

About the Author
Majed Marji holds a PhD in electrical engineering from Wayne State Uni
versity and an MBA in strategic management from Davenport University.
He has over 15 years of experience in the automotive industry, where he
developed many software applications for realtime data acquisition, device
control, testcell management, engineering data analysis, embedded con
trollers, telematics, hybrid vehicles, and safetycritical powertrain systems.
Dr. Marji is also an adjunct faculty member with the Electrical Engineering
Department at Wayne State University. He has taught courses on communi
cation engineering, machine vision, microprocessors, control systems, and
algorithms and data structures, among other topics.

About the Technical Reviewer
Tyler Watts, EdS, is a creativecomputing educator who teaches sixth
through eighth graders in Kansas City (Kansas) Unified School District 500
and adult students at the University of Missouri–Kansas City. He has been
using Scratch since 2009 as a tool to combat the digital divide and teach
students how to think like computer scientists. Since Tyler’s first year of teach
ing Scratch, he has learned the importance of weaning learners off of the
“Scratch training wheels” and challenging them and molding them into
digital creators. He feels that programming is a form of personal expres
sion and teaches his students to approach it as they would any other art
form and have fun.

LTPWS_bio.indd 5 1/14/2014 3:56:29 PM

B r i e f c o n t e n t S

Acknowledgments . xv

Introduction .xvii

Chapter 1: Getting Started . 1

Chapter 2: Motion and Drawing . 25

Chapter 3: Looks and Sound . 47

Chapter 4: Procedures . 67

Chapter 5: Variables . 91

Chapter 6: Making Decisions . 123

Chapter 7: Repetition: A Deeper Exploration of Loops . 155

Chapter 8: String Processing . 185

Chapter 9: Lists . 213

Appendix: Sharing and Collaboration . 243

Index . 251

scratch_book02.indb 7 1/8/2014 3:35:39 PM

5
V a r i a B L e S

This chapter explains how to create scripts that can
read in and remember values. When you use variables,
you can write applications that interact with users and
respond to their input. Here’s what we’ll cover in this
chapter:

•	 The data types supported by Scratch

•	 How to create variables and manipulate them

•	 How to obtain input from users and write interactive programs

Though the scripts you wrote in the last four chapters helped you learn
important Scratch programming skills, they lacked many key elements of
a large-scale application. More complex programs can remember values
and decide to take an action based on certain conditions. This chapter will
address the first of these two deficiencies, and decision making will be cov-
ered in the next chapter.

scratch_book02.indb 91 1/8/2014 3:35:52 PM

92 Chapter 5

As you may have learned by now, scripts process and manipulate dif-
ferent types of data during their execution. These data can be input to
command blocks (for example, the number 10 in the move 10 steps com-
mand and the “Hello!” string in the say Hello! command) or output from
function blocks (like mouse x, y position and pick random), or data can
be entered by the user in response to the ask and wait command. For more
complex programs, you’ll often need to store and modify data to accom-
plish certain tasks. Data management in Scratch can be done using variables
and lists. This chapter will explore variables in detail. Lists will be explored
in Chapter 9.

This chapter begins with an overview of the data types supported in
Scratch. It continues with an introduction to variables and a discussion of
how to create and use them in your programs. Variable monitors will then
be explained and used in several interesting applications. After mastering
the basic concepts, you’ll learn how to use the ask and wait command to
get inputs from the user.

data types in Scratch
Many computer programs manipulate different kinds of data, including
numbers, text, images, and so on, to produce useful information. This is
an important programming task, so you’ll need to know the data types and
operations supported in Scratch. Scratch has built-in support for three data
types that you can use in blocks: Booleans, numbers, and strings.

A Boolean can have only one of two values: true or false. You can use
this data type to test one or more conditions and, based on the result, have
your program choose a different execution path. We’ll discuss Booleans in
detail in the next chapter.

A number variable can hold both integers and decimal values. Scratch
doesn’t distinguish between the two; they’re both classified as “numbers.”
You can round decimal numbers to the nearest whole number using the
round block from the Operators palette. You can also use the floor of (or
ceiling of) functions, available from the sqrt of block in the Operators pal-
ette, to get an integer from a specified decimal number. For example, floor
of 3.9 is 3 and ceiling of 3.1 is 4.

A string is a sequence of characters, which can include letters (both
upper- and lowercase), numbers (0 to 9), and other symbols that you can
type on your keyboard (+, –, &, @, and so on). You’d use a string data type
to store names, addresses, book titles, and so on.

What’s in the Shape?
Have you noticed that Scratch blocks and their parameter slots each
have particular geometric shapes? For example, the parameter slot in the
move 10 steps block is a rectangle with rounded corners, while the one
in the say Hello! block is a rectangle with sharp corners. The shape of the

scratch_book02.indb 92 1/8/2014 3:35:52 PM

Variables 93

parameter slot is related to the data type it accepts. Try entering your name
(or any other text) in the move 10 steps block; you’ll find that Scratch
allows you to enter only numbers into the rounded-rectangle slot.

Similarly, the shape of a function block indicates the data type it returns.
The meanings of the different shapes are illustrated in Figure 5-1.

Command Blocks

Boolean
parameter

String
parameter

Number
parameter

Function Blocks

Boolean

Number/
String

Arrow means “can go into.”

Figure 5-1: What the shapes of command and function blocks mean

Parameter slots have three shapes (hexagon, rectangle, and rounded
rectangle), while function blocks have only two shapes (hexagon and
rounded rectangle). Each shape is associated with a particular data type,
though you should note that a rounded-rectangle function block can
report either a number or a string.

Hexagon and rounded-rectangle slots take only function blocks of the
same shape, while a rectangular slot will accept any function block. The
good news is that Scratch prevents you from mismatching types, so you
don’t have to memorize this rule. Try dragging a hexagon-shaped block
into a rounded-rectangle slot; you won’t be able to drop it there because
the types are incompatible.

Automatic Data Type Conversion
As I mentioned above, a number parameter slot only accepts a rounded-
rectangle function block. All of the rounded-rectangle function blocks you’ve
dealt with so far—including x position, y position, direction, costume #,
size, volume, tempo, and so on—report numbers. Therefore, using them
inside a number slot (like the move 10 steps block) isn’t a problem. How-
ever, some rounded-rectangle function blocks, such as the answer block
from the Sensing palette or the join block from the Operators palette, can
hold either a number or a string. This brings up an important question:
What happens if we, for example, insert an answer block containing a
string into a number slot? Fortunately, Scratch automatically tries to con-
vert between data types as needed, as illustrated in Figure 5-2.

In this example, the user enters 125 in response to the Enter a num-
ber prompt. The user’s input is saved in the answer function block. When
this input is passed to the say command, it is automatically converted to a
string. When the same answer is passed to the addition operation (which
expects a number), it is converted to the number 125. When the addition
operation is performed, the result (25 + 125 = 150) is converted back to a
string, and “150” is passed to the say block. Scratch automatically attempts
to take care of these conversions for you.

scratch_book02.indb 93 1/8/2014 3:35:52 PM

94 Chapter 5

Figure 5-2: Scratch automatically converts between data types based on context.

