
P E T E R G A S S T O N

M U L T I - D E V I C E W E B D E V E L O P M E N T
W I T H H T M L 5 , C S S 3 , A N D J A V A S C R I P T

T H E M O D E R N W E BT H E M O D E R N W E B

$34.95 ($36.95 CDN)

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT™

 “ I L I E F LAT .”

Th is book uses RepKover — a durab le b ind ing that won’t snap shut. SHELVE IN:
COM

PUTERS/W
EB PROGRAM

M
ING

Today’s web technologies are evolving at near–light speed,
bringing the promise of a seamless Internet ever closer to
reality. When users can browse the Web on a three-inch

His plain-English explanations and practical examples
development, including HTML5, CSS3, and JavaScript.

emphasize the techniques, principles, and practices that

A G U I D E T OA G U I D E T O
M O D E R N W E BM O D E R N W E B

D E V E L O P M E N TD E V E L O P M E N T

Peter Gasston’s The Modern Web will guide you through
the latest and most important tools of device-agnostic web

phone screen as easily as on a fifty-inch HDTV, what’s a
developer to do?

and stay relevant as these technologies are updated.
you’ll need to easily transcend individual browser quirks

Learn how to:

multiple devices
 Plan your content so that it displays fluidly across

 Design websites to interact with devices using the most
up-to-date APIs, including Geolocation, Orientation, and
Web Storage

 Incorporate cross-platform audio and video without
using troublesome plug-ins

 Make images and graphics scalable on high-resolution
devices with SVG

 Use powerful HTML5 elements to design better forms

Turn outdated websites into flexible, user-friendly ones
that take full advantage of the unique capabilities of any
device or browser. With the help of The Modern Web,
you’ll be ready to navigate the front lines of device-
independent development.

of The Book of CSS3, Gasston has also been published

A B O U T T H E A U T H O R

Peter Gasston has been a web developer for more than
12 years in both agency and corporate settings. The author

in Smashing Magazine, A List Apart, and .net magazine.
He runs the web development blog Broken Links (http://
broken-links.com/) and lives in London, England.

TH
E

 M
O

D
E

R
N

 W
E

B
TH

E
 M

O
D

E
R

N
 W

E
B

The Modern Web
©2013, Peter Gasston

6
D E V I C E A P I S

In the previous chapters, I’ve discussed
some of the many APIs that have been

introduced as part of the HTML5 process,
such as microdata and Touch Events. But

there is a further range of APIs that, although not
part of the spec, are certainly related; and these APIs
offer something extremely attractive to developers in
the multi-screen world: access to the device itself.

In this chapter, we take a look at some device APIs—from the new
location and spatial features in portable devices to file and storage options
across most modern browsers. Obviously not all APIs are going to be avail-
able on every device—knowing the position in three-dimensional (3-D)
space of a television is of little practical use—but many APIs are useful
across a broad range of user agents.

108 Chapter 6
The Modern Web

©2013, Peter Gasston

This is a curated list of those APIs I feel will be most practical, and the
introductions to many are, for reasons of space, quite brief; often, the APIs
will be much more extensive, and although I’ll note where I think the scope
is available for you to learn more, I urge you to discover for yourself the
capabilities and possibilities of accessing the device through JavaScript.

N O T E : The examples and demos in this chapter are interactive; I’ve included screenshots and
illustrations in some cases, but if there’s one chapter you really should download the
example files for, it’s this one.

Geolocation
Location-based services are handy in all sorts of ways, from helping users
with mobile devices find their way around to providing tailored informa-
tion about the region they live in. The Geolocation API accesses a device’s
location services, which use GPS, wireless, or cell tower data to provide
information about the device’s location that will be used by your location-
based apps.

Location data obviously involves privacy concerns, so in most (if not all)
browsers, users must give explicit permission to access this data, usually in
the form of an on-screen prompt that allows them to opt in or out of pro-
viding their location, as shown in Figure 6-1.

Figure 6-1: The Geolocation opt-in prompt in Chrome for Android

The data is held in the geolocation object, a child of window.navigator,
which you can access using the getCurrentPosition() method:

navigator.geolocation.getCurrentPosition(function(where){
 // Do something
});

A successful callback returns an object (I’ve called it where) containing
a coords child object. This child object has a series of properties pertaining
to the user’s position, such as his or her altitude and heading, but the ones
I’m really interested in are latitude and longitude. In this code, I’m accessing
these properties and displaying them in an alert:

navigator.geolocation.getCurrentPosition(function(where){
 alert(where.coords.latitude + ',' + where.coords.longitude);
});

Device APIs 109
The Modern Web

©2013, Peter Gasston

You can try this for yourself in position-current.html; my results are shown
in Figure 6-2.

