
10
M A I N T A I N I N G T H E K E R N E L

As mentioned in Section 2.2, the kernel is the core of
the operating system. In some respects, the Linux kernel
is no different than any other software package. You can
configure, build, and install the kernel because it comes
as source code. However, the procedure for doing so is
substantially different than for any other software package
because the kernel runs like no other package.

There are four basic topics pertaining to kernel management:

Configuring and compiling a new kernel Your end goal here is to build an
image file, ready for the boot loader.

Manipulating loadable kernel modules You don’t have to build the kernel
as one massive chunk of code. Kernel modules let you load drivers and ker-
nel services as you need them.

hlwbook_03.book Page 201 Monday, April 5, 2004 4:50 PM

202 Chap te r 10

Configuring a boot loader such as GRUB or LILO Your kernel is use-
less if you can’t load it into memory.

Learning miscellaneous utilities and procedures There are many facili-
ties that tweak runtime kernel parameters and extend kernel features.
You have already seen some examples of these in previous chapters,
including the /proc filesystem and the iptables command.

10.1 Do You Need to Build Your Own Kernel?

Before running head-first into a kernel build, you need to ask yourself if it is
worth it. Administrators who compile their own kernels have the following
goals in mind:

� Installing the latest drivers

� Using the latest kernel features (especially with respect to networking
and filesystems)

� Having fun

However, if you need a driver or feature, and your distribution offers a
straightforward upgrade, you might opt for that instead, for several reasons:

� You can make mistakes in configuring your own kernel, and your distri-
bution probably offers a well-rounded kernel.

� Compiling a new kernel takes a long time.

� It’s far too easy to mess up the boot loader, making your system unable
to boot.

Even if you choose not to build your own kernel, though, you should still
learn how boot loaders and modules work.

10.2 What You Need to Build a Kernel

As with any package, the kernel source includes documentation explaining
what you need to compile a functional kernel. These three aspects of your
system are particularly important for building a kernel:

� A C compiler (gcc). Most distributions put the C compiler in a develop-
ment tools package. Make sure that your C compiler agrees with the
recommendations in the kernel source code, specifically the README file.
Kernel developers have not been eager to adopt the latest versions of gcc.
Some distributions have a separate compiler named kgcc for compiling
the kernel.

� Disk space. A new kernel source tree can easily unpack to more than
100MB even before building any object files.

� A relatively fast computer with plenty of memory. Otherwise, the com-
pile will take some time.

Your first step is to get the source code.

hlwbook_03.book Page 202 Monday, April 5, 2004 4:50 PM

Main tai ni ng the Kerne l 203

10.3 Getting the Source Code

Linux kernel versions have three components. Suppose you have kernel
release 2.6.3. Here’s what the numbers mean:

� 2 is the major release number.

� 6 is the minor release number.

� 3 is the patchlevel. Kernels with the same major and minor numbers but
with different patchlevels belong to a release series.

There are two different kinds of kernel releases:

� Production releases have minor version numbers that are even (for exam-
ple, 1.2.x, 2.0.x, 2.2.x, 2.4.x, 2.6.x, and so on). These versions are meant
to be as stable as possible. Within a single production release series,
there are no radical feature or interface changes.

� Development releases have minor version numbers that are odd (such as
2.5.). Don’t use a developer release if you aren’t willing to take risks.
Kernel developers intentionally break code, introduce new features,
and may inadvertently make the kernel unstable in a development
series. Stay away from development releases unless you know exactly
what you’re doing.

You can get the latest Linux kernel source code at http://www.kernel.org/.
The releases have names like linux-version.tar.bz2 for bzip2 compression or
linux-version.tar.gz for GNU Zip compression. Bzip2 archives are smaller.

In addition to the full releases available in the kernel archives, you will
also find patches containing just the changes between two consecutive kernel
patchlevel releases. Unless you are obsessed with upgrading your kernel with
every single release, you probably won’t be able to do much with a patch.