Understanding the data types available in Scratch, the operations per-
mitted on these types, and how Scratch converts between them will help
you understand why things work the way they do. In the next section, you’ll
learn about variables and how to use them to store and manipulate data in
your programs.

Introduction to Variables
Let’s say we want to create a software version of the game Whac-a-Mole. The
original game has a flat surface with several holes. The player uses a mal-
let to smack moles as they pop out of these holes. In our version, a sprite
appears at a random location on the Stage, stays visible for a short time,
and disappears. It waits a bit, and then appears again at a different location.
The player needs to click on the sprite as soon as it appears. Every time he
clicks on the sprite, he gains one point. The question for you as a program-
mer is, how do you keep track of the player’s score? Welcome to the world of
variables!

In this section, I’ll introduce variables, one of the most important ele-
ments of any programming language. You’ll learn how to create variables
in Scratch and how to use them to remember (or store) different types of
data. You’ll also explore the available blocks for setting and changing the
values of variables in your programs.

What Is a Variable?
A variable is a named area of computer memory.
You can think of it as a box that stores data, includ-
ing numbers and text, for a program to access as
needed. In Figure 5-3, for example, we depict a
 variable named side whose current value is 50.

When you create a variable, your program
sets aside enough memory to hold the value of the
variable and tags the allocated memory with that
variable’s name. After creating a variable, you can
use its name in your program to refer to the value

side

50

name of the
variable

value of the
variable

Figure 5-3: A variable
is like a named box that
contains some value.

LTPWS_05_02.indd 94 1/17/2014 12:04:43 PM

Variables 95

it represents. For example, if we have a box (that is, a variable) named
side that contains the number 50, we can construct a command such as
move (3*side) steps. When Scratch executes this command, it will locate
the box named side in computer memory, grab its contents (in this case, the
number 50), and use that value to replace the side label inside the move
(3*side) steps block. As a result, the sprite will move 150 (that is, 3 × 50)
steps.

In our Whac-a-Mole game, we need a way to remember the player’s
score. To do that, we can reserve some space in the computer’s memory
(like a box) to store the score. We also need to give that box a unique label,
let’s say score, which will let us find it whenever we need to know or change
what’s inside.

When the game starts, we’ll tell Scratch to “set score to 0,” and Scratch
will look for the box labeled score and put the value 0 inside it. We’ll also
tell Scratch to “increase score by 1” any time the player clicks on the sprite.
In response to the first click, Scratch will look inside the score box again,
find our 0, add 1 to it, and put the result (which is 1) back in the box.
The next time the player clicks on the sprite, Scratch will again follow our
“increase score by 1” command to increment score and store the resulting
value of 2 in the box.

You’ll see the actual Scratch blocks for these operations in a moment.
For now, notice that the value of score changes throughout the program.
This is why we call it a variable—its value varies.

One important use of variables is to store the intermediary results of
evaluating an algebraic expression. This is similar to the way you do mental
math. For example, if you were asked to find 2 + 4 + 5 + 7, you might start
by adding 2 + 4 and memorizing the answer (6). You’d then add 5 to the
previous answer (which is stored in your memory) and memorize the new
answer, which is 11. Finally, you’d add 7 to the previous result to get the
final answer of 18.

To illustrate how variables can be used for temporary storage, let’s say
that you want to write a program to compute the following expression:

1 5 5 7

7 8 2 3

/ /

/ – /
() + ()
() ()

You could evaluate the whole thing with one command, but cramming
everything into one statement makes it hard to read, as shown below:

Another way to write the program is to evaluate the numerator and
denominator individually and then use the say block to display the result
of their division. We can do that by creating two variables called num (for
numerator) and den (for denominator) and setting their values as shown in
Figure 5-4.

LTPWS_05_02.indd 95 1/17/2014 12:04:48 PM

96 Chapter 5

Creating and Using Variables
In this section, we’ll explore how to create and use variables through a
 simple application that simulates rolling a pair of dice and displays their
sum, as illustrated in Figure 5-6.

Background
image

 Die2 sprite

 Die1 sprite

 Player sprite

The costumes of the
 Die1 and Die2

sprites

Figure 5-6: The user interface of the dice simulator

Our dice simulator contains three sprites: Player, Die1, and Die2.
The Player sprite manages the simulation. When the green flag icon is
pressed, this sprite generates two random numbers between 1 and 6 and
saves those values in two variables named rand1 and rand2, respectively. It
then broadcasts a message to the other two sprites (Die1 and Die2) to show
the randomly generated values; Die1 will show the value of rand1, and Die2
will show rand2. After that, the Player sprite adds rand1 to rand2 and dis-
plays the sum using the say block.

Let’s build this application from the ground up. Open the file
DiceSimulator_NoCode.sb2. This file contains the background image for
the Stage as well as the three sprites used in the application. We’ll create
all the scripts we need one at a time.

First, click the thumbnail of the Player sprite to select it. Select the Data
palette and click Make a Variable, as shown in Figure 5-7 (left). In the dialog
that appears, as shown in Figure 5-7 (right), type the name of the variable
and select its scope. A variable’s scope determines which sprites can write to
(or change the value of) that variable, as I will explain in more detail in the
next section. For this example, enter rand1 for the variable’s name and select
the For all sprites option for the variable’s scope. Click OK when done.

Select the Data palette
and then click Make a
Variable.

Type the variable’s
name, select its
scope, and click OK.

Figure 5-7: Creating a variable, naming it, and specifying its scope

DiceSimulator_
NoCode .sb2

Computer Memory

...
0.91428
0.2083

...

num

den

1/5+5/7

7/8–2/3

Figure 5-4: Two variables (num and den) hold the value of the expression’s
numerator and denominator, respectively .

Take a look at how our variables are arranged in computer memory.
Here, num is like a tag referring to the location in memory where the
result of evaluating (1 / 5 + 5 / 7) is stored. Similarly, den refers to where
(7 / 8 – 2 / 3) is stored. When the say command is executed, Scratch grabs
the contents of memory labeled num and den. It then divides the two num-
bers and passes the result to the say command for display.

We could break this expression down even further by evaluating each
fraction individually before displaying the result of the total expression, as
shown in Figure 5-5.

Computer Memory

...
0.2

0.7142

...

a

b

1/5

5/7

0.875
0.6666

c

d 2/3

7/8

Figure 5-5: Using four variables (a, b, c, and d) to hold the four fractions
in the expression

Here, we use four variables (named a, b, c, and d) to hold the four frac-
tions in our mathematical expression. The figure also depicts the memory
allocation; this time, you can see four variables and their contents.