Figure 6-2: Coordinates obtained through the
 geolocation object, referencing the street I live on;
please don’t stalk me.

Occasionally an error is returned when looking for the position; an
optional error callback can check for this. The following code creates two
functions, one for successful location and one for an error:

var geo = navigator.geolocation,
 lcn_success = function(where) { ... },
 lcn_error = function() { ... };
geo.getCurrentPosition(lcn_success, lcn_error);

Sometimes a GPS device can take a little while to find the user’s exact
position, and, of course, the user may also be on the move, so instead of
a one-off location, you can choose to watch the user’s position, receiv-
ing updated results when location data changes. You do this with the
watchPosition() method, also on the geolocation object, which works in the
same way as getCurrentPosition():

navigator.geolocation.watchPosition(function(where){
 console.log(where.coords.latitude,where.coords.longitude);
});

To cancel watching a user’s position, use the clearWatch() method with
the unique ID created by the watchPosition() method; in this example, the
process ends when the user clicks the #stop link:

var geo = navigator.geolocation,
 watchID = geo.watchPosition(...),
 endWatch = document.getElementById('stop');
endWatch.addEventListener('click', function () {
 geo.clearWatch(watchID);
}, false);

In position-watch-clear.html, you can see a demo of this in action. Open
the page in a mobile device and move around, and you should see the loca-
tion update as your device gets a better fix on your location.

110 Chapter 6
The Modern Web

©2013, Peter Gasston

Orientation
The Orientation API detects changes to the device’s position in 3-D space—
that is, movement up and down, left and right, and clockwise and counter-
clockwise. This movement is measured with an accelerometer, and the
devices that are most likely to contain one are those that are most portable;
mobile phones and tablets move frequently so are very likely to have one,
laptops move to some degree so may contain one, and desktops and TVs
move so infrequently that it’s very unlikely they’ll have an accelerometer
or access to this API.

Using orientation events opens up new possibilities for interaction and
navigation; some apps already provide an option to control page scrolling
by tilting the device forward or backward, and navigation between tiles or
pages by tilting to the left or right.

Before detailing the API, I should talk about three-dimensional axes
(you can skip this paragraph if you know about them already). All move-
ment in three dimensions has three directions, or axes, commonly referred
to as x, y, and z. If you hold a device in front of you now (or imagine you
are doing so), the x -axis runs from left to right, y from top to bottom, and
z toward you and away from you, as shown in Figure 6-3. Movement is mea-
sured along these axes from the center of the device and is either positive
or negative: Bringing the device closer to you moves it positively along the
z-axis and away moves it negatively. Lowering the device toward your feet
moves it negatively along the y -axis and moving it to your right moves it
positively along the x -axis.

Figure 6-3: Movement along the three-dimensional axes
(This image is taken from the Mozilla Developer Network
[MDN] article, “Orientation and Motion Data Explained”:
http:// developer.mozilla.org/en-US/docs/DOM/Orientation
_and_motion_data_explained/. It is used under a Creative
Commons license.)

To detect the movement along each axis, use the deviceorientation
event on the window object. This event fires every time the device moves
and returns an object with a series of useful orientation properties:

window.addEventListener('deviceorientation',function (orientData) {
 ...
}, false);

Device APIs 111
The Modern Web

©2013, Peter Gasston

The three key properties that are germane to movement are alpha, beta,
and gamma. Each is measured with a number representating degrees of rota-
tion, although some are constrained within set limits.

!" alpha measures rotation around, not movement along, the z-axis—that
is, if the device were laid flat on a table, clockwise or counterclockwise
movement. The value of alpha is a number from 0 to 360.

!" beta is rotation around the x -axis, which you can picture as tipping the
top edge of the device toward or away from you. beta has a value range
of –180 (tip toward you) to 180 (tip away from you).

!" gamma is rotation around the y -axis or tilting the device from side to side.
The value of gamma ranges from –90 (tip left) to 90 (tip right).

