
A
B r o w s e r s u p p o r t

Since writing this book, much has changed
in the browser market. The Chromium

project, which the Chrome browser is based
on, stopped using WebKit and created their

own fork, called Blink. This in turn meant that Opera,
who as the book went to press stated they would be
dropping their own engine and basing them selves on Chromium, would
also use Blink. Additionally, new versions of Internet Explorer and Safari
(11 and 7, respectively) have been released.

Documenting feature implementation in browsers means aiming at a
moving target, so the best I can do is take a snapshot. When considering
whether to use one of the features in this book, always check the following
sites for the most up-to-date information:

•	 HTML5 Please, http://html5please.com/

•	 The CSS3 Test, http://css3test.com/

•	 The HTML5 Test, http://html5test.com/

•	 Can I Use..., http://caniuse.com/

212 Appendix A

When I started this book midway through 2012, I took a gamble on
which features I thought would be best to cover, including not only those
that had already been well-implemented but also some that I thought stood
a good chance of being implemented when the book went to print (or soon
after). As I write this in late 2013, it seems that the pace of wider adoption
has been slower than I anticipated for some of the features contained in
IE10 (such as Grid Layout, Regions and Exclusions), but everything else is
proceeding apace.

The Browsers in Question
Far too many browsers exist for me to provide a decent overview of feature
support on each. Instead, in this appendix, I’ll stick to the key modern
desktop browsers—Chrome, Firefox, IE10 and above, and Safari—and
their mobile equivalents, as I’ve done throughout this book.

As this book was going to press, Opera announced that they would be
phasing out their own Presto rendering engine and future versions of the
browser would instead use Chromium, the branch of WebKit that Chrome
is also based on. That doesn’t mean Presto will be going away in the short
term—it’s already embedded on many devices that don’t tend to update,
such as TVs and games consoles. In the longer term, feature support should
be considered the same as Chrome, but I’ve kept it distinguished here for
legacy support.

When discussing mobile browsers, I usually mean both smartphone and
tablet and, more often than not, that means Safari mobile and the Android
browser (although both are based on WebKit, there’s quite a deal of variety
between them). Firefox, Internet Explorer, and Opera use the same render-
ing engine across different platforms (although see the previous paragraph
about Opera), so I’ll only mention the mobile version of those browsers
where any differences exist (which is not often).

When I refer to Android, I mean the stock browser that comes with
many versions of the Android OS. Some versions of Android include the
new mobile version of Chrome, which, like Firefox and Opera, can be con-
sidered more or less equivalent to its desktop sibling.

As I’ve mentioned before, there really is no substitute for testing on
actual devices. If possible, you should create a device library or join one in
your area; if that’s completely out of the question, ask other developers for
their experiences.

Enabling Experimental Features
Many browsers, especially Chrome and Firefox, are being much more cau-
tious than they used to with regard to implementing experimental features.
Where previously they would implement features with a vendor prefix and
roll them out to all users, now they usually require that you explicitly enable
certain features with a configuration flag.

In Firefox, you do this by entering about:config in the URL bar, at which
point you’ll see a message that warns you of the consequences of dabbling

Browser Support 213

in the browser’s inner workings. If this doesn’t deter you, you can find the
feature you want and enable it before restarting your browser in order to
gain access to the now-enabled feature.

In Chrome, the process is much the same, except that you enter
chrome://flags, no warning message appears, and the features are usually
enabled by toggling a link marked Enable.

Chapter 1: The Web Platform
Every major modern desktop browser comes with a set of developer tools
that include a console (only Internet Explorer 7 and below don’t have one).
The situation on mobile and tablet is a bit more complicated: most browsers
don’t have developer tools by default, but they can be connected to their
desktop equivalents for debugging, as explained “Test and Test and Test
Some More” on page 19.

Chapter 2: Structure and Semantics
The newer HTML5 structuring elements appear in IE9 and above and all
other major modern browsers. Discussion around some of these elements
is still ongoing as I write this. A main element was recently added, which is
natively supported in Firefox and Chrome, while other elements are at risk
of being dropped.

Using the attribute-based accessibility and semantic extensions WAI-
ARIA, microformats, RDFa, and microdata in any browser is completely
safe. The microdata API is implemented in Firefox and Opera but has
recently been dropped from Chrome due to a perceived lack of interest.