Although these three programs give the same answer, each implemen-
tation follows a different style. The first program puts everything in one
statement, which is tough to read. The third program breaks things down
to a greater level of detail, but that can be hard to read, too. The second
solution breaks the expression down to a reasonable level and uses vari-
ables to both make the program easier to understand and clearly show the
major parts of the expression (the numerator and the denominator). As
Goldilocks would say, this one is just right.

This simple example demonstrates how a problem can have multiple
solutions. Sometimes you might be concerned about a program’s speed or
size, and other times your goal might be readability. Since this is an intro-
ductory programming book, the scripts in this book are written to empha-
size readability.

Now that you understand what variables are and why you’d want to use
them, let’s make some variables and take our Scratch applications a step
further.

scratch_book02.indb 96 1/8/2014 3:35:53 PM

Variables 97

Creating and Using Variables
In this section, we’ll explore how to create and use variables through a
 simple application that simulates rolling a pair of dice and displays their
sum, as illustrated in Figure 5-6.

Background
image

 Die2 sprite

 Die1 sprite

 Player sprite

The costumes of the
 Die1 and Die2

sprites

Figure 5-6: The user interface of the dice simulator

Our dice simulator contains three sprites: Player, Die1, and Die2.
The Player sprite manages the simulation. When the green flag icon is
pressed, this sprite generates two random numbers between 1 and 6 and
saves those values in two variables named rand1 and rand2, respectively. It
then broadcasts a message to the other two sprites (Die1 and Die2) to show
the randomly generated values; Die1 will show the value of rand1, and Die2
will show rand2. After that, the Player sprite adds rand1 to rand2 and dis-
plays the sum using the say block.

Let’s build this application from the ground up. Open the file
DiceSimulator_NoCode.sb2. This file contains the background image for
the Stage as well as the three sprites used in the application. We’ll create
all the scripts we need one at a time.

First, click the thumbnail of the Player sprite to select it. Select the Data
palette and click Make a Variable, as shown in Figure 5-7 (left). In the dialog
that appears, as shown in Figure 5-7 (right), type the name of the variable
and select its scope. A variable’s scope determines which sprites can write to
(or change the value of) that variable, as I will explain in more detail in the
next section. For this example, enter rand1 for the variable’s name and select
the For all sprites option for the variable’s scope. Click OK when done.

Select the Data palette
and then click Make a
Variable.

Type the variable’s
name, select its
scope, and click OK.

Figure 5-7: Creating a variable, naming it, and specifying its scope

DiceSimulator_
NoCode .sb2

scratch_book02.indb 97 1/8/2014 3:35:53 PM

98 Chapter 5

After you create the variable, several new blocks related to it will appear
in the Data palette, as illustrated in Figure 5-8.

Variable name. Use the checkbox to show/
hide the variable’s monitor on the Stage.

This instruction allows you to set the value of
the variable.

This instruction allows you to change the
value of the variable by a fixed amount
(positive or negative).
These instructions allow you to show/hide the
variable’s monitor while the script is running.

Figure 5-8: The new blocks that appear when you create the rand1 variable

You can use these blocks to set a variable to a specific value, change it
by a fixed amount, and show (or hide) its monitor on the Stage. A variable’s
monitor, as you’ll learn in “Displaying Variable Monitors” on page 106, dis-
plays the current value stored in that variable.

Repeat the procedure I outlined above
to create another variable, named rand2.
The Data palette should now contain a
second variable block (named rand2),
and the down arrows on the blocks of
Figure 5-8 should let you choose between
rand1 and rand2. Now that we’ve created
the two variables, we can build the script
for the Player sprite. The complete script
is shown in Figure 5-9.

N a miNg Va r i a bl e s

Over the years, people have come up with different ways to name the vari-
ables in their programs. One popular convention is to start the name with a
lowercase letter and capitalize the first letter of each additional word, such as
in sideLength, firstName, and interestRate.

Although Scratch allows variable names to start with numbers and con-
tain white spaces (for example, 123Side or side length), most programming
languages don’t, so I recommend that you avoid these unusual names for your
variables. And while you can name a variable anything you want, I highly rec-
ommend using descriptive and meaningful names. Single-letter variables like w
and z should be kept to a minimum unless their meaning is very clear. On the
other hand, names that are too long can make your script harder to read.

Also, note that variable names in Scratch are case sensitive, meaning that
side, SIDE, and siDE are all unique variables. To avoid confusion, try not to
use variables in the same script whose names differ only in case.

Figure 5-9: The script for the Player
sprite

LTPWS_05_02.indd 98 1/14/2014 4:20:50 PM

Variables 99

The first command sets rand1 to a random number between 1 and 6.
Think back to our box analogy: This command causes the sprite to find the
box labeled rand1 and put the generated random number inside it. The sec-
ond command assigns rand2 another random value between 1 and 6. Next,
the script broadcasts a message called Roll to the other two sprites (Die1 and
Die2) to notify them that they need to switch their costumes as specified
by rand1 and rand2. Once the Die1 and Die2 sprites have finished their job,
the script resumes and displays the sum of the numbers on the faces of the
dice using the say block. Let’s look at the Roll message handler for the Die1
sprite, shown in Figure 5-10.

Drag the variable’s monitor block
onto the parameter slot.
The complete procedure

Figure 5-10: To use a variable in a command block, just drag that variable
over the parameter slot of that block.

After creating the script shown at the top right of the figure, drag the
rand1 block from the Data palette to the parameter slot of the switch to
costume block to form the complete script (bottom right). In this script,
the repeat block changes the costume of the die randomly 20 times to sim-
ulate rolling the die (you can change this number if you want). After that,
the die sets its costume to the number specified by rand1. Recall that each
die has six costumes that correspond to numbers 1 through 6 in order. That
means if rand1 were 5, the last switch to costume command would display
the costume that has five dots in it.

Now, we can create the script for the Die2 sprite, which should be nearly
identical to the one we made for Die1. Since Die2 changes its costume based
on rand2, all you need to do is duplicate the Die1 script for Die2 and replace
rand1 with rand2.

Our dice simulator is now complete, so let’s test it out. Click the green
flag icon to see the simulation in action. If the application doesn’t work,
examine the file DiceSimulator.sb2, which contains the correct implementa-
tion of the program.

LTPWS_05_02.indd 99 1/17/2014 1:58:49 PM

100 Chapter 5

The Scope of Variables
Another important concept related to variables is scope. The scope of a vari-
able determines which sprites can write to (or change the value of) that
variable.

You can specify the scope of a variable when you create it by selecting
one of the two options you saw in Figure 5-7. Choosing For this sprite only
creates a variable that can be changed only by the sprite that owns it. Other
sprites can still read and use the variable’s value, but they can’t write to it.
The example shown in Figure 5-11 illustrates this point.

count is a variable whose
scope is set to For this
sprite only.