As a very simple example, the code in the following script uses
deviceorientation to detect changes to the orientation and then logs the
three values to the console:

window.addEventListener('deviceorientation',function (orientData) {
 console.log(orientData.alpha,orientData.beta,orientData.gamma);
}, false);

In the example file orientation.html, you can see a slightly different ver-
sion that updates the text on the page when orientation changes; open it
on a mobile or tablet device and move the device around to see the page
content update.

Fullscreen
We all know the Web is an immensely powerful distraction machine, so
sometimes providing an option to focus only on the content at hand is use-
ful. This functionality is provided by the Fullscreen API, which allows you
to expand any element to fill the entire screen of the device, rather than
just the browser viewport. This is especially handy for large-screen devices,
for instance, when playing video to provide the “lean back” experience of
television.

Before setting up this script, check whether the browser has a full-
screen mode. You can do this with the Boolean fullScreenEnabled attribute:

if (document.fullScreenEnabled) { ... }

Fullscreen mode is called with the requestFullScreen() method. As this
introduces potential security risks (an often-quoted example is an attack
website that fools you into thinking that you’re seeing something else and
copies your keystrokes), many devices provide an on-screen prompt to
make sure you give permission to enter fullscreen mode. If you grant that
permission, the element the method is called on scales up to 100 percent
of the device screen’s height and width.

112 Chapter 6
The Modern Web

©2013, Peter Gasston

In the next code snippet, a click event listener is applied to the element
#trigger, which, when fired, will put .target into fullscreen mode, as long as
permission is granted. You can see this for yourself in the file fullscreen.html,
which is illustrated in Figure 6-4.

var el = document.querySelector('.target'),
 launch = document.getElementById('trigger');
launch.addEventListener('click', function () {
 el.requestFullScreen();
}, false);

Figure 6-4: An element launched into fullscreen mode with an on-screen alert in Firefox
for Android

The browser should offer a means to exit fullscreen mode, but you
can also provide your own with the exitFullScreen() method. The next
code block shows a function that uses this method to leave fullscreen mode
when the ENTER key is pressed. Note two further things in the code: First, it
uses the fullscreenchange event, which is fired whenever an element enters
or leaves full screen mode; and second, it relies on an if statement using the
fullScreenElement attribute, which returns either information about the ele-
ment that is in fullscreen mode or null if there is none.

document.addEventListener('fullscreenchange', function () {
 if (document.fullScreenElement !== null) {
 document.addEventListener('keydown', function (e) {
 if (e.keyCode === 13) {
 document.exitFullScreen();
 }
 }, false);
 }
}, false);

Device APIs 113
The Modern Web

©2013, Peter Gasston

When an element has been put in fullscreen mode, you might want
to style it (or its children) a little differently. It’s proposed that you can do
this with a new dedicated CSS pseudo-class, which will be called either
:fullscreen or :full-screen:

.target:full-screen {}

Vibration
The Vibration API makes a device vibrate, providing some haptic feedback
for your users. This API actually used to be called the Vibrator API, but I’m
sure you don’t need me to tell you why that name was changed very quickly.
Obviously not all devices are capable of vibrating, especially larger ones, so
this API is decidedly more useful in mobile devices.

The API is extremely simple, requiring only the vibrate() method on the
navigator object. The value supplied to vibrate() is a figure representing the
number of milliseconds for the device to vibrate; for example, to make the
device vibrate for one-fifth of a second after the user has completed a touchend
event, use this code:

document.addEventListener('touchend', function () {
 window.navigator.vibrate(200);
});

You can also use an array of values that alternate between vibrations
and pauses; that is, the odd-numbered values are vibrations and the even
values are pauses. In this example, the device vibrates for 200ms, pauses
for 200ms, and then vibrates for 500ms:

document.addEventListener('touchend', function () {
 window.navigator.vibrate([200,200,500]);
});

Vibrating runs down the battery more quickly, so use this API with
caution. You can manually stop a vibration by using a 0 or an empty array
value. In this code, the device will begin to vibrate for 5 seconds when the
touch event starts, and then stops when the event ends:

document.addEventListener('touchstart', function () {
 window.navigator.vibrate(5000);
});
document.addEventListener('touchend', function () {
 window.navigator.vibrate(0);
});

114 Chapter 6
The Modern Web

©2013, Peter Gasston

You can try the API for yourself
in the example file vibration.html, even
though obviously you’ll need to open
it on a mobile device with vibration
capabilities if you want to actually feel
the vibrations. If you don’t have one
on hand, Figure 6-5 shows a recon-
struction of the experience.

