
WICKED COOL
JAVA

C o d e B i t s , O p e n - S o u r c e
L ib r a ri e s , a n d P r o j e c t I d e a s

by Brian D. Eubanks

San Francisco

WCJ_02.book Page iii Monday, October 24, 2005 10:30 AM

assistant
final

http://www.nostarch.com/wcj.htm
http://www.amazon.com/gp/product/1593270615/
http://search.barnesandnoble.com/booksearch/isbninquiry.asp?ISBN=1593270615&pdf=y

4
C R A W L I N G T H E S E M A N T I C W E B

In this chapter, we examine techniques for
extracting and processing data in the World

Wide Web and the Semantic Web. The World
Wide Web completely changed the way that

people access information. Before the Web existed,
finding obscure pieces of information meant taking a
trip to the library, along with hours or perhaps days of research. In extreme
cases, it meant calling or writing a letter to an expert and waiting for a reply.
Today not only are there websites on every imaginable topic, but there are
search engines, encyclopedias, dictionaries, maps, news, electronic books,
and an incredible array of other data available online. Using search engines,
we can find information on any topic within a few seconds. The Google search
engine has even become so well known that it is now often used as a verb:
“I Googled a solution.” Online information is growing exponentially, and
because of it we have a completely new problem on our hands that is not
solved by simply using keyword searches to find our data. The problem is
infoglut. Keyword searches return too many documents, and most of those
documents don’t have the information that we want.

WCJ_02.book Page 79 Monday, October 24, 2005 10:30 AM

No Starch Press, Copyright © 2005 by Brian Eubanks

80 Chapter 4

Suppose that we wanted to search for a Java class library that converts
data from one format to another. With all the open-source projects out
there, someone may have already solved the problem for us, and we’d rather
not reinvent the wheel. In theory, we should be able to search for matching
projects that meet our needs. But running a query on related keywords may
give us many results that are not related to what we really want. In an ideal
world, we should be able to ask the computer a question: “Is there an open-
source Java API that converts between FORMAT1 and FORMAT2?” The
computer should then search the Web and give us the name of a suitable API
if it exists, along with a short description of the standard and links to more
detailed information. For this to happen, information about a hypothetical
“J-convert-1-2” API would need to be encoded in such a way that the computer
can find it easily without performing a keyword search and extracting data
from the text results.

Information on the World Wide Web is mostly free-form text contained
in HTML pages and is mostly not organized into categories and structures
that search programs can easily query. At the very least, all web content ought
to have subject indicators similar to the Library of Congress and Dewey
Decimal codes for books. This is not yet the case, although it will most likely
happen soon. Several new standards are rapidly leading us in that direction.
So far, all of these standards rely on web content developers adding special
tags to their data, and few developers know about these standards at the pres-
ent time. In short, it’s a mess out there, and we’re trudging through this messy
data looking for nuggets of gold.

The Semantic Web is the next-generation web of concepts linked to other
concepts, rather than a collection of hypertext documents linked by keywords.
If you think about it, an HTML anchor tag (link) is a keyword reference to
another document. It supplies a word or phrase that links to another docu-
ment, usually displayed as underlined text on a browser. But the link doesn’t
exactly say how the two documents are related to each other. HTML hyperlinks
don’t give any real indication about relationships between files, and the text
in the link may be extremely vague. A new standard, the Resource Description
Framework (RDF), makes it possible to be much more specific about how
things are related to each other. In fact, RDF describes much more than
documents—any entities or concepts can be linked together. This is the basic
idea behind the Semantic Web—that concepts, rather than documents, can
be linked together.

As Java developers, how can we participate in building the Semantic Web?
First, you’ll need to know something about official standards such as RDF.
You will then need to tag your documents appropriately. Many sites are already
starting to do some of this by creating RDF Site Summary (RSS) feeds. An RSS
feed syndicates the content from a website so that it can be combined with
information from other sites and delivered to the users as aggregated content.
RSS makes a small portion of a site available as a summary, similar to what
you see in an article or news abstract. However, RSS enabling is only the first
step in moving toward a Semantic Web. In this chapter we’ll discuss enough
to get you started working with RDF, and we’ll introduce some APIs that help
in producing or consuming content.

WCJ_02.book Page 80 Monday, October 24, 2005 10:30 AM

No Starch Press, Copyright © 2005 by Brian Eubanks

Crawl ing the Seman t ic Web 81

This Somethings That: A Short Introduction to N3 and Jena

The theory behind the RDF standard is actually quite simple. Everything has
a Uniform Resource Identifier (URI), and by this I mean everything : not only
documents but also generic concepts and relationships between them. Even
though you are not a document (or are you?), there could be a URI assigned
to represent you as an entity. This URI can then be used to make connec-
tions to other things. For the “you” URI, these connections might represent
related organizations, addresses, and phone numbers. URIs do not have to
return an actual document! This is what sometimes confuses developers when
they see a URI referenced somewhere and find that there is nothing at the
location. These addresses are often used as markers or unique identifiers to
represent concepts. We make links between URIs to represent relationships
between things. This functions much like a simple sentence in English:

Programmers enjoy Java.

To begin with, let’s use a shorthand notation, called N3, to encode this
as an RDF graph. N3 is an easy way to learn RDF because the syntax is only
slightly more complex than the sentence above! In essence, N3 is merely a set
of triples, or “subject predicate object” relationships. Here is the N3 version of
the sentence:

@prefix wcj: <http://example.org/wcjava/uri/> .
wcj:programmers wcj:enjoy wcj:java .