The Penguin sprite
can read the count
variable of the Cat
sprite.

Figure 5-11: Only the Cat sprite can write to count.

In this figure, the Cat sprite has a variable, named count, with the scope
For this sprite only. The Penguin sprite can read count with the x position of
Penguin block from the Sensing palette. When you select Cat as the second
parameter of this block, the first parameter will let you choose an attribute
of the Cat sprite, including one of its variables.

Scratch, however, doesn’t provide a block that allows the Penguin sprite
to change the count variable. This way, the Penguin sprite can’t tamper with
count and cause undesirable effects for scripts run by the Cat sprite. It’s
good practice to use the For this sprite only scope for variables that should
only be updated by a single sprite.

Variables created with the For this sprite only scope are said to have
local scope, and they can be called local variables. Different sprites can use the
same name for their local variables without any conflict. For example, if

ScopeDemo.sb2

T ry I T Ou T 5-1

Select the Player sprite and create a new variable called sum. Set the scope
for this variable to For this sprite only. Modify the last block of the Player script
to use this new variable, like this:

Now select the Die1 (or Die2) sprite and look under the Data palette. Can
you explain why you don’t see the sum variable there?

LTPWS_05_02.indd 100 1/13/2014 12:34:11 PM

Variables 101

you have two car sprites in a racing game, each might have a local variable
named speed that determines the car’s speed of motion on the Stage. Each
car sprite can change its speed variable independently of the other. This
means that if you set the speed of the first car to 10 and the speed of the
 second to 20, the second car should move faster than the first.

Variables with the scope For all sprites, on the other hand, can be read
and changed by any sprite in your application. These variables, often called

Data t y Pe of a Va r i a BL e

At this point, you might wonder, “How does Scratch know the data type of a
variable?” The answer is, it doesn’t! When you create a variable, Scratch has
no idea whether you intend to use that variable to store to a number, a string,
or a Boolean . Any variable can hold a value of any data type . For example,
all of the following commands are valid in Scratch .

Set side to an integer value.

Set side to a decimal value.

Set side to a single character.

Set side to a string.

Set side to a Boolean value
(true in this case).

It’s up to you to store the correct values in your variables . As I described
earlier in this chapter, however, Scratch will try to convert between data types
depending on the context . To see what happens when you store an incorrect
data type in a variable, consider these two examples:

The string “Nonsense” is converted to a num-
ber (0) and passed to the move command.

The string “100” is converted to a number
(100) and passed to the move command.

Since the move command expects a number parameter, Scratch will auto-
matically try to convert the value stored in the side variable to a number before
passing it to the move command . In the first script (left), Scratch can’t convert
the string “Nonsense” to a number . Rather than showing an error message,
Scratch will silently set the result of the conversion to 0 and pass this value to
the move command . As a result, the sprite won’t move . On the other hand,
in the second script (right), Scratch ignores the whitespace in the string and
passes the resulting number to the move block, so the sprite moves 100 steps
forward . Note that if the target block had expected a string instead of a num-
ber, Scratch would have passed the string as it was, whitespace included .

scratch_book02.indb 101 1/8/2014 3:35:54 PM

102 Chapter 5

global variables, are useful for intersprite communication and synchroniza-
tion. For example, if a game has three buttons that allow the user to select
a level to play, you can create a global variable named gameLevel and have
each button sprite set this variable to a different number when clicked.
Then you can easily find out the user’s choice by examining gameLevel.

Selecting the For all sprites option also enables the Cloud variable check-
box in Figure 5-7. This feature allows you to store your variables on Scratch’s
server (in the cloud). Blocks for cloud variables have a small square in front
of them to distinguish them from regular variables, like this:

Anyone who views a project you’ve shared on the Scratch website can
read the cloud variables in the project. For example, if you share a game,
you can use a cloud variable to track the highest score recorded among all
the players. The score cloud variable should update almost immediately for
everyone interacting with your game. Because these variables are stored on
Scratch servers, they keep their value even if you exit your browser. Cloud
variables make it easy to create surveys and other projects that store num-
bers over time.

Now that you understand scope, it’s time to learn about updating
 variables—and then use that knowledge to create more interesting
programs.

Changing Variables
Scratch provides two command blocks that
allow you to alter variables. The set to com-
mand directly assigns a new value to a vari-
able, regardless of its current contents. The
change by command, on the other hand,
is used to change the value of a variable
by a specified amount relative to its cur-
rent value. The three scripts in Figure 5-12
demonstrate how you could use these com-
mands in different ways to achieve the same
outcome.

All three scripts in the figure start by
setting the values of two variables, sum and
delta, to 0 and 5, respectively. The first script
uses the change command to change the
value of sum by the value of delta (that is,
from 0 to 5). The second script uses the set
command to add the current value of sum to
the value of delta (0 + 5) and store the result
(5) back into sum. The third script achieves the same result with the aid of
a temporary variable named temp. It adds the value of sum to delta, stores
the result in temp, and finally copies the value of temp into sum.

Figure 5-12: Three methods for
changing the value of a variable

LTPWS_05_02.indd 102 1/13/2014 12:34:37 PM

Variables 103

After executing any of the scripts in Figure 5-12, sum will contain
the number 5, making these scripts functionally equivalent. Note that the
method used in the second script is a common programming practice, and
I recommend that you study it for a moment to become comfortable with it.
Now let’s see the change command in action.

Spider Web

We can create a spider web by drawing several hexagons of increasing size,
as shown in Figure 5-13. The Triangle procedure draws an equilateral
tri angle with a variable side length, while the Hexagon procedure calls
Triangle six times with a 60° (that is, 360° / 6) right turn after each call.
The figure clearly shows how the hexagon is made up of the six triangles.

sideLength

Figure 5-13: Creating a spider web by drawing several hexagons of increasing size

The SpiderWeb procedure simply calls Hexagon repeatedly with a dif-
ferent value of the sideLength variable each time. This results in the concen-
tric (that is, having the same center) hexagons you see in the figure. Note
how the change command is used to set the value of sideLength inside the
repeat loop. Reproduce the SpiderWeb procedure, run it, and see how it
works.

Pinwheel

This example is similar to the previous one except that this time, we’ll use
a variable to control the number of triangular repetitions. The resulting
procedure (called Pins) is shown in Figure 5-14. The Pinwheel procedure
in the same figure works like the SpiderWeb procedure above, but we also
change the pen’s color each time through the loop for a fun rainbow effect.
Some outputs of the Pinwheel procedure for different pin counts are shown
in the figure. Experiment with this procedure to see what else you can
create.

SpiderWeb.sb2

Pinwheel.sb2

LTPWS_05_02.indd 103 1/14/2014 4:21:31 PM

104 Chapter 5

Figure 5-14: Creating a pinwheel by rotating an equilateral triangle several times

Now that we’ve explored the fundamentals of variables, you might won-
der what happens to variables when you duplicate a sprite. Does the dupli-
cate share the parent sprite’s variables, or does it have its own copies? Do
clones have access to global variables? We’ll answer these questions in the
next section.