Battery Status
One of the key concerns with portable devices is knowing their battery
status. Mobile devices can get as little as seven or eight hours out of a full
charge, whereas a laptop is lucky to get more than three or four hours.
Knowing the status of the device’s battery can be important before you
begin power-hungry processes or commence to download large files.

You can get information about the battery with the Battery Status API,
which brings a set of attributes on the navigator.battery object. For example,
to find out if the battery is currently charging, you can use the charging attri-
bute to get a true or false value:

var batteryStatus = navigator.battery.charging;

To find the current battery level, you can use the level attribute, which
returns a value from 0 (empty) to 1 (fully charged). The following code is a
simple demonstration of this in action:
The battery level is obtained and its
value used as the value of a meter ele-
ment (which will be fully introduced in
Chapter 8), and the current charging
status (‘Charging’ or ‘Discharging’) is
appended below it. You can try it your-
self in the example file battery.html. The
result is shown in Figure 6-6.

var el = document.getElementById('status'),
 meter = document.querySelector('meter'),
 battery = navigator.battery,
 status = (battery.charging) ? 'Charging' : 'Discharging';
meter.value = battery.level;
meter.textContent = battery.level;
el.textContent = status;

The battery object has two further attributes: chargingTime and
dischargingTime. Both of these return a value, in seconds, of the remain-
ing time until the battery is fully charged or fully discharged, respectively.

Figure 6-6: A meter element showing
the remaining battery level of my
device, plus its charging status

Figure 6-5: The Vibration API in action
(reconstruction)

Device APIs 115
The Modern Web

©2013, Peter Gasston

The Battery Status API also has a series of events that fire when a
change to any of the attributes is detected: chargingchange, chargingtimechange,
dischargingtimechange, and levelchange. The following code uses chargingchange
to detect a change to the device’s charging status and fires an alert if the
status has changed:

var status,
 battery = navigator.battery,
 chargeStatus = function () {
 (battery.charging) ? status = 'Charging' : status = 'Discharging';
 return status;
};
battery.addEventListener('chargingchange', function () {
 window.alert(chargeStatus());
}, false);
window.alert(chargeStatus());

You can try this one yourself using the example file battery-event.html—
plug and unplug your phone from its charger to see the status update.

Network Information
Knowing the current strength of a device’s Internet connection is extremely
useful; you may want to serve lower-resolution images to devices with low
bandwidth or stream different video qualities to users depending on their
connection. Likewise, you may want to hold off on the background processes
if the user has a limited or metered tariff.

The Network Information API is composed of two attributes on the
 connection object: bandwidth, which is a figure representing the estimated
bandwidth in Megabytes (MBps) of the current connection (0 if the device
is offline, infinity if the result is unknown); and metered, a Boolean that
returns true if the connection is metered (such as on pay-as-you-go tariffs).

The following code shows a function that uses both attributes: bandwidth
to return the current connection’s bandwidth and metered to add an extra
message to the status if the connection is limited.

var status,
 connection = navigator.connection,
 showStatus = function () {
 status = connection.bandwidth + ' MB/s';
 if (connection.metered) {
 status += ' (metered)';
 }
 alert(status);
 };
showStatus();

116 Chapter 6
The Modern Web

©2013, Peter Gasston

Network Information also has an event handler, change, on the connection
object, which fires whenever the connection status changes; with this, you
can easily add an extra call to the function when necessary:

connection.addEventListener('change', showStatus, false);

You can see both at work in the file network.html—try connecting or dis-
connecting your Wi-Fi service to see the change event fire.

Camera and Microphone
Cameras and microphones have been common on desktop and laptop com-
puters for a long time, and with the rise of mobile devices they’ve become
extremely prevalent—almost ubiquitous. But for years, we’ve had to rely on
third-party plug-ins, such as Flash and Java, to get audio and video input on
the Web, so a native input method is more than overdue.