We first define a prefix to make the N3 code less verbose. The prefix is
used as the beginning part of a URI wherever it is found in the document, so
that wcj:java then becomes http://example.org/wcjava/uri/java (the value is
also placed within < and > markers—these have nothing to do with XML).
The three items together are called a triple, and the verb is usually called a
predicate. RDF makes a link by stating that a subject URI is related by a predicate
URI to an object URI. The predicate represents some relationship between
the subject and object—it tells how things link together. This is very different
than an anchor in HTML, because here a relationship type is clearly defined.
Remember that URIs in RDF could be anything: concepts, documents, or even
(in some cases) String literals. In theoretical terms, we are creating a labeled
directed graph of the relationship. A graph representation of the above might
look like Figure 4-1.

Figure 4-1: RDF subject, predicate, and object

JENA

programmers enjoy java

Subject Predicate Object

WCJ_02.book Page 81 Monday, October 24, 2005 10:30 AM

No Starch Press, Copyright © 2005 by Brian Eubanks

82 Chapter 4

As you might expect, there is a Java API for creating and managing
RDF and N3 documents. Jena is an open-source API for working with RDF
graphs. Here is one way to create the graph in Jena and serialize it to an N3
document:

import com.hp.hpl.jena.rdf.model.*;
import java.io.FileOutputStream;

Model model = ModelFactory.createDefaultModel();
Resource programmers =
 model.createResource("http://example.org/wcjava/uri/programmers");
Property enjoy =
 model.createProperty("http://example.org/wcjava/uri/enjoy");
Resource java =
 model.createResource("http://example.org/wcjava/uri/java");
model.add(programmers, enjoy, java);
FileOutputStream outStream = new FileOutputStream("out.n3");
model.write(outStream, "N3");
outStream.close();

Here, Jena is using the term property to refer to the predicate and resource
to refer to something used as a subject or object. The model’s write method
also has options to write out the document in other formats besides N3.
With the Jena API, you can connect many entities together into very large
semantic networks. Let’s make some additional relationships using the entities
and relationships that we just created. We will produce the graph shown in
Figure 4-2.

Figure 4-2: An RDF graph with multiple subjects

Here is the additional code to produce the network in Figure 4-2:

Property typeOf =
 model.createProperty("http://example.org/wcjava/typeOf");
Property use =
 model.createProperty("http://example.org/wcjava/use");
Property understand =
 model.createProperty("http://example.org/wcjava/understand");

programmers enjoy java

computers understand progLang

use

typeOf

WCJ_02.book Page 82 Monday, October 24, 2005 10:30 AM

No Starch Press, Copyright © 2005 by Brian Eubanks

Crawl ing the Seman t ic Web 83

Resource computers =
 model.createResource("http://example.org/wcjava/computers");
Resource progLang =
 model.createResource("http://example.org/wcjava/progLang");
model.add(java, typeOf, progLang);
model.add(programmers, use, computers);
model.add(computers, understand, progLang);
model.write(new java.io.FileOutputStream("out2.n3"), "N3");

The N3 output of this code is the following:

<http://example.org/wcjava/uri/java>
 <http://example.org/wcjava/typeOf>
 <http://example.org/wcjava/progLang> .

<http://example.org/wcjava/computers>
 <http://example.org/wcjava/understand>
 <http://example.org/wcjava/progLang> .

<http://example.org/wcjava/uri/programmers>
 <http://example.org/wcjava/uri/enjoy>
 <http://example.org/wcjava/uri/java> ;
 <http://example.org/wcjava/use>
 <http://example.org/wcjava/computers> .

The semicolon in the N3 document is a shortcut that indicates we are
going to attach another property to the same subject (“programmers enjoy
java, and programmers use computers”). The meanings of elements within
a document are often defined in terms of a predefined set of resources and
properties called a vocabulary. Your RDF data can be combined with other data
in existing vocabularies to allow semantic searches and analysis of complex
RDF graphs. In the next section, we illustrate how to build upon existing RDF
vocabularies to build your own vocabulary.

Triple the Fun: Creating an RDF Vocabulary for Your
Organization

An RDF graph creates a web of concepts. It makes assertions about logical
relationships between entities. RDF was meant to fit into a dynamic knowledge
representation system rather than a static database structure. Once you have
information in RDF, it can be linked with graphs made elsewhere, and soft-
ware can use this to make inferences. If you define how your own items are
related in terms of higher-level concepts, your data can fit into a much larger
web of concepts. This is the basis of the Semantic Web.

Every organization has relationships between information that is held
in a data store such as a database or flat file (or human memory!). If your
data is in a relational database, your data items probably have relationships
between them that are hidden or implied within the database structure itself.

WCJ_02.book Page 83 Monday, October 24, 2005 10:30 AM

No Starch Press, Copyright © 2005 by Brian Eubanks

84 Chapter 4

Your data may not be completely accessible, because there are relationships
that an application cannot query. As an example, suppose that we have a
relational database containing employees and departments within a com-
pany. A common approach is to create an Employee table, with columns for
employee information such as ID number, date of birth, name, hire date,
supervisor name, and department. There are many relationships hidden
within the table and column names, and it is up to an application to know
these relationships and take advantage of them. Column names alone would
not give you the following information:

� A and B are employees.

� An employee is a person.

� A supervisor is an employee who directs another employee.

� C is a company.

� A company is an organization.

� A and B work for C.

Column and table names in a database are simply local identifiers and
don’t automatically map to any concepts that might be defined elsewhere.
But this is domain knowledge that could be used more effectively by the appli-
cation if it were defined in an extensible and machine-readable way. Having
such information available would give our applications more flexibility, and
this knowledge could also be reused elsewhere. How can we encode this infor-
mation so that applications can make use of these relationships? And how
can our application relate this to other information that we might find on
the Semantic Web?