Variables in Clones
Every sprite has a list of properties associated with it, including its current
x-position, y -position, direction, and so on. You can imagine that list as a
backpack holding the current values of the sprite’s attributes, as illustrated
in Figure 5-15. When you create a variable for a sprite with a scope of For
this sprite only, that variable gets added to the sprite’s backpack.

When you clone a sprite, the clone inherits copies of the parent sprite’s
attributes, including its variables. An inherited property starts out identi-
cal to the parent’s property at the time the clone is created. But after that,
if the clone’s attributes and variables change, those changes don’t affect
the parent. Subsequent changes to the parent sprite don’t affect the clone’s
properties, either.

t ry i t ou t 5-2

Alter the Pinwheel program to hide the sprite . This should make it easier for you to
watch the drawing without the sprite getting in the way .

scratch_book02.indb 104 1/8/2014 3:35:54 PM

Variables 105

STAGE

cl
on

e

Variables with scope

clone

Sprite’s backpack

x-position, y-position,
direction, costume #,
costume name, size,
volume, graphic
effects, etc.

All variables with
scope For this
sprite only

Clone1 backpack

All variables with
scope For this
sprite only

Clone2 backpack

All variables with
scope For this
sprite only

Stage’s backpack
costume #, costume
name, volume #,
graphic effects, etc.

For all sprites

x-position, y-position,
direction, costume #,
costume name, size,
volume, graphic
effects, etc.

x-position, y-position,
direction, costume #,
costume name, size,
volume, graphic
effects, etc.

Figure 5-15: Clones inherit copies of their parent’s variables

To illustrate, let’s say the parent sprite owns a variable named speed
whose current value is 10. When you clone the parent, the new sprite will
also have a variable named speed with the value 10. After that, if the parent
sprite changes speed to 20, the value of speed in the clone will stay at 10.

You can use this concept to distinguish between clones in your applica-
tions. For example, let’s look at the program in Figure 5-16.

The parent sprite and
its three clones, each
with its own unique ID

Figure 5-16: Using variables to distinguish between clones

CloneIDs.sb2

LTPWS_05_02.indd 105 1/14/2014 4:22:06 PM

106 Chapter 5

The parent sprite in this example owns a variable named cloneID. When
the green flag is clicked, it starts a loop to create three clones, and it sets
cloneID to a different value (1, 2, or 3 in this case) before creating a clone.
Each clone comes to life with its own copy of cloneID initialized to a differ-
ent value. You could now use an if block, which we’ll study in depth in the
next chapter, to check for the clone’s ID and have it perform a correspond-
ing action.

Now, let’s discuss how clones can interact with global variables. Recall
from Figure 5-15 that variables with scope For all sprites can be read and
written by the Stage and all sprites, including clones. As an example, the
program in Figure 5-17 uses this fact to detect when all clones of the parent
sprite have disappeared.

Figure 5-17: Using a global variable to track when clones are deleted

In this script, the parent sprite sets the global variable numClones to
5 and creates five clones. It then waits for numClones to become 0 before
announcing the end of the game. The clones appear at random times and
locations on the Stage, say “Hello!” for two seconds, and then disappear.
Before a clone is deleted, it decreases numClones by 1. When all five clones
are gone, numClones reaches 0, the main script stops waiting, and the origi-
nal sprite says “Game Over!”

In the following section, you’ll learn about variables’ monitors, which
allow you to see, and even change, the current values stored in variables.
The ability to view and change a variable on the Stage will open the door
to creating totally new kinds of applications.

displaying Variable monitors
You’ll often find yourself wanting to see the current value stored in a vari-
able. For example, when one of your scripts doesn’t work as expected, you
might want to track some of its variables to see if they change correctly.
Using variable monitors can help you with this debugging task.

You can display a Scratch variable on the Stage as a variable monitor.
Checking or unchecking the box next to a variable’s name allows you to
show or hide a variable’s monitor on the Stage, as illustrated in Figure 5-18.
You can also control a monitor’s visibility from within your script with the
show variable and hide variable commands.

ClonesAnd
GlobalVars .sb2

scratch_book02.indb 106 1/8/2014 3:35:54 PM

Variables 107

Monitor of the
score variable

Figure 5-18: Show a variable’s monitor by checking the box
next to its name .

Monitors can be used as readouts or controls, which display or allow
you to change a variable’s contents, respectively. Double-click the monitor’s
box on the Stage to choose a normal readout (the default state), large read-
out, or slider control. When you choose to display a slider, you can set its
range by right-clicking the slider and selecting the set slider min and max
option from the pop-up menu, as shown in Figure 5-19.

Figure 5-19: Setting the minimum and maximum values for a monitor in slider mode

Using a slider allows you to change the value of a variable while a script
is running, which is a convenient way for users to interact with your applica-
tion. You can see a simple example of using the slider control in Figure 5-20.

Figure 5-20: Adjusting Stage color with a slider

In this example, dragging the slider’s handle changes the value of
the stageColor variable, which is a parameter in the set color effect to com-
mand. Assuming this script belongs to the Stage, dragging the slider should
change the Stage’s background color.

StageColor .sb2

scratch_book02.indb 107 1/8/2014 3:35:55 PM

108 Chapter 5

n o t e A variable’s monitor also indicates its scope. If a variable belongs to one sprite, its
monitor should show the sprite name before the variable name. For example, the moni-
tor Cat speed 0 indicates that speed belongs to Cat. If the speed variable were a
global variable, its monitor would only say speed 0. The difference between the two
cases is illustrated in the following figure.

This monitor indicates that the speed
variable belongs to the Cat sprite.

This monitor indicates that speed is
a global variable.

using Variable monitors in applications
Now that you know the basics behind variable monitors, I’ll show you some
ways you could use them to add some extra functionality to your Scratch
applications.

The ability to use monitors as both displays and controls opens the
door for a wide range of applications, including games, simulations, and
interactive programs. Let’s explore some examples that make use of moni-
tors in the following subsections.

Simulating Ohm’s Law
Our first example is a simulation of Ohm’s law. When a voltage (V) is
applied across a resistor (R), a current (I) will flow through that resistor.
According to Ohm’s law, the amount of current is given by this equation:

Current I
Voltage V

Resistance R
() = ()

()

Our application allows the user to change the values of V and R using
slider controls. Then it calculates and displays the corresponding value of
the current, I. The user interface for this application is shown in Figure 5-21.

Current
monitor

 The Light sprite
changes the brightness
of the bulb.

Resistance
control Three sprites whose

sizes show the relation
between V, I, and R.