This native input comes in the shape of the getUserMedia() method, part
of the WebRTC project, which I’ll discuss in more detail in Chapter 9. The
getUserMedia() method is on the navigator object, and takes up to three argu-
ments: The first is for options about the stream, such as whether to accept
only audio, only video, or both; the second is a callback fired when a success-
ful connection is made; and the third, which is optional, is a failure callback:

 navigator.getUserMedia({options}, success, failure);

As with the Geolocation and Fullscreen APIs, accessing the user’s cam-
era or microphone has privacy implications, so many browsers provide an
on-screen prompt asking for the user’s permission to access the device. On
devices with more than one camera, some user agents offer a native control
to switch between them.

A media stream requires a special element in order to be displayed,
either the new video or audio HTML5 element (depending on the stream
content). I introduce these new elements fully in Chapter 9, but for the
 purposes of the following demonstration, using a video stream, you need
the following markup somewhere on your page:

<video autoplay></video>

When the successful callback is fired from getUserMedia(), the media
stream is returned with a unique ID (provided by you), which will be sup-
plied to the video element. The following code shows a basic example,
which I’ve annotated and will explain after:

! navigator.getUserMedia({video:true}, function (stream) {
" var video = document.querySelector('video');
video.src = window.URL.createObjectURL(stream);

});

Device APIs 117
The Modern Web

©2013, Peter Gasston

In line !, I’ve supplied two arguments to the getUserMedia() method:
The first is the stream options where I’m flagging that I want to get video,
no audio; and the second is the callback function where I’ve given the
result a unique ID of stream. In the next line ", I’ve used querySelector()
to assign the video element to the video variable so that in line #, I can use
the createObjectURL() method to convert stream into a URL and set it as the
src attribute of the video element. No failure callback is supplied.

To try this for yourself, see the file getusermedia.html—you’ll need to
have a video on your device to see the file in action.

Web Storage
Recording information about previous activity is usually done with cookies,
but one of their drawbacks is that you can store only small amounts of data.
The Web Storage API was created to allow user agents to store more data on
the user’s device. This data can be stored only until the browser is closed,
which is known as session storage, or kept until the user or another script
actively flushes the data, which is called local storage. Both operate in essen-
tially the same way, except for that one key difference—permanence.

To store data, you save it in key:value pairs, similar to how you store
cookies now, except the quantity of data that can be saved is greater.
The API has two key objects, which are straightforward and memorable:
localStorage for local storage and sessionStorage for session storage.

N O T E : In the examples in this section I use sessionStorage, but you can swap this for
localStorage if you prefer more permanent storage; the syntax applies equally.

The web storage syntax is pretty flexible, allowing three different ways
to store an item: with the setItem() method, with square bracket notation,
or with dot notation. As a simple example, the next code snippet shows how
you might store this author’s name; all three different ways of storing data
are shown for comparison, and all are perfectly valid.

sessionStorage.setItem('author','Peter Gasston');
sessionStorage['author'] = 'Peter Gasston';
sessionStorage.author = 'Peter Gasston';

Some developer tools allow you to inspect the contents of storage, so
Figure 6-7 shows the result of this code, regardless of which approach you use.

Retrieving items from storage is just as flexible a process; you can use
the getItem() method, which accepts only the name of the relevant key as
an argument, or the square bracket or dot notation method without any
value. In the next code snippet, all three techniques are shown and are
equivalent:

var author = sessionStorage.getItem('author');
var author = sessionStorage['author'];
var author = sessionStorage.author;

118 Chapter 6
The Modern Web

©2013, Peter Gasston

Figure 6-7: A key:value pair stored in the browser, shown in the
WebKit Web Inspector

NOTE Although I’m storing only very simple values in these examples, in most browsers,
you can store up to 5MB of data for each subdomain. This is the figure recommended
in the specification, although it’s not mandatory.

You can delete a single item from storage using the removeItem() method,
which like getItem(), takes a single key name as an argument and deletes the
stored item with the matching key:

sessionStorage.removeItem('author');

In the file storage.html, I’ve put together a simple demo that adds and
removes items from the storage. To see the result, you need developer tools
that show the contents of the storage, such as in the Resources tab of the
WebKit Web Inspector. The contents don’t update in real time, so you have
to refresh to see changes.

The nuclear option to remove all items in storage (although only on the
specific domain storing them, of course) is the clear() method:

sessionStorage.clear();

A storage event on localStorage is fired whenever storage is changed. This
returns an object with some useful properties such as key, which gives the
name of the key that has changed, and oldValue and newValue, which give the
old and new values of the item that has changed. Note this event fires only
on other open instances (tabs or windows) of the same domain, not the
active one; its utility lies in monitoring changes if the user has multiple tabs
open, for example.