It may not make sense to put this metadata in your database, but you
can create an RDF mapping outside the database schema that describes each
item relative to the Semantic Web as a whole. We can represent some of these
concepts using existing vocabularies. The rest of them we can define in our
own terms. If you don’t know where to connect a concept to an existing
vocabulary, you can always define a URI for that concept now and make the
connection to other systems later. At least you can use it to share data within
your own organization if your vocabulary is well documented and the meaning
of each item is clear. There are many basic vocabularies that RDF applications
can use, and new ones are constantly being created (like yours!). The online
resources page for this section has an updated listing of some existing vocabu-
laries that you can use in defining your data.

The first step is to define a URI for each concept that is even remotely
related to your application. This is much like the object-oriented development
process, but these entities may also be things that are not directly used by the
application. By defining your terms within a larger context, you can later map
these entities to existing concepts on the Web. Let’s try it with our employee
example, by first listing some related concepts and their meanings (in English
text). Here is a simplistic attempt to define some terms:

� http://example.org/wcjava/employee = an employee

� http://example.org/wcjava/person = a person

WCJ_02.book Page 84 Monday, October 24, 2005 10:30 AM

No Starch Press, Copyright © 2005 by Brian Eubanks

Crawl ing the Seman t ic Web 85

� http://example.org/wcjava/organization = an organization

� http://example.org/wcjava/employer = an organization that employs
an employee

The important point is to make sure that each concept has a unique
identifier. Make sure that the URIs will still be around a few years from now;
you are building a complete concept space around these identifiers! If you
have control over your domain name, it might be wise to have a policy that
forbids anyone placing actual content under URIs beginning with some
prefix (such as http://yourdomain/uri). We are using these names as
globally unique identifiers, not as URLs for retrieving documents. There is
nothing wrong with a document being there, but it could lead to confusion
between the concept and the document. In this example, we are using the
example.org domain, which is reserved solely for illustrative purposes within
documentation. If you want to define a permanent URI, there are sites that
will let you define your own permanent URI independent of future domain
name ownership changes. (For more information on this, see this book’s
companion website.) The best known of these is http://purl.org.

After you have identified some concept URIs, it’s time to define relation-
ships between them. In the previous section, we showed how to do this in Jena
using our own relationships. Now let’s use some predefined relationships
created by others and apply them to our entities. Adding another entity that
was defined elsewhere is easy: just add its URI to the graph we are building.
But if we want to do anything useful with these entities, we will also need to
import the statements that define its related properties and resources. In our
example, we will use the subClassOf property defined in the RDF schema, which
works similarly to a subclass relationship in object-oriented programming.
The graph in Figure 4-3 shows the relationships between our resources.

Figure 4-3: Using the subClassOf property from RDF schema

At first, you should do this mapping with pen and paper (archaic, but
always accessible) or using an RDF visualization tool. This book’s website has
a list of some free tools that can be used for this purpose. When you have
finished, you will have a graph of the relationships between entities in your
system. Once you’ve created a hierarchy and vocabulary, you can create

person

employee employer

organization

rdfs:subClassOf

hires

rdfs:subClassOf

WCJ_02.book Page 85 Monday, October 24, 2005 10:30 AM

No Starch Press, Copyright © 2005 by Brian Eubanks

86 Chapter 4

N3 or RDF/XML files that you can use as metadata. Most RDF visualization
tools will do this for you automatically. You’ll want to familiarize yourself with
some of the existing RDF vocabularies on which you can base your own hier-
archy. Our resources page has links to some of these and examples of using
them. Once you have designed a hierarchy, you can create and manipulate it
from Jena. The next section shows how to do this.

Who’s a What? Using RDF Hierarchies in Jena

Earlier we created a hierarchy of terms to use for our metadata. We used the
word vocabulary to refer to this collection of terms, but it is often called an
ontology if it defines relationships between the terms. According to the Wiki-
pedia definition, an ontology (in the computer science sense) is a “data
structure containing all the relevant entities and their relationships and rules
(theorems, regulations) within a domain.”

In Jena, there are built-in helper classes for working with commonly used
ontologies. The RDF schema is one of these. Jena has a helper class called
RDFS, which has a static variable for the subClassOf property. You can create
the graph in the previous section by using this code:

Model model = ModelFactory.createDefaultModel();
model.setNsPrefix("wcj", "http://example.org/wcjava/");
Resource employee = model.createResource("wcj:employee");
Resource person = model.createResource("wcj:person");
Resource employer = model.createResource("wcj:employer");
Resource organization = model.createResource("wcj:organization");
Property hires = model.createProperty("wcj:hires");
model.add(employer, hires, employee);
model.add(employer, RDFS.subClassOf, organization);
model.add(employee, RDFS.subClassOf, person);
model.write(new FileWriter("ourEntities.rdf"), "RDF/XML");

The second line sets a namespace prefix for our graph, which makes the
code easier to read because we can describe the URIs in a simpler way. There
is nothing special about the choice of “wcj” as our prefix. It could have been
any String of letters, but whichever value is used becomes the prefix that is
sent to the output file. The RDF/XML output type is the XML representation
of our RDF graph. Most applications will exchange RDF graphs using the
XML format rather than N3. As you can see, Jena’s RDF model can work with
either type.

Once you have an RDF vocabulary defined for your data, you will want
to put it onto a website so that applications can use it. You can use your new
vocabulary to semantically tag any components within applications. For the
database example above, you might create a new table to hold metadata
linking each column and table name to their RDF types. It could be as simple
as an entry for each table/column name and the corresponding URI from

JENA

WCJ_02.book Page 86 Monday, October 24, 2005 10:30 AM

No Starch Press, Copyright © 2005 by Brian Eubanks

Crawl ing the Seman t ic Web 87

your RDF vocabulary that describes its meaning. You might use this for auto-
matically generating documentation or in analyzing and reusing application
code. Using RDF for this type of metadata is a convenient way to tag the data
without changing anything in the existing data structures. For our Java classes,
we could also add code annotations or JavaDoc tags to semantically mark up
our code to facilitate its reuse.