Voltage
control

Figure 5-21: User interface for the Ohm’s law application

OhmsLaw .sb2

scratch_book02.indb 108 1/8/2014 3:35:55 PM

Variables 109

The slider for the battery voltage (V) has a range of [0, 10], and the
slider for the resistor (R) has a range of [1, 10]. When the user changes V
or R with the sliders, the application calculates the corresponding value of
the current (I) that flows in the circuit. The brightness of the bulb changes
in proportion to the value of the current passing through it: The higher the
current, the brighter the light bulb. The sizes of the V, I, and R letters in the
figure also change to indicate the relative values of these quantities.

In total, the application has five sprites
(named Volt, Current, Resistance, Equal, and
Light) and three variables (named V, I, and
R). Everything else you see in Figure 5-21
(the battery, wires, socket, and so on) is part
of the Stage’s backdrop image. The main
script that drives the application, which
belongs to the Stage, is shown Figure 5-22.

The script initializes the values of V and
R and then enters an infinite loop. On each
pass through the loop, it calculates I using
the present values of V and R, which are set
by the user through the slider controls. It
then broadcasts a message to the other sprites
in the application to update their appearance in relation to the calculated
values. Fig ure 5-23 shows the response of the Volt, Current, Resistance, and
Light sprites (which show the letters V, I, R, and the light bulb, respectively)
when they receive the Update message.

Script for the Volt sprite
(which shows the letter V)

Script for the Current sprite
(which shows the letter I)

Script for the Resistance sprite
(which shows the letter R)

Script for the Light sprite
(which shows the light bulb)

Figure 5-23: Scripts triggered in response to the Update message

When the Update broadcast is received, the Volt, Current, and Resistance
sprites change their size (from 100 percent to 200 percent of their original
size) in relation to the current values of their respective variables. The Light
sprite executes the set ghost effect to command to change its transpar-
ency level in proportion to the value of I. This gives the light bulb a realistic
visual effect that simulates an actual bulb.

Figure 5-22: Main script of
Ohm’s law application

scratch_book02.indb 109 1/8/2014 3:35:55 PM

110 Chapter 5

Demonstrating a Series Circuit
Our second example simulates a circuit that contains a battery and three
resistors connected in series. The user can change the battery voltage as
well as the resistor values using the sliders. The current that flows through
the resistors and the voltages across the three resistors are shown using
large display readouts. You can see the interface for the application in
Figure 5-24. (Note that the color bands on the resistors do not represent
the actual values of the resistors.)

I monitor

V1 monitor

V2 monitor

V3 monitorSlider
controls

Figure 5-24: An application that demonstrates a series circuit

The equations that govern the operation of this circuit are shown below.
We can calculate the current that flows in the circuit by dividing the battery
voltage, V, by the sum of the three resistances. After that, the voltage across
each resistor is calculated by multiplying the current by the value of that
resistor:

Total Resistance: Rtot = R1 + R2 + R3

Current through the circuit: I = V ÷ Rtot

Voltage across R1: V1 = I × R1

Voltage across R2: V2 = I × R2

Voltage across R3: V3 = I × R3

SeriesCircuit.sb2

T ry I T Ou T 5-3

Open the Ohm’s law simulator to run it, and study the scripts to understand how
it works. What do you think would happen if you added the command change
color effect by 25 at the end of the script for the Light sprite? Implement this
change to check your answer. What are some ways you could enhance this
application?

T ry I T Ou T 5- 4

Open the series circuit simulator application and run it. Experiment with different
values of R1, R2, R3, and V. Watch the calculated values of V1, V2, and V3 as
you drag the slider controls. What is the relationship between the voltage sum
(V1 + V2 + V3) and the battery voltage? What does this tell you about the voltage
relation in series circuits? You can make an interesting enhancement to the appli-
cation by adding an image of a switch that opens or closes the circuit, as shown
below. When the switch is open, no current will flow in the circuit. Try to imple-
ment this change using the hints given below.

Switch sprite has
two costumes

(On, Off).

Script for the
Switch sprite

Change how the main script calculates the current (I).

Same as before

Switch if Off. Set current to 0.

SeriesCircuit
WithSwitch.sb2

LTPWS_05_02.indd 110 1/14/2014 4:22:44 PM

Variables 111

This application has no sprites,
but when the green flag is clicked, the
script shown in Figure 5-25, which
belongs to the Stage, is executed.

This script takes care of the math
for us and displays the results in the
readouts on the Stage. Note that while
the slider controls for resistors R2 and
R3 can change from 0 to 10, the mini-
mum value for R1 was intentionally set
to 1. This ensures that Rtot is always
greater than 0 and lets us avoid divid-
ing by 0 when calculating the value of
the current.

Most of the work for this applica-
tion went into designing the interface
(that is, the background of the Stage). After that, all we had to do was to
position the displays and sliders at the right locations on the Stage.

Visualizing a Sphere’s Volume and Surface Area
Our third example is an interactive application for calculating the volume
and surface area of a sphere. The user changes the sphere’s diameter by
clicking some buttons on the user interface, and the application automati-
cally calculates and displays the corresponding volume and surface area.

Sphere .sb2

Figure 5-25: Script that runs when the
green flag is clicked

t ry i t ou t 5- 4

Open the series circuit simulator application and run it . Experiment with different
values of R1, R2, R3, and V . Watch the calculated values of V1, V2, and V3 as
you drag the slider controls . What is the relationship between the voltage sum
(V1 + V2 + V3) and the battery voltage? What does this tell you about the voltage
relation in series circuits? You can make an interesting enhancement to the appli-
cation by adding an image of a switch that opens or closes the circuit, as shown
below . When the switch is open, no current will flow in the circuit . Try to imple-
ment this change using the hints given below .

Switch sprite has
two costumes

(On, Off).

Script for the
Switch sprite

Change how the main script calculates the current (I).

Same as before

Switch if Off. Set current to 0.

SeriesCircuit
WithSwitch .sb2

scratch_book02.indb 111 1/8/2014 3:35:55 PM

112 Chapter 5

To make the application more appealing, the size of the sphere displayed
on the Stage is also changed in proportion to the selected diameter. The
user interface for the application is illustrated in Figure 5-26.

Click the left and right arrows
to change the diameter of the
sphere.

The size of the sphere
changes with the selected
diameter.

The application automatically
calculates the volume (V) and
surface area (S).

Figure 5-26: User interface for the sphere application

The application contains three sprites: the two arrow buttons (named
Up and Down) and the sphere image (named Sphere). The scripts associated
with the two buttons broadcast a message to indicate that they have been
clicked, as shown in Figure 5-27.

Script for the
Down sprite

Script for the
Up sprite

Figure 5-27: Scripts for the Up and Down sprites

The Sphere sprite has nine costumes that represent spheres with diam-
eters 1, 1.25, 1.5, 1.75, ... , 3. When this sprite receives the Up or Down broad-
cast messages, it executes the scripts shown in Figure 5-28.