Data attributes are also supported in all browsers, although the API
using dataset is not present in IE10 and below, or Android 2.3 and below.
The jQuery method works cross browser.

Chapter 3: Device-Responsive CSS
As I write this, Media Queries are available in IE9 and above and all other
major modern browsers. The media features related to device dimensions
are the most widely implemented. The resolution media feature is in Chrome,
Firefox, and IE10 and above, but not yet in Safari (despite being imple-
mented in the WebKit engine at the end of 2012).

The devicePixelRatio attribute is in IE11 and all other modern browsers,
including mobile versions. The dppx unit is implemented in Chrome and
Firefox.

The @viewport rule is in old Opera, IE10 and above, and WebKit, using
the vendor prefix of each. The matchMedia API is in IE10 and above and all
other modern browsers, but not in Android 2.3 and below.

The CSS box-sizing property is in all browsers, although it requires a ven-
dor prefix in Firefox and in Android 3.0 and below. Only Firefox supports
the non-standard padding-box value. The calc() value function is in IE9 and
above and in other modern browsers, although it requires a - webkit- prefix

214 Appendix A

in Safari 6 and below (Mac OS and iOS). It’s not implemented in Android
or Opera.

The viewport-relative length units—vh, vw, etc.—are in IE9 (with a
few bugs) and IE10 and above, Firefox, and most WebKit browsers except
Android, but they are not present in Opera. The rem unit is in IE9 and
above and in all other modern browsers.

The object-fit and object-position properties are implemented in Opera
only and marked as “at risk” in the spec so face an uncertain future, espe-
cially now that Opera is based on Chromium. This was one of the risks I
took in the book which didn’t pay off.

Chapter 4: New Approaches to CSS Layouts
The multi-column layout properties are implemented in IE10 and above
and all other modern browsers. The use of vendor prefixes is required in
all browsers but Internet Explorer and old Opera. Firefox lacks support for
the column-span property. Only old Opera and IE10 and above support the
break-before and break-after properties.

Flexbox is supported in all major browsers, but with caveats. In Safari
(iOS and Mac OS) the -webkit- vendor prefix is required, and Safari 6 and
below use a hybrid of the current syntax and an older one: the justify-
content property isn’t implemented, and it instead has the old box-pack prop-
erty. This has been fixed in Safari 7.

IE10 also uses an outdated syntax, with the -ms- prefix; I recommend
you read the documentation in the IE10 Guide for Developers (http://msdn
.microsoft.com/library/ie/hh673531%28v=vs.85%29.aspx/) for detailed infor-
mation. This is fixed in IE11, and the prefix has been removed.

Firefox has an unprefixed implementation but only supports single-line
flexbox, so the flex-wrap and flex-flow properties are ignored.

The Grid Layout module has changed syntax again since the release
of the book. As explained in Chapter 4, IE10 and above currently supports
an older version of the syntax with the -ms- prefix. Apple announced that
Safari 7 would have an implementation using a more up-to-date syntax, but
that doesn’t seem to be the case in the final release. The grid-template prop-
erty is not currently implemented in any browser.

Chapter 5: Modern JavaScript
The async attribute is in IE10 and most other browsers besides Android ver-
sions 2.3 and below and old Opera. The defer attribute is the same but also
has support at least back to IE8.

The addEventListener() method is in IE9 and above and all other major
browsers, as is the DOMContentLoaded event.

Despite the uncertainty around existing patents, touch events are in
Chrome, Firefox, Opera, Safari for iOS, and Android. IE10 and above has
support for pointer events, such as MSPointerDown, which are vendor prefixed.

The querySelector() and querySelectorAll() methods are fully implemented
in all modern browsers, from IE8 and above. The getElementsByClassName()

Browser Support 215

method is almost as well implemented, lacking support for IE8 only. The
classList object is in IE10 and above and most other browsers bar Android
2.3 and below.

Chapter 6: Device APIs
The Geolocation API is in IE9 and all other major browsers. Device orien-
tation is present in mobile WebKit browsers, Chrome, and Firefox mobile.
Do bear in mind, however, that device APIs depend on certain functions
being available on the phone; just because the Device Orientation API is
implemented in a browser, it doesn’t necessarily follow that the device has
an accelerometer.