The next code block runs a function that fires whenever storage is
modified and logs an entry into the console. You can try it yourself in the
file storage-event.html, but you’ll need to open the file and developer console
in two different tabs to see the changes occur—remember, changes to the
value will show in the other window, not the one where the click occurs.

Device APIs 119
The Modern Web

©2013, Peter Gasston

window.addEventListener('storage', function (e) {
 var msg = 'Key ' + e.key + ' changed from ' + e.oldValue + ' to ' + e.newValue;
 console.log(msg);
}, false);

Storage is being taken even further with the development of the Indexed
Database (IndexedDB) API, which aims to create a full-fledged storage data-
base in the browser that you access via JavaScript. Many browsers have already
made an attempt at this, but the vendors couldn’t decide on a common for-
mat. IndexedDB is an independently created standard aimed at keeping
everyone happy. Its heavily technical nature takes it out of the scope of this
book, but if you need advanced storage capabilities, keep it in mind.

Drag and Drop
Adding a “physical” aspect to your websites that allows users to move ele-
ments around the screen is a nice option. This “drag and drop” behavior is
especially useful on devices with touch interfaces.

The Drag and Drop API is probably the oldest feature I cover in this
book. It was first implemented in Internet Explorer 5 back in 1999 (that’s
about 150 Internet years ago) and has been adopted by other browsers for
quite some time, although the effort to standardize it was only undertaken
as part of the HTML5 movement. Unfortunately, Drag and Drop shows
some signs of aging, being quite arcane and unintuitive at first.

By default the a and img elements can be dragged around the screen
(I’ll get to other elements momentarily), but you have to set up a drop zone,
an area that the elements can be dragged into. A drop zone is created when
you attach two events to an element: dragover and drop. All that’s required of
dragover is that you cancel its default behavior (for one of the arcane reasons
I noted earlier, which you don’t need to worry about). All the hard work
happens with the drop event.

That may sound a little confusing, so this example shows a very simple
setup: The #target element has the dragover and drop event listeners attached
to it, the callback function of dragover prevents the default behavior with
preventDefault(), and the main action happens inside the callback function
of the drop event.

var target = document.getElementById('target');
target.addEventListener('dragover', function (e) {
 e.preventDefault();
}, false);
target.addEventListener('drop', function (e) {
 // Do something
}, false);

120 Chapter 6
The Modern Web

©2013, Peter Gasston

All of the events in the Drag and Drop API create an object called
 dataTransfer, which has a series of relevant properties and methods. You
want to access these when the drop event is fired. For img elements, you want
to get the URL of the item, so for this you use the getData() method with a
value of URL and then do something with it; in this example, I’ll create a
new img element and pass the URL to the src attribute, making a copy of
the existing one:

target.addEventListener('drop', function (e) {
 e.preventDefault();
 var newImg = document.createElement('img');
 newImg.setAttribute('src', e.dataTransfer.getData('URL'));
 e.currentTarget.appendChild(newImg);
}, false);

Note the use of preventDefault() again inside the function on the drop
callback; using this is important, because in most (if not all) browsers the
default behavior after dropping an item into a drop zone is to try to open
its URL. This is part of Drag and Drop’s arcane behavior. All you really
need to know is to use preventDefault() to stop this from happening.

You can see a simple example based on the previous code in the file
drag-drop.html—just drag the image from its starting position to inside
the box.

I said previously that, by default, only a and img elements are draggable,
but you can make that true of any element in two steps. First, apply the true
value to the draggable attribute of the element in question:

<div draggable="true" id="text">Drag Me</div>

Second, specify a datatype for the element. You do this with the
dragstart event, using the setData() method of dataTransfer to apply a
MIME type (in this case, text/plain) and a value (in this case, the text
content of the element):

var txt = document.getElementById('txt');
 txt.addEventListener('dragstart', function (e) {
 e.dataTransfer.setData('text/plain', e.currentTarget.textContent);
}, false);

You can detect the type of file being dropped by using the contains()
method, which is a child of the types object, itself a child of the dataTransfer
object created in the callback function of the drop event. The method returns
true or false if the string supplied in the argument matches a value in types;
for example, to find out if a dropped element contains a plain text type, you
would use this:

var foo = e.dataTransfer.types.contains('text/plain');

Device APIs 121
The Modern Web

©2013, Peter Gasston

Using the contains() method means you can perform different actions
on different files.