Figure 5-28: Scripts triggered by the Up and Down messages

scratch_book02.indb 112 1/8/2014 3:35:56 PM

Variables 113

The sprite switches its costume and then calls the Recalculate proce-
dure to update the volume and surface area calculations. Note that these
scripts use the value of the current costume to determine whether the
sphere has reached its highest or lowest size, thus ensuring valid responses
to the Up and Down buttons. I’ll say more about the if block in the next
chapter, but for now, let’s discuss the sphere’s Recalculate procedure,
shown in Figure 5-29.

Figure 5-29: Recalculate procedure

First, the value of the diameter variable is set according to this formula:

diameter = 1 + 0.25 × (costume number – 1)

Since the costume number ranges from 1 to 9, the corresponding val-
ues of the diameter variable will be 1, 1.25, 1.50, ... , 2.75, 3, which is what we
intended.

The script finds the radius, r, by dividing the diameter by 2. It then cal-
culates the volume and the surface area of the sphere using the formulas
shown in Figure 5-26. The computed values will show up automatically on
the corresponding monitors on the Stage.

t ry i t ou t 5-5

Open the application and run it . Study the scripts to understand how the applica-
tion works . Add a script to the Sphere sprite so it rotates and changes color as the
application runs . As another exercise, modify the original program to use a single
costume for the Sphere sprite and use the change size by block to change the
sphere’s size . The scaled image won’t look as nice, but otherwise, the application
should perform identically .

scratch_book02.indb 113 1/8/2014 3:35:56 PM

114 Chapter 5

Drawing an n-Leaved Rose
In this example, we’ll create an application that draws a rose with multiple
leaves on the Stage. The rose-drawing process can be broken down into the
following steps:

1. Start at the origin of the Stage.

2. Point the sprite in some direction. By convention, the Greek letter θ
(pronounced theta) represents an angle, so we’ll name the variable
for the sprite’s direction theta.

3. Move the sprite r steps and draw a single point on the Stage. After that,
lift the pen up and return to the origin.

4. Change the angle theta by some amount (we’ll use 1°) and repeat
steps 2–4.

The relation between the distance r and the angle theta is given by

r = a × cos(n × θ)

where a is a real number and n is an integer. This equation produces a rose
whose size and number of leaves are controlled by a and n, respectively. This
equation also involves the cosine trigonometric function (cos), which you’ll
find as a reporter block in the Operators palette (check the sqrt block). Given
the values of a and n, all we have to do is choose different values for theta,
calculate the corresponding values of r, and mark the resulting points on
the Stage. The user interface for this example is shown in Figure 5-30.

Figure 5-30: User interface for the n-leaved rose application

The application contains two sprites: The first sprite has the Redraw but-
ton costume, and the second sprite (called Painter) is a hidden sprite that
draws the rose. The user controls the number of desired leaves by chang-
ing n with the slider control and then clicks the Redraw button to draw the

N-LeavedRose .sb2

scratch_book02.indb 114 1/8/2014 3:35:56 PM

Variables 115

rose. When the user clicks that button, the button sprite simply broadcasts
a Redraw message. When the Painter sprite receives this message, it executes
the script shown in Figure 5-31.

Figure 5-31: The Redraw procedure for drawing an n-leaved rose on the Stage

The script first sets the pen’s color and size and clears the previous pen
marks from the Stage. It then sets the variable a to 100 and calls the Rose
procedure, which will run through a loop 360 times to draw the rose on
the Stage. On each pass of the loop, the procedure points in the direction
theta, moves r steps, and draws a pen mark at that location. It then incre-
ments theta by 1° to prepare for the next pass of the repeat loop.

Figure 5-32 shows some of the roses created for different values of n.
Can you figure out the relation between the value of n and the number of
leaves?

n = 3 n = 4 n = 5 n = 6

Figure 5-32: Some roses created by the Rose procedure

t ry i t ou t 5-6

Open the application and run it . Change the value of n to see what else you can
create with the Rose procedure . Add another slider to the application to allow
the user to change the value of a and modify the scripts as needed . You can also
modify the Rose procedure to take a as a parameter . (See “Passing Parameters
to Custom Blocks” on page 77 for a refresher on how to add parameters to
procedures .)

scratch_book02.indb 115 1/8/2014 3:35:56 PM

116 Chapter 5

Modeling Sunflower Seed Distribution
Biologists and mathematicians have studied the arrangement of leaves on
the stems of plants extensively. Let’s delve into botany a bit ourselves by
examining a geometric model for representing flowers with spiral seed pat-
terns. In particular, we’ll program two equations that model the distribu-
tion of seeds in a sunflower. To draw the nth seed of the sunflower, we’ll
follow these steps:

1. Point the sprite in the direction of n × 137.5°.

2. Move a distance r c n= , where c is a constant scaling factor (set to 5 in
our example).

3. Draw a point on the Stage at the final location.

We’ll repeat these steps for each seed we want to draw. For the first seed,
we set n = 1; for the second seed, we set n = 2; and so on. Using angles other
than 137.5° in the first step will result in different arrangements of seeds.
If you’re curious about these equations and want to learn more about sun-
flower seed patterns, check out The Algorithmic Beauty of Plants by Przemyslaw
Prusinkiewicz and Aristid Lindenmayer (Springer-Verlag, 2004), specifically
Chapter 4, which you’ll find on the book’s website, http://algorithmicbotany
.org/papers/#abop.

Our application will generate patterns similar to the ones described in
that work, and you can see some of those patterns in Figure 5-33.

Figure 5-33: Some sunflower patterns generated using different angles

The interface for this example contains a slider control to change the
value of the angle from 137° to 138° in increments of 0.01° and a button
labeled Redraw. When the user clicks that button, it broadcasts a message
to the Painter sprite, which executes the scripts shown in Figure 5-34.

The Sunflower procedure executes a loop that draws 420 seeds, though
you can change this number if you like. On every iteration of the loop, the
procedure goes to the location of the nth seed (by calculating the seed’s
angle u and moving n v steps) and draws a pen mark at that location.
The procedure then increments n, which represents the seed number, to
prepare to draw the next seed.

Sunflower .sb2

scratch_book02.indb 116 1/8/2014 3:35:56 PM

Variables 117

Figure 5-34: The scripts for the Painter sprite

The scripts I’ve presented in this section are just a few samples of
the amazing applications we can create by using variables and monitors.
Letting the user interact with our applications through the slider control is
just the start of a new breed of interactive applications. In the following sec-
tion, you’ll learn to create scripts that directly prompt users for input.

getting input from users
Imagine that you want to create a game that tutors children in basic arith-
metic. Your game would probably have a sprite that displays an addition
problem and asks the player to enter an answer. How would you read the
player’s input to see whether the answer was correct?