There are some well-known standard RDF vocabularies that you can use
to build your own vocabulary. The first one to consider using is a vocabulary
extension to RDF, created by the W3C, called the OWL Web Ontology Language.
It includes vocabulary along with formal semantics that you can use in your
own definitions. OWL builds on the framework created by the RDF and RDF
schema vocabularies. Although we used the RDF schema’s subClassOf property,
OWL has a much more comprehensive version that adds formal semantics
such as property restrictions and set operations. Jena has an OWL helper class
with static variables for each of the OWL resources and properties. Another
common RDF standard is the Dublin Core (DC), an element set for describ-
ing metadata about information resources of any kind. It defines generic
properties such as title, creator, type, format, language, and rights. The type
property uses values from the Type Vocabulary, part of the Dublin Core. Some
examples of types are collection, dataset, interactive resource, and soft-
ware. In Jena, there is a DC class with static Property variables for each of the
Dublin Core properties. You can add a type property to an item within a
model by using:

model.add(myDatabaseResource, DC.type, DCTypes.Dataset);

This marks the resource myDatabaseResource as being a type of Dataset.
Combining with RDF schema or OWL, you can create your own hierarchy
of terms using these as a baseline. For example, you might create terms for
“JDBC-accessible database,” “relational database table,” and “relational data-
base column” that are RDF subclasses of Dataset. You could then define
unique URIs for specific instances of these and make statements about them
in RDF: “MySQL instance #743234 at OurOrganization contains data about
employees, stored in the table named Employee.” Having such metadata
available can make managing IT resources much easier.

Eventually there will probably be a standard upper-level ontology for all
information technology terms. Many groups are working to create standard
vocabularies for various domains. One effort, the Suggested Upper Merged
Ontology (SUMO), aims to develop an upper-level hierarchy for all abstract
concepts. Future applications that use ontologies based on this may be able
to make high-level inferences using data from entirely different domains.
There are some domain-specific hierarchies that are also based on SUMO.
In this section’s resource page, there is an updated list of some existing vocab-
ularies that you can use. In the next section, we attach an RDF document as
metadata for an HTML document.

WCJ_02.book Page 87 Monday, October 24, 2005 10:30 AM

No Starch Press, Copyright © 2005 by Brian Eubanks

88 Chapter 4

Getting Attached: Attaching Dublin Core to HTML Documents

One of our original reasons for exploring RDF (besides it being cool!) was
because of the limited linking capability of HTML. We’d like web browsers to
still be able to display our HTML and web content, yet also have metadata
available for processing by search engines and automated knowledge discovery
systems. Given that most websites are probably still going to be using HTML
for many more years, has RDF solved our link metadata problem yet? In some
ways it has. There are several ways of marking up HTML documents with
Dublin Core or other RDF metadata. The method I’ll be using here is the
method suggested by the Dublin Core, and it also embeds the metadata with-
out affecting the browser’s view of the data and without breaking the XHTML
validation.

The browser may or may not know how to do anything with our RDF
data, but we are assuming that other programs may be able to process it.
We will need to embed the metadata so that it doesn’t interfere with the
browser’s understanding or rendering of the HTML. We can do this by using
link and meta tags in our HTML. Any programs that read this data should
have a way to discover which technique we are using. Rather than let programs
make assumptions (which could be wrong), we place a marker as an attribute
of the head tag of the HTML, telling any programs how to retrieve this
metadata:

<head profile="http://dublincore.org/documents/dcq-html/">

The profile URI means that there is metadata in the HTML document
and that it should be interpreted in the manner associated with the given
profile. Any software processing this document will also need to know the
schemas for RDF prefixes used in the metadata. We do this by placing link
tags in the head section:

<link rel="schema.DC" href="http://purl.org/dc/elements/1.1/" />
<link rel="schema.DCTERMS" href="http://purl.org/dc/terms/" />

You can now add the actual Dublin Core properties to meta tags in the
head section. It’s the same as using RDF triples, but the implicit subject of
each triple is the current HTML document. Here is an example showing
how to attach title and subject metadata to a document:

<meta name="DC.title" xml:lang="en"
 content="The World is Full of RDF" />
<meta name="DC.subject" content="earth" />

See this book’s website for more information on HTML metadata and
the Dublin Core.

WCJ_02.book Page 88 Monday, October 24, 2005 10:30 AM

No Starch Press, Copyright © 2005 by Brian Eubanks

Crawl ing the Seman t ic Web 89

What’s the Reason? Making Queries with Jena RDQL

You’ve built the perfect ontology for your organization’s knowledge
base. You’ve encoded it in RDF based on standard vocabularies, so you
can exchange data with other applications. And now you have a large
amount of data encoded using this vocabulary. “But what can I do with
all this data?” you think to yourself. “It’s not like I can just use a query
language like SQL!” Well, actually, you can—not specifically with the
SQL language but with a similar structured language designed for
querying knowledge bases. In this section, we’ll use an RDF query
language to retrieve information from an existing knowledge base.

Because RDF data is not organized into tables, columns, and rows like a
relational database, SQL won’t work for querying RDF graphs. Instead, we
need to search within a graph to find subgraphs that match some pattern
of RDF nodes (subject, predicate, and object). For instance, you might ask a
knowledge base whether a particular employee is a supervisor. In this case,
you know the subject, predicate, and object that you are looking for. You can
directly ask whether the given structure exists in the RDF. However, most
often you won’t know every part of the target structure, such as when you want
a list of supervisors having a salary less than $100,000. Because we don’t know
the URI of each item, we will have to use variables to represent the unknown
items in the query. In this type of query, we are asking: “Show me all X where
X is a supervisor, and X has salary Y, and Y < 100000.” The response will list
all the possible values for X that would match the desired properties. Jena’s
built-in query language is called RDF Data Query Language (RDQL). An RDQL
query has several parts:

� What values the query should return

� The RDF sources to query

� The query predicates

� Optional namespace prefixes

RDQL will let us declare the RDF source (where the data is coming
from) directly within the query String, but that is very inefficient for multiple
queries against the same source. It’s usually better to run the query from an
RDF model already in memory. Let’s run a query on the Suggested Upper
Merged Ontology (SUMO), a very high-level ontology created by the IEEE.
SUMO has standard names for high-level abstractions such as Process,
Organization, and GeopoliticalArea. These are not Java classes; they are
classes in the mathematical sense: a set whose members share one or more
properties in common. We’ll look at Organization and find all of its direct
subclasses, using the RDQL query:

SELECT ?x
WHERE (?x <rdfs:subClassOf> <sumo:Organization>)
USING rdfs FOR <http://www.w3.org/2000/01/rdf-schema#>
 sumo FOR <http://reliant.teknowledge.com/DAML/SUMO.owl#>

JENA

WCJ_02.book Page 89 Monday, October 24, 2005 10:30 AM

No Starch Press, Copyright © 2005 by Brian Eubanks

90 Chapter 4

The ?x in this query is a variable representing something that we want
the query to locate. The query engine will try to substitute a value for ?x
wherever it finds a subclass of Organism. Remember that all entities in RDF
are URIs. The rdfs and sumo prefixes make the URIs in the query much shorter
and less awkward. To run the query in Jena, we first load the SUMO ontology
into memory. Then we run the query using the static exec method of Jena’s
Query class and process the results. The following code performs this query:

Model sumo = ModelFactory.createOntologyModel();
String sumoURL = "http://reliant.teknowledge.com/DAML/SUMO.owl";
sumo.read(sumoURL);
sumo.setNsPrefix("sumo", sumoURL + "#");
String rdq = "SELECT ?x " +
 "WHERE (?x <rdfs:subClassOf> <sumo:Organization>) " +
 "USING rdfs FOR <http://www.w3.org/2000/01/rdf-schema#> " +
 "sumo FOR <" + sumoURL + "#>";
QueryResults results = Query.exec(rdq, sumo);
RDFVisitor aVisitor = new SysoutVisitor();
while (results.hasNext())
{
 ResultBindingImpl binding = (ResultBindingImpl) results.next();
 RDFNode node = (RDFNode) binding.get("x");
 node.visitWith(aVisitor);
}

This matches the known subclasses of the Organization entity in SUMO.
To visit each node and display its URI, you’ll need to write a visitor, using
Jena’s RDFVisitor interface. My SysoutVisitor class prints out the URI of each
node that it visits. You can do more interesting things with a visitor besides
just printing a node’s value, such as visiting nodes connected to it by a par-
ticular property. Here is the code for SysoutVisitor:

public class SysoutVisitor implements RDFVisitor {
 public Object visitBlank(Resource r, AnonId id) {
 System.out.println("anon: " + id);
 return null;
 }

 public Object visitURI(Resource r, String uri) {
 System.out.println("uri: " + uri);
 return null;
 }

 public Object visitLiteral(Literal l) {
 System.out.println(l);
 return null;
 }
}

WCJ_02.book Page 90 Monday, October 24, 2005 10:30 AM

No Starch Press, Copyright © 2005 by Brian Eubanks

Crawl ing the Seman t ic Web 91

There is a feature of the Visitor pattern that lets a visitor return a value,
but we are not using that feature here. To make the program do something
else instead of print each node’s value, all you need to do is plug in a different
visitor. The previous query matches the following nodes:

http://reliant.teknowledge.com/DAML/SUMO.owl#Corporation
http://reliant.teknowledge.com/DAML/SUMO.owl#PoliticalOrganization
http://reliant.teknowledge.com/DAML/SUMO.owl#EducationalOrganization
http://reliant.teknowledge.com/DAML/SUMO.owl#JudicialOrganization
http://reliant.teknowledge.com/DAML/SUMO.owl#ReligiousOrganization
http://reliant.teknowledge.com/DAML/SUMO.owl#GovernmentOrganization
http://reliant.teknowledge.com/DAML/SUMO.owl#Organization
http://reliant.teknowledge.com/DAML/SUMO.owl#MercantileOrganization
http://reliant.teknowledge.com/DAML/SUMO.owl#Manufacturer
http://reliant.teknowledge.com/DAML/SUMO.owl#Government
http://reliant.teknowledge.com/DAML/SUMO.owl#PoliceOrganization
http://reliant.teknowledge.com/DAML/SUMO.owl#MilitaryOrganization
http://reliant.teknowledge.com/DAML/SUMO.owl#MilitaryForce
http://reliant.teknowledge.com/DAML/SUMO.owl#ParamilitaryOrganization

Jena can also make rule-based inferences. You can create a knowledge
base, combine it with SUMO facts, and query the model while applying
matching rules. See the documentation and tutorial links on the resource
page for more details. The W3C recently created its own query language
called SPARQL, which works very similarly to Jena’s. See this book’s website
for updated information on this and other query languages.

Simply Logical: Lojban, RDF, and the Jorne Project

Lojban (www.lojban.org) is an artificial spoken and written language based
on the concepts of predicate logic. While it was designed to be used by
human beings, it has a parseable grammar and structured semantics that
make it ideal for processing by computers. Lojban defines words based on
predefined predicate root words called gismu. Each root word has a specific
structure associated with it, containing one to five slots that can be filled with
nouns (Lojban calls these items sumti). For example, the Lojban predicate
“bevri” means the act or process of carrying something, and it functions
much like a verb. Within its structure are also contained five other related
concepts: carrier, cargo, delivery-destination, delivery-source, and delivery-
path. While in English and most other languages these may be separate
words, in Lojban they are references to positions within the bevri structure.