The example file drag-drop-2.html shows two elements, an img and a p,
which can be dragged into the marked drop zone, creating a copy of each,
and the following code shows how this is done: The contains() method detects
if the element being dragged contains a URL; if it does, it must be an img,
so it creates a new img element with the URL of the dropped element in the
src attribute; if it doesn’t, it must be text, so it creates a new text node filled
with the text of the dropped element.

target.addEventListener('drop', function (e) {
 var smth;
 e.preventDefault();
 if (e.dataTransfer.types.contains('text/uri-list')) {
 smth = document.createElement('img');
 smth.setAttribute('src', e.dataTransfer.getData('URL'));
 } else {
 smth = document.createTextNode(e.dataTransfer.getData('Text'));
 }
 e.currentTarget.appendChild(smth);
}, false);

Although what I’ve described in this section is more than sufficient
for you to use the Drag and Drop API, the API contains plenty more that I
haven’t covered. If you’re interested, a number of extra events are available:
dragenter and dragleave are events for the drop zone, and dragend and drag
are fired on the draggable item.

Interacting with Files
Working with different files is a common activity—although much more so
on desktops or laptops than on mobile devices—so an API is available for
doing this on the Web too. The File API is a fairly low-level API that allows
you to get information about files and to access their contents, and there
are a few higher-level APIs that I’ll mention in due course.

To access files, you can either choose them using the file input element
or drag them from a folder on your system (depending on the system you
use) with the Drag and Drop API, which is the approach we’ll look at here.

The dataTransfer object, which I just discussed in the previous section,
contains a files child object that contains a list of all the files dropped into
the drop zone. Each file has three properties—name, size, and type—and the
meaning of these should be pretty obvious.

The following code example shows a function where files dropped into
the drop zone will have their names listed. You do this with a for loop that
runs through the files object and outputs the name property for each. Try it
for yourself with the example file files.html.

122 Chapter 6
The Modern Web

©2013, Peter Gasston

target.addEventListener('drop', function (e) {
 var files = e.dataTransfer.files,
 fileNo = files.length;
 e.preventDefault();
 for (i = 0; i < fileNo; i++) {
 var el = document.createElement('li'),
 smth = document.createTextNode(files[i].name);
 el.appendChild(smth);
 e.currentTarget.appendChild(el);
 }
}, false);

If you need more than just information about the file, the FileReader
interface allows you to get the content as a text file or data URL (where rele-
vant). The following code snippet shows a simple example using an image
file as the source; the syntax is a little complex, so I’ve annotated the code
and will explain it next.

target.addEventListener('drop', function (e) {
 e.preventDefault();
 var files = e.dataTransfer.files[0],

! reader = new FileReader();
" reader.addEventListener('load', function (evt) {

 var img = document.createElement('img');
img.src = evt.target.result;

 target.appendChild(img);
 }, false);

$ reader.readAsDataURL(files);
% reader.addEventListener('error', function (evt) {

 console.log(evt.target.error.code)
 }, false);
}, false);

In !, a new FileReader object is created and assigned to the variable
reader. To this object, a new event listener is added ", which will fire when
the file has finished loading, running a function that will create a new
img element using the content of the uploaded file. The src for the img ele-
ment is obtained in #, using the result attribute of target, a child object of
the event. The type of result is determined in $ using the readAsDataURL()
method, which encodes the file content as a 64-bit data string. Finally, an
error event listener is added to the object in %, which uses the code attribute
of the error object of the target object of the event object (phew!) to log an
error message.

Try this for yourself in file-2.html ; drag an image from a folder on your
system (if possible) to see it appear in the page. In addition to readAsDataURL(),
a few other methods are available: readAsText() returns the content of the
file as plain text, and readAsArrayBuffer() returns the content as a fixed-
length data buffer (especially useful for images).

Device APIs 123
The Modern Web

©2013, Peter Gasston

You can also use a number of APIs to go even further with files: The
File Writer API allows you to modify the content of a file, and the File System
API goes further still with the provision of a navigable filesystem on the user’s
device. These APIs are exciting but somewhat too technical for me to go
into detail in this book.