Scratch’s Sensing palette provides one command block, ask and wait,
that you can use to read user input. This block takes a single parameter that
specifies a string to show to the user, usually in the form of a question. As
illustrated in Figure 5-35, the execution of this block produces slightly differ-
ent outputs depending on the visibility state of the sprite (that is, whether
the sprite is shown or hidden). The output shown in Figure 5-35 (right)
also appears when the ask and wait command is called from a script that
is owned by the Stage.

GettingUserInput .sb2

t ry i t ou t 5-7

Open the application and run it . Change the value of the angle to see what else
you can create with the Sunflower procedure . Study the procedure to under-
stand how it works and then come up with some ways to enhance it .

scratch_book02.indb 117 1/8/2014 3:35:56 PM

118 Chapter 5

Result of the ask and wait
command when the sprite
is visible

Result of the ask and wait
command when the sprite
is hidden

Figure 5-35: The ask and wait block may produce different outputs depending
on whether the sprite that executes it is shown or hidden .

After executing the ask and wait command, the calling script waits
for the user to press the enter key or click the check mark at the right side
of the input box. When this happens, Scratch stores the user’s input in the
answer block and continues execution at the command immediately after
the ask and wait block. To see this command block in action, take a look
at the following examples illustrating how to use it.

Reading a Number
The script of Figure 5-36 asks the user for her age, waits for an answer, and
tells the user how old she will be in 10 years.

Figure 5-36: A script that accepts the user’s age as input

The figure shows the output of the program when the user types 18 and
presses enter on the keyboard. Notice that the program uses the join block
(from the Operators palette) to concatenate (that is, connect) two strings.

Reading Characters
The script of Figure 5-37 asks the user for his initials and then constructs
and displays a greeting based on the user’s response.

AskAndWait
 .sb2

AskAndWait2
 .sb2

scratch_book02.indb 118 1/8/2014 3:35:56 PM

Variables 119

Figure 5-37: A script that uses two variables to read in and
store the user’s initials

The program uses two variables (firstInitial and lastInitial) to save the
 values entered by the user. You can see the final output of the program
when the user enters the letters M and S at the two prompts, respectively.
Notice that the program uses nested join blocks to construct the greeting.
You can use this technique to create all sorts of strings and display custom-
ized messages in your applications.

Performing Arithmetic Operations
The script of Figure 5-38 asks the user to input two numbers. It then com-
putes the product of these two numbers and shows the answer in a voice
bubble using the say command. As in the previous example, the script uses
two variables (num1 and num2) to store the values entered by the user.

Figure 5-38: Computing a value based on user input

The figure shows the output when the user enters 9 and 8, respectively,
in response to the two prompts. Again, notice that I’ve nested the join blocks
to construct the output string.

The examples I’ve presented in this section demonstrate several ways
to use the ask and wait block to write scripts that take in user input and
solve a variety of problems. You can, for example, write a program to find
the roots of a quadratic equation of the form ax2 + bx + c = 0 for any values
of a, b, and c entered by the user. You could then use this program to check
your own answer to the equation. I hope this will give you some ideas of
how to use this powerful block to solve any math problem that may arise.

AskAndWait3
 .sb2

scratch_book02.indb 119 1/8/2014 3:35:57 PM

120 Chapter 5

Summary
Variables are one of the most important concepts in programming. A vari-
able is the name of an area in computer memory where we can store a
single value, such as a number or a string.

In this chapter, you learned the basic data types supported in Scratch
and the operations permitted on these types. You then learned how to cre-
ate variables and use them to store a piece of data.

You also implemented several practical applications that used variables
to demonstrate different features. You explored variables’ monitors and
used them to create different kinds of interactive programs. Finally, you
learned how to use the ask and wait block to prompt the user for some
input and process the user’s responses in your program.

In the next chapter, you'll learn more about the Boolean data type and
the fundamental role it plays in decision making. You’ll also learn about the
if and the if/else blocks and use them to add another level of intelligence
to your Scratch programs. So roll up your sleeves and get ready for another
exciting chapter!

Problems
1. Create a script that implements the following instructions:

•	 Set the speed variable to 60 (mph).

•	 Set the time variable to 2.5 (hours).

•	 Calculate the distance traveled and save the answer in the distance
variable.

•	 Display the calculated distance, with an appropriate message, to
the user

2. What is the output of each of the scripts shown below? Reproduce these
scripts and run them to test your answer.

scratch_book02.indb 120 1/8/2014 3:35:57 PM

Variables 121

3. What are the values of X and Y at the
end of each iteration of the repeat loop
in the script to the right? Reproduce the
script and run it to check your answer.

4. Let x and y be two variables. Create func-
tion blocks equivalent to the following
statements:

•	 Add 5 to x and store the result in y.

•	 Multiply x by 3 and store the result in y.

•	 Divide x by 10 and store the result in y.

•	 Subtract 4 from x and store the result in y.

•	 Square x, add y to the result, and store the result back in x.

•	 Set x equal to twice the value of y plus three times the cube of y.

•	 Set x equal to minus the square of y.

•	 Set x equal to the result of dividing the sum of x and y by the prod-
uct of x and y.

5. Write a program that asks that user to enter an article, a noun, and
a verb. The program then creates a sentence of the form article
noun verb.

6. Write a program that asks the user to enter a temperature in degrees
Celsius. The program will convert the temperature to degrees Fahr-
enheit and display the result to the user with an appropriate message.
(Hint: F° = (1.8 × C°) + 32.)

7. When a current I flows through a resistance R, the power P dissipated
by the resistance is I 2 × R. Write a program that reads I and R and cal-
culates P.

8. Write a program that reads the lengths of the two sides of a right tri-
angle and calculates the length of the hypotenuse.

9. Write a program that prompts the user to enter the length (L), width
(W), and height (H) of a box. The program will then compute and dis-
play the volume and surface area of the box. (Hint: Volume = L × W × H;
Surface area = 2×[(L × W) + (L × H) + (H × W)].)

10. The equivalent resistance R of three resistors (R1, R2, and R3) con-
nected in parallel is given by this equation:

1/R = 1/R1 + 1/R2 + 1/R3

Write a program that reads the values of R1, R2, and R3 and
calculates R.

scratch_book02.indb 121 1/8/2014 3:35:57 PM

122 Chapter 5

11. Complete the Whac-a-Mole game introduced earlier in the chapter.
The file Whac-a-Mole.sb2 contains a partial implementation of this pro-
gram. When the green flag is clicked, the provided script starts a loop
that moves the Cat sprite randomly over the holes. Add two scripts (one
for the Cat and the other for the Stage) to change the values of the two
variables (hits and misses) appropriately. Try adding some sound effects
to make the game more fun! You could also add a condition that ends
the game after a timer or the number of misses reaches a certain value.

Whac-a-Mole.sb2

LTPWS_05_02.indd 122 1/17/2014 12:01:17 PM

Don't stop now...keep learning!

Buy the book or ebook at

nostarch.com/learnscratch

and use coupon code SCRATCH2 to get
40% off your purchase.

http://nostarch.com/learnscratch