The Full Screen API is implemented in IE11 and all other modern
browsers, all with appropriate vendor prefixes. Firefox’s implementation
differs from the spec, but rather than trying to explain that here, I refer
you to the Mozilla Developer Network article, “Using Fullscreen Mode”
(http://developer.mozilla.org/en-US/docs/Web/Guide/API/DOM/Using_full_
screen_mode/) Firefox, WebKit and Blink, and IE11 support the :full-screen
pseudo-class, again with respective prefixes.

The Vibration, Battery Status, and Network Information APIs are avail-
able in Firefox mobile only. Chrome 30 introduced implementation of Vibra-
tion, but it’s currently flagged off by default. Despite support for the others
apparently landing in WebKit throughout 2012, I can’t find any working
implementations.

The getUserMedia() method is implemented in old Opera, and in Firefox
and Chrome with vendor prefixes (mozGetUserMedia, webkitGetUserMedia).

Web Storage is in IE8 and above and all other major browsers. The Drag
and Drop API is partially supported in IE8 and IE9, and fully implemented
in IE10 and above and in other major desktop browsers. Owing to its nature,
it isn’t supported in mobile browsers.

The File API is fully implemented in Firefox, Chrome, Safari (iOS
and Mac OS), and Opera, and partially supported in IE10 and above and
Android. The FileReader API is fully implemented in IE10 and above and
all other desktop browsers, plus WebKit mobile browsers including Android
version 3.0 and above.

Chapter 7: Images and Graphics
Some form of SVG support is present in IE9 and above, Android 3.0 and
above, and all other major browsers. SVG filters are slightly more limited,
being unavailable in Android and available with strong limitations in IE9
and above, although using SVG filters on HTML elements only works reli-
ably in Firefox. The new CSS filter() function is implemented in Chrome
and Safari with the -webkit- prefix. The use of fragment identifiers in SVG
is only possible in IE10 and above and in Firefox.

Support for the canvas element is in IE9 and above and in all other
major browsers. Firefox, Chrome, Safari (desktop), and Opera all have
implementations of WebGL, although it’s disabled by default in some
 browsers, notably Safari and Chrome for Android.

216 Appendix A

Chapter 8: New Forms
Levels of support for the various form elements, especially those with on-
screen controls, vary wildly among browsers and are changing all the time.
Rather than try to capture that here, see the HTML5 Test, which has the
most comprehensive and up-to-date coverage. Using the new input types is
generally considered safe, as the browser will fall back to the text type if a
different value is not recognized.

The Form Validation API is present in IE10 and above and in all
other major browsers. Safari supports the API but has no on-screen error
notifications.

Chapter 9: Multimedia
The video and audio elements, along with their related APIs, are in IE9 and
above and in all other major browsers, although with the caveat about sup-
ported file types discussed in Chapter 9. The track element is supported in
the desktop versions of IE10 and above, Safari 6 and above, Chrome, and
Opera; Chrome for Android is the only mobile browser to offer support.
Media Fragments are implemented in Firefox and WebKit browsers.

The Web Audio API is experimentally implemented in Chrome and
Safari (iOS and desktop), using the webkitAudioContext() constructor, and
work is underway to bring it to Firefox. Of Web RTC, only the getUserMedia()
method is currently supported, as mentioned in Chapter 6.

Chapter 10: Web Apps
Support for AppCache is present in IE10 and all other major browsers.

Chapter 11: The Future
Chrome offers the most support for the new Web Components features;
it has implemented the Shadow DOM, created with the createShadowRoot()
method, but it must be explicitly enabled. The template element is imple-
mented in Chrome and Firefox, as is support for scoped styles and registra-
tion of custom elements using document.register().

CSS regions are implemented in IE10 and above, Safari 7, and Chrome.
All require vendor prefixes on the properties, and IE10 and above only
allows content inside an iframe as the source.

Exclusions are available exclusively in IE10 and above, using the
-ms- prefix.

The Feature Queries @supports rule and CSS.supports() DOM method
are available in Chrome and Firefox.

Cascading Variables are implemented in Chrome only and must be
explicitly enabled.