There are over 1,300 root gismu in the Lojban vocabulary, and these
structures form a very interesting ontology of their own. Each of them has
between one and five slots. Most of the gismu don’t have five slots like bevri
does. In fact, there are only a few gismu with five parameters. Table 4-1 shows
the number of gismu of each arity, or parameter count, and the total number
of slots as of this writing.

WCJ_02.book Page 91 Monday, October 24, 2005 10:30 AM

No Starch Press, Copyright © 2005 by Brian Eubanks

92 Chapter 4

The slots in the root predicates give us 3,500+ base concepts. These can
be combined in many different ways by using compound words and logical
connectives, but for our purposes here we are looking at the root words only
as base concepts. Perhaps you are now wondering, “So what does all this have
to do with the Semantic Web?” In an earlier section, we discussed some
existing ontologies with built-in relationships that we might use to describe
our own entities. Lojban has a convenient set of base concepts that could be
used in creating an ontology.

Lojban fits in very well with RDF, which also maps verbs as predicates,
although RDF uses graphs of “subject verb object” predicates, and Lojban
uses a slot-based approach. There is some mapping required in order to
integrate the two, and although it can be done, no standard RDF ontology
exists for Lojban—yet. In January 2005, I created an open-source project
called Jorne to define standards for combining Lojban with the Semantic
Web. Once these standards are complete, the project will release Java soft-
ware to convert Lojban text to and from RDF triples. One of the goals of this
project is for a human to be able to write Lojban text and have the computer
automatically convert it into RDF statements for running queries against
knowledge bases.

Published ontologies such as SUMO are great for mapping terms from
one vocabulary to another, such as in creating dictionaries. The Jorne
project is working to map Lojban terms onto well-known vocabularies, so
that Lojban documents can share a common semantic space with RDF
documents. When the Jorne project completes its first standards, the Jorne
project page (www.jorne.org) will hold the latest RDF files along with some
sample documents. For creating terms in your own vocabularies, you may
want to build upon the SUMO vocabulary, since it is already linked to many
others. In Chapter 5, we will discuss a dictionary standard based on English
word senses, called WordNet, and a Java API for working with it. WordNet has
also been mapped to RDF and SUMO. See this book’s website for more
information on these and other ontologies.

Table 4-1: Gismu Count, by Arity

Gismu
Arity

Gismu
Count

Total
Slots

1 73 73

2 555 1110

3 535 1605

4 171 684

5 18 90

Total 3562

WCJ_02.book Page 92 Monday, October 24, 2005 10:30 AM

No Starch Press, Copyright © 2005 by Brian Eubanks

Crawl ing the Seman t ic Web 93

Guess What? Publishing RSS Newsfeeds with Informa

RDF Site Summary (RSS) is a standard for summarizing content on a web server.
An RSS feed is stored in an XML file, and it might include items such as
recent news, changes to a website, or new blog entries. A client program
called an aggregator collects RSS feeds from multiple web servers and displays
them in summary form, sorted by category. The user then chooses to view
the full content of any summaries that are of interest. The summary has
metadata, such as its subject, encoded along with a text summary. Over time
I expect that document metadata will have much more than the Dublin Core
and other terms that RSS currently uses. In theory, you could plug into other
ontologies such as SUMO, and the meaning of an entire article could be
encoded using RDF. This is possible only if you are using an ontology that
is expressive enough. This is certainly a lot of effort, but the long-term advan-
tage is that machines would have access to the fully encoded semantics of the
text. This probably won’t happen for a while, but adding metadata such as
RSS descriptions is a good start in that direction and has an immediate benefit
of giving us more accurate categorization of content.

There are several standards named RSS, all of them XML-based and
used for similar purposes. Unfortunately the different standards not only
have different XML structures but even use different definitions for the RSS
acronym. Most aggregators are able to understand all RSS flavors, though.
The version we discuss here, RDF Site Summary 1.0, uses RDF and is most
closely related to the semantic work we’ve done so far in this chapter. How-
ever, it’s still better to use something rather than encoding no metadata at all.
There are ways to map between the semantics of each standard, although all
of them are not equally expressive. One common practice is to use XSL-T
stylesheets to transform between the different forms of RSS.

Because RSS 1.0 is built on RDF and XML, there are several ways of
creating feeds: a DOM parser, an RDF API, or an RSS-specific API. DOM is
more low-level than is necessary for creating RDF. Jena has RSS support
through its RSS class, which has static objects that represent RSS properties
you can use in building an RSS-compatible RDF graph. But if you’re going
to be working a lot with RSS, you’ll want to use an RSS-specific API that can
understand the different RSS versions that are commonly used.

Informa is an open-source API for reading and writing RSS in Java. One
of its most powerful features is the ability to persist the feed metadata in a
database. Informa can also read data from external feeds (as described in
a later section), perform text-filtering tasks, and update RSS content on a
periodic schedule. Let’s use it to create a feed using the basic in-memory
builder—the ChannelBuilder class from the de.nava.informa.impl.basic package.
In RSS terminology, a channel is another name for metadata about some
content (such as a website) and is the main entity in a newsfeed. Each RSS
file defines a channel and items belonging to the channel. Rather than
work with the XML directly, which can be somewhat tedious, we’ll use a
ChannelBuilder to create the RSS file.

