Errors: 0 ::

Note that the word FUZZ at the end of the URL is a placeholder that tells
the tool where to inject the words from the wordlist. In essence, it will swap
the word FUZZ with each line from our file.

According to the output, ffuf identified that the path http://172 .16 .10
.10:8081 /files/acme-hyper-branding-5.csv returned a status code of HTTP 200
OK. If you look closely at the output, you should see that the fuzzer sent 405
requests in less than a second, which is pretty impressive.

Fuzzing with Wfuzz
Wfuzz is another web fuzzing tool similar to ffuf. In fact, ffuf is based on
Wfuzz. Let’s use Wfuzz to perform the same type of wordlist-based scan

335-127871_ch01_1P.indd 113335-127871_ch01_1P.indd 113 08/03/24 2:53 PM08/03/24 2:53 PM

Black Hat Bash (Sample Chapter) © 3/18/24 by Dolev Farhi and Nick Aleks

-1—
0—

+1—
114 Chapter 5

(-w) and then use its filtering capabilities to show only files that receive a
response status code of 200 OK (--sc 200):

$ wfuzz --sc 200 -w files_wordlist.txt http://172 .16 .10 .10:8081 /files/FUZZ

--snip--
Target: http://172 .16 .10 .10:8081 /files/FUZZ
Total requests: 405

===
ID Response Lines Word Chars Payload
===

000000022: 200 8 L 37 W 432 Ch "acme-hyper-branding-5.csv"

Total time: 0
Processed Requests: 405
Filtered Requests: 404
Requests/sec.: 0

Next, let’s use the wget command to download the identified file:

$ wget http://172 .16 .10 .10:8081 /files/acme-hyper-branding-5.csv
$ cat acme-hyper-branding-5.csv

no, first_name, last_name, designation, email
1, Jacob, Taylor, Founder, jtayoler@acme -hyper -branding .com
2, Sarah, Lewis, Executive Assistance, slewis@acme -hyper -branding .com
3, Nicholas, Young, Influencer, nyoung@acme -hyper -branding .com
4, Lauren, Scott, Influencer, lscott@acme -hyper -branding .com
5, Aaron,Peres, Marketing Lead, aperes@acme -hyper -branding .com
6, Melissa, Rogers, Marketing Lead, mrogers@acme -hyper -branding .com

We’ve located a table of PII, including first and last names, titles, and
email addresses. Take notes of every detail we’ve managed to extract in this
chapter; you never know when it will come in handy.

Note that fuzzers can cause unintentional DoS conditions, especially
if they’re optimized for speed. You may encounter applications running
on low-powered servers that will crash if you run a highly capable fuzzer
against them, so make sure you have explicit permission from the company
you’re working with to perform such activities.

Assessing SSH Servers with Nmap’s Scripting Engine
Nmap contains many NSE scripts to test for vulnerabilities and misconfigu-
rations. All Nmap scripts live in the /usr/share/nmap/scripts path. When you
run Nmap with the -A flag, it will blast all NSE scripts at the target, as well
as enable operating system detection, version detection, script scanning,
and traceroute. This is probably the noisiest scan you can do with Nmap, so
never use it when you need to be covert.

335-127871_ch01_1P.indd 114335-127871_ch01_1P.indd 114 08/03/24 2:53 PM08/03/24 2:53 PM

Black Hat Bash (Sample Chapter) © 3/18/24 by Dolev Farhi and Nick Aleks

—-1
—0
—+1

Vulnerability Scanning and Fuzzing 115

In Chapter 4, we identified a server running OpenSSH on p-jumpbox-01
(172.16.10.13). Let’s use an NSE script tailored to SSH servers to see what we
can discover about the supported authentication methods:

$ nmap --script=ssh-auth-methods 172.16.10.13

Starting Nmap (https://nmap .org) at 03-19 01:53 EDT
--snip--
PORT STATE SERVICE
22/tcp open ssh
| ssh-auth-methods:
| Supported authentication methods:
| publickey
|_ password

Nmap done: 1 IP address (1 host up) scanned in 0.26 seconds

The ssh-auth-methods NSE script enumerates the authentication meth-
ods offered by the SSH server. If password is one of them, this means that
the server accepts passwords as an authentication mechanism. SSH serv-
ers that allow password authentication are prone to brute-force attacks. In
Chapter 7, we’ll perform a brute-force attack against SSH servers.

Exercise 7: Combining Tools to Find FTP Issues
The goal of this exercise is to write a script that calls several security
tools, parses their output, and passes the output to other tools to act on
it. Orchestrating multiple tools in this way is a common task in penetra-
tion testing, so we encourage you to get comfortable with building such
workflows.

Your script should do the following:

 1. Accept one or more IP addresses on the command line.

 2. Run a port scanner against the IP addresses; which port scanner you
use is completely up to you.

 3. Identify open ports. If any of them are FTP ports (21/TCP), the script
should pass the address to the vulnerability scanner in step 4.

 4. Use Nuclei to scan the IP addresses and ports. Try applying templates
dedicated to finding issues in FTP servers. Search the Nuclei templates
folder /home/kali/.local/nuclei-templates for FTP -related templates or use
the -tags ftp Nuclei flag.

 5. Scan the IP addresses with Nmap. Use NSE scripts that find vulner-
abilities in FTP servers, which you can search for in the /usr/share/nmap/
scripts folder. For example, try ftp-anon.nse.

 6. Parse and write the results to a file, in a format of your choice. The
file should include a description of the vulnerability, the relevant IP
address and port, the timestamp at which it was found, and the name
of the tool that detected the issue. There is no hard requirement about

335-127871_ch01_1P.indd 115335-127871_ch01_1P.indd 115 08/03/24 2:53 PM08/03/24 2:53 PM

Black Hat Bash (Sample Chapter) © 3/18/24 by Dolev Farhi and Nick Aleks

-1—
0—

+1—
116 Chapter 5

how to present the data; one option is to use an HTML table. If you
need an example table, download vulnerability _table .html from the
book’s GitHub repository and open it in a browser. Alternatively, you
could write the results to a CSV file.

As you should know by now, there is more than one way to write such a
script. Only the end result matters, so craft it as you see fit.

Summary
In this chapter, we wrapped up reconnaissance activities by performing
vulnerability scanning and fuzzing. We also verified the vulnerabilities we
discovered, weeding out potential false positives.

Along the way, we used bash scripting to perform several tasks. We
scanned for vulnerabilities, wrote custom scripts that can perform recursive
downloads from misconfigured web servers, extracted sensitive information
from Git repositories, and more. We also created custom wordlists using
clever bash scripting and orchestrated the execution of multiple security
tools to generate a report.

Let’s recap what we’ve identified so far, from a reconnaissance
perspective:

• Hosts running multiple services (HTTP, FTP, and SSH) and their
versions

• A web server running WordPress with a login page enabled and a few
vulnerabilities, such as user enumeration and an absence of HTTP
security headers

• A web server with a revealing robots.txt file containing paths to custom
upload forms and a donation page

• An anonymous, login-enabled FTP server

• Multiple open Git repositories

• OpenSSH servers that allow password-based logins

In the next chapter, we’ll use the information identified in this chapter
to establish an initial foothold by exploiting vulnerabilities and taking over
servers.

335-127871_ch01_1P.indd 116335-127871_ch01_1P.indd 116 08/03/24 2:53 PM08/03/24 2:53 PM

Black Hat Bash (Sample Chapter) © 3/18/24 by Dolev Farhi and Nick Aleks