Mozilla’s Firefox OS and WebAPIs
A potentially quite interesting entry into the mobile OS market comes from
Mozilla, makers of the Firefox browser. Mozilla is building a brand new OS
from the ground up, all constructed with open web standards—HTML,
CSS, JavaScript, and others. The OS has no middleware layer, as iOS or
Android does, and the system APIs all use JavaScript to interact directly
with the hardware. Building a new OS is a bold undertaking, and I look for-
ward to seeing how it performs.

As part of that effort, Mozilla realized they needed to develop many
of the existing device APIs and create many more. This project is called
WebAPI, and although many of the included APIs have been covered
already in this chapter, a few are unique to Firefox OS at the moment.

Here are some of the new APIs: WebTelephony, for sending and receiv-
ing calls; WebSMS, for sending, receiving, and managing text messages;
Contacts, for accessing and managing the address book; and Device Storage,
for accessing shared files or folders such as the picture gallery featured on
many phones.

The fate of Firefox OS and broader implementation of these APIs
remain to be seen, but I’m quite excited about a smartphone OS that is
built using only open web technologies and the many possibilities that
opens up for web developers with regard to device interactions.

PhoneGap and Native Wrappers
If you need deeper access to device APIs but still want to develop using web
technologies, you might want to consider a native wrapper for your app.
These wrappers act as a kind of layer between your web application and the
device in question, providing hooks into the API but not using native code
to display what’s on the screen. Using a native wrapper around web tech-
nologies creates what’s known as a hybrid app.

Which wrapper you use depends largely on your targets (I’ll discuss
this in more detail in Chapter 10), but as an example of what they can do,
PhoneGap is perfect. It’s a wrapper for mobile apps, providing a common
API for developers to build hybrid apps that work across iOS, Android,
Windows Phone, Blackberry, and more.

124 Chapter 6
The Modern Web

©2013, Peter Gasston

Summary
By necessity, I could detail only a few of the many APIs that make up the
web platform, including those for location and spatial movement, status of
the battery and Internet connection, access to the camera and microphone,
local storage capabilities, interaction with files and elements in a tactile way,
and access to information about the content of files. I hope that with this
overview and the example files I’ve been able at least to hint at the creative
possibilities that open up when you access a device through JavaScript.

Further Reading
Dive Into HTML5 has an in-depth explanation of the Geolocation API at
http://diveintohtml5.info/geolocation.html, whereas the MozDev article “Orienta-
tion and Motion Data Explained” gives a good overview of three-dimensional
orientation and movement: https://developer.mozilla.org/en-US/docs/DOM/
Orientation_and_motion_data_explained/.

The Fullscreen API is explained in the Sitepoint article “How to Use
the HTML5 Full-Screen API” by Craig Buckler, although the API changed
slightly as I was writing this, so some object names or properties may
have been updated. You can find the article at http://www.sitepoint.com/
html5-full-screen-api/.

The Battery Status API is well explained by David Walsh at http://
davidwalsh.name/battery-api/, and a discussion of the previous and
newly updated Network Information API is at http://nostrongbeliefs.com/
a-quick-look-network-information-api/.

HTML5 Rocks gives the best explanation of getUserMedia() in their
 article “Capturing Audio & Video in HTML5”: http://www.html5rocks.com/
en/tutorials/getusermedia/intro/. The full aims of the WebRTC project are
listed at http://www.webrtc.org/.

MozDev (again) gives a concise introduction to the Web Storage API:
https://developer.mozilla.org/en-US/docs/DOM/Storage/.

The most accessible guide to the Drag and Drop API that I found was
written by the HTML5 Doctors at http://html5doctor.com/native-drag-and-drop/,
while the five-part “Working with Files in Java Script” by Nicholas Zakas is an
excellent resource for the File API: http://www.nczonline.net/blog/2012/05/
08/working-with-files-in-javascript-part-1/.

The APIs that form the Firefox OS project are listed at https://wiki
.mozilla.org/WebAPI/, and the slides from the presentation “WebAPIs
and Apps” by Robert Nyman provide a great overview of the APIs: http://
www.slideshare.net/robnyman/web-apis-apps-mozilla-london/. “Are We Mobile
Yet?” gives an at-a-glance guide to levels of API implementation: http://
arewemobileyet.com/.