INFORMA

WCJ_02.book Page 93 Monday, October 24, 2005 10:30 AM

No Starch Press, Copyright © 2005 by Brian Eubanks

94 Chapter 4

ChannelBuilder builder = new ChannelBuilder();
ChannelIF myChannel = builder.createChannel("Latest Bug Fixes");
// This is the URL for which we are describing the metadata
URL channelURL = new URL("http://example.org/wcj/bugs.rss");
myChannel.setLocation(channelURL);
myChannel.setDescription("The latest news on our bug fixes");

// We create a first item
String title = "Annoying Bug #25443 Now Fixed";
String desc = "A major bug in OurGreatApplication is fixed. " +
 "Bug #25443, which has been annoying users ever since 3.0, " +
 "was due to a rogue null pointer.";
URL url = new URL("http://example.org/wcj/bugfix25443.html");
ItemIF anItem =
 builder.createItem(myChannel, title, desc, url);
anItem.setCreator("Ecks Amples");

// We create a second item
title = "Bug #12121 not Fixed in 7.1";
desc = "Bug #12121 will not be fixed in OurGreatApplication " +
 "release 7.1, so that developers can focus on adding " +
 "the WickedCool feature.";
url = new URL("http://example.org/wcj/bugfix12121.html");
anItem = builder.createItem(myChannel, title, desc, url);
anItem.setCreator("Dee Veloper");

// export the document to disk, in RSS 1.0 format
ChannelExporterIF exporter = new RSS_1_0_Exporter("bugs.rss");
exporter.write(myChannel);

You can place the XML-encoded RSS feed anywhere on your site. The
main page of your site should include a link to the feed. For automated
discovery by RSS crawlers such as Syndic8, you can do this with a link tag in
the page’s head section:

<link rel="alternate" type="application/rss+xml"
title="Bugs" href="http://your-site/bugs.rss" />

You’ll also want a hypertext link for human visitors, so they can add
your site to their aggregator. If you are going to be creating large feeds
that change often or working with many feeds simultaneously, use the
Hibernate -based version of the builder, which will persist the RSS metadata
in a database. Hibernate is an API for mapping Java objects to relational
database structures and automatically translating data between them. See
the Informa documentation, and this section’s resource page, for more
information. In the next section, we’ll see how to read newsfeeds with
Informa.

WCJ_02.book Page 94 Monday, October 24, 2005 10:30 AM

No Starch Press, Copyright © 2005 by Brian Eubanks

Crawl ing the Seman t ic Web 95

What’s Up? Aggregating RSS Newsfeeds

In the previous section, we used the Informa library to create RSS content, so
that visitors with content aggregators can be automatically informed about
updates to your site. Another great use of RSS within your site is displaying
recent news related to your industry. You can get these newsfeeds from many
sources, such as news sites, websites in your industry, and aggregator sites like
Syndic8. Make sure to check whether the sites you are syndicating will allow
you to incorporate items from their feeds into your site. Usually this is the
case, but not always.

Let’s start by reading items from a newsfeed and displaying them as text.
Using Informa, reading an RSS feed is easy. You can populate the same
ChannelBuilder object that we used in the previous section with data from an
existing RSS feed. The FeedParser class has a parse method that returns a
ChannelIF instance containing the channel data from the RSS feed. The RSS
standards may be in a state of confusion, but the Informa API reads all of
them and gives us a common object model for working with them.

import de.nava.informa.impl.basic.Channel;
import de.nava.informa.impl.basic.ChannelBuilder;
import de.nava.informa.impl.basic.Item;
import de.nava.informa.parsers.FeedParser;

ChannelBuilder builder = new ChannelBuilder();
String url = "http://wickedcooljava.com/updates.rss";
Channel channel = (Channel) FeedParser.parse(builder, url);
System.out.println("Description: " + channel.getDescription());
System.out.println("Title: " + channel.getTitle());
System.out.println("====================================");
// using Java 5 syntax in this for loop
for (Object x : channel.getItems())
{
 Item anItem = (Item) x;
 System.out.print(anItem.getTitle() + " - ");
 System.out.println(anItem.getDescription());
}

This will print some basic information about the channel and its items.
If you want to include these in a web page, it’s now just a matter of wrapping
HTML tags around the text. If you are including RSS files that are outside
your control, you may want to filter data from the channels before displaying
them. We’ll discuss this in a later section.

Heading to the Polls: Polling RSS Feeds with Informa

We just showed how Informa can retrieve data from an RSS channel, using
the ChannelBuilder class. Ideally, updating your copy of the feed should be an
automated process, and Informa can also do this. The Poller class (located

INFORMA

JAVA 5+

INFORMA

WCJ_02.book Page 95 Monday, October 24, 2005 10:30 AM

No Starch Press, Copyright © 2005 by Brian Eubanks

96 Chapter 4

in the de.nava.informa.utils.poller package) can periodically poll a Channel
object’s RSS feed and trigger some action whenever there are changes.
By default, this polling occurs every 60 minutes but can be configured to use
longer or shorter periods. The Poller class works by notifying an observer
object whenever something changes in the feed. To use this process, you
must first create a class implementing the PollerObserverIF interface. This
interface has methods for poll tracking, error handling, and feed change
notification.

Let’s look at an example of a PollerObserverIF that uses the newItem
method, which the Poller calls whenever the feed has a new item. However,
the new item will not be added to the copy in your Channel object unless the
observer explicitly adds it. Here is a PollerObserverIF implementation that
does not add feed changes to the Channel object but instead prints a notifica-
tion message to the console:

public class AnObserver
implements de.nava.informa.utils.poller.PollerObserverIF
{
 public void itemFound(ItemIF item, ChannelIF channel) {
 System.out.println("New item found");
 channel.addItem(item);
 }

 public void pollStarted(ChannelIF channel) {
 System.out.println(
 "Started poll with " + channel.getItems().size() +
 " items in channel");
 }
 public void pollFinished(ChannelIF channel) {
 System.out.println(
 "Finished poll with " + channel.getItems().size() +
 " items in channel");
 }
 public void channelChanged(ChannelIF channel) {}
 public void channelErrored(ChannelIF channel, Exception e) {}
}

This observer will print information about the beginning and end of
each polling event, list any new items in the feed, and add new items to
the object model. Warning: An observer does not add new items to the
Channel object unless you explicitly call the addItem method. If you have
more than one observer attached, one of them should be assigned the
task of adding the new item to the Channel. With real RSS feeds, you’ll want
to set a polling frequency that doesn’t clog the network or the site with
unnecessary traffic. A polling period of 60 minutes (the default) or longer
should be frequent enough for most sites. The following code fragment
uses the observer that we just defined and polls the RSS feed for a previously
loaded Channel object every 60 minutes.

WCJ_02.book Page 96 Monday, October 24, 2005 10:30 AM

No Starch Press, Copyright © 2005 by Brian Eubanks

Crawl ing the Seman t ic Web 97

Poller poller = new Poller();
poller.addObserver(new AnObserver());
poller.registerChannel(channel);

To use a three-hour interval instead of the default, you can call:

poller.registerChannel(channel, 3 * 60 * 60 * 1000);

Make sure to remember that the polling interval is specified in milli-
seconds! If you are going to filter items from the feed, the observers should
not be doing the filtering. There is a separate component that can approve
polled changes prior to observer notification. This keeps the observers focused
on their task of propagating changes rather than filtering data. The process
is more scalable that way, as you may want many observers to receive approved
changes. This filtering and approval process is described in the next section.

All the News Fit to Print: Filtering RSS Feeds with Informa

In the previous section, we polled an RSS feed and wrote some code that
automatically updates our copy of the Channel object whenever the feed
changes. Our PollerObserverIF implementation added the item to a Channel
object. You may think that the observer would be a good candidate for doing
some filtering of the feed content, such as deciding whether to add new
items to our copy. This could work, but since there can be more than one
observer connected to a Poller, it’s better to have a separate object do the
filtering. By doing this, we won’t need to duplicate any filtering functions,
and all the observers can benefit equally from the filtering process.

Informa implements filters through an approval process. You can add
one or more approvers to a Poller. The observers will see a new item only if
all of the approvers accept it. The approval must be a unanimous vote or the
change will remain invisible to the observers (that is, the observers’ newItem
method is not called). To add an approver, implement the PollerApproverIF
interface and pass it to the Poller’s addApprover method. By making fine-grained
approvers, you can use them in a plug-and-play manner. For example, you
could have a NoBadWordsApprover that checks for the existence of words that
you don’t want to appear on your website or to be added to the Channel. In a
similar way, a RelevancyApprover class could check for keywords that are rele-
vant to your intended usage of the feed.

Approvers check properties within each item, such as the category
list and subject, to determine whether an item should be approved. Poller-
ApproverIF has only a single method, as indicated in this example that
checks the title and the description of each item using regular expressions
(as discussed in Chapter 2). Here is the approver class:

public class RelevancyApprover
implements PollerApproverIF {

INFORMA

WCJ_02.book Page 97 Monday, October 24, 2005 10:30 AM

No Starch Press, Copyright © 2005 by Brian Eubanks

98 Chapter 4

 public boolean canAddItem(ItemIF item, ChannelIF channel) {
 String title = item.getTitle();
 String description = item.getSubject();
 if (title.matches(".*Java.*") || description.matches(".*Java.*"))
 {
 return true;
 } else {
 return false;
 }
 }

}

As you might guess, this approver accepts only items that have “Java” some-
where in the title or description. The next code fragment adds this approver
to a Poller. The approver should be added before the observer, and the
observer added before registering the channel:

Poller poller = new Poller();
poller.addApprover(new RelevancyApprover());
poller.addObserver(new AnObserver());
poller.registerChannel(channel);

There is another class similar to the Poller, the Cleaner, that can per-
iodically remove unwanted items in a channel. It uses a similar process:
CleanerObserverIF observers are added to a Cleaner, and CleanerMatcherIF
instances decide what should be removed. Perhaps these interfaces should
be called “JuryMember” and “Executioner,” because that is a very good meta-
phor for what they do! You might use the Cleaner to remove items that are
older than a few days or meet some other criteria for removal. For both the
PollerApproverIF and CleanerMatcherIF decision making, you might want to
integrate Lucene text matching, as described in Chapter 3. This would give
much more sophisticated text-matching abilities, such as similarity (“fuzzy”)
matches.

WCJ_02.book Page 98 Monday, October 24, 2005 10:30 AM

No Starch Press, Copyright © 2005 by Brian Eubanks

Crawl ing the Seman t ic Web 99

Chapter Summary

The techniques of semantic tagging that we’ve described in this chapter are
quickly becoming popular in large published data sets, and in the next few
years the Semantic Web will see an exponential growth. The latest news and
website updates, along with what your colleagues are blogging, are already
being gathered automatically by RSS aggregators and organized by category.
In business-to-business transactions, common high-level ontologies are
beginning to connect domains with completely different terminology in ways
that were impossible before. For example, within highly specific scientific
disciplines, new discoveries often use domain-specific terms to describe their
findings. This information could lead to breakthroughs in other disciplines,
if it were only translated into the appropriate terminology.

Structured newsfeeds are already bringing current news and other infor-
mation to anyone with an aggregator and a network connection. Using more
detailed semantic markup (with SUMO or other high-level ontologies), infor-
mation could be made even more accessible to everyone—even if the original
document uses obscure terminology or a foreign language. We will soon see
new types of aggregators and intelligent agents that make logical inferences
based on the news and perhaps act on our behalf. Organizations that are
properly prepared for this will be able to use the Semantic Web much more
effectively. One way to start preparing now is by identifying each type of data
with a URI, adding a machine-readable RDF type description (for example,
that the item is a person, hardware, software, or some other entity), and
using standard ontologies where possible. Jena, Informa, and the ontologies
discussed in this chapter are some tools that can help you with this process.
In the next chapter, we discuss intelligent software agents and explore some
of the scientific and mathematical APIs for Java.

WCJ_02.book Page 99 Monday, October 24, 2005 10:30 AM

No Starch Press, Copyright © 2005 by Brian Eubanks