10.3.1 Unpacking the Source Archive
You can unpack kernels with zcat/bzip2 and tar. To get started, go to /usr/src
and make your permissions less restrictive if necessary:

cd /usr/src
umask 022

Then run one of these commands to extract the source files, depending on
whether you are using bzip2 or GNU Zip:

bzip2 -dc linux-version.tar.bz2 | tar xvf -
zcat linux-version.tar.gz | tar xvf -

WARNING If your kernel release is 2.4.18 or lower, the kernel unpacks into a directory named
linux rather than linux-version. Rename any existing linux directory before unpack-
ing one of these kernels (the new name does not matter, as long as it is different than
the old one).

hlwbook_03.book Page 203 Monday, April 5, 2004 4:50 PM

204 Chap te r 10

10.3.2 A Look Around the Kernel Source
If you’ve never seen the Linux kernel source code before, it helps to take a
look around first. The top-level directory includes several subdirectories and
files, including these:

README This file is a general introduction to the Linux kernel source
and what you need to get started. This document explains the version of
the C compiler that you need to compile the kernel.

Documentation This directory contains a wealth of documents. Most of
the documents here are in plain-text format, and they may describe any-
thing from user-level programs to low-level programming interfaces.
One of the most important files in this directory is Changes, which
describes recent changes to the kernel and identifies utility programs
you may need to upgrade to get full functionality.

include You’ll find the kernel header files in this directory. If you
feel comfortable with your kernel, you can use the header files in
include/linux as your system /usr/include/linux header file set.

arch This directory contains architecture-specific kernel build files and
targets. After a kernel build on a PC system, the final kernel image is in
arch/i386/boot/bzImage.

10.3.3 Distribution Kernels
Linux distributions come with generic kernels intended to run on almost any
processor type. These kernels tend to be a little larger than custom kernels,
and they rely heavily on loadable modules.

However, many of the Linux kernels that come with the various Linux
distributions omit complete source code in their default installations, and
furthermore, distribution kernels often differ from the official standard
kernels at kernel.org. For example, Red Hat adds another component to
the patchlevel to distinguish their kernels (for example, 2.4.20-20). If you
wish to install a distribution kernel from source code, you need to use the
distribution’s kernel source package. In Red Hat Linux, the package name
is kernel-source-version.rpm.

If your distribution has a /usr/src/linux directory, this does not mean
that you have the entire kernel source. It is possible that you only have the
header files. The kernel source takes up dozens of megabytes; run du -s
/usr/src/linux for a quick check on what you have.

10.4 Configuring and Compiling the Kernel

You need to configure the options that you want to have in your kernel
before you build it. Your goal is to have an appropriate .config file in your
kernel source distribution. Here’s an excerpt of a typical .config file:

hlwbook_03.book Page 204 Monday, April 5, 2004 4:50 PM

Main tai ni ng the Kerne l 205

CONFIG_HIGHMEM64G is not set
CONFIG_MATH_EMULATION is not set
CONFIG_MTRR=y
CONFIG_HAVE_DEC_LOCK=y

This file isn’t easy to write with a text editor, so there are several config-
uration utilities that generate the file for you. An easy, standard way to set
up a kernel is to run this command:

make menuconfig

After some initial setup, make menuconfig runs a text-based menu interface
that is shown in Figure 10-1. The box in the center of the screen contains
the options at the current configuration level. You can navigate the menu
with the up- and down-arrow keys. An arrow next to an item (--->) indicates
a submenu.

Figure 10-1: The make menuconfig kernel configuration menu.

The bottom of the menu contains three actions that you can navigate to
with the left- and right-arrow keys. Pressing ENTER while one of the menu
items is highlighted performs whichever of the three following actions is
also highlighted:

Select If the current menu item leads to a submenu, the configuration
system activates the submenu.

Exit Exits the current submenu. If you are at the top-level menu, the
configuration system asks whether you would like to save the current
configuration. You can activate the Exit option by pressing ESC.

Help Shows any online help for the current item. You can also get at
the help by pressing the ? key.

hlwbook_03.book Page 205 Monday, April 5, 2004 4:50 PM

206 Chap te r 10

To get a general feel for how configuration options work, go into the
Processor type and features submenu. You will see options such as these:

[] Math emulation
[*] MTRR (Memory Type Range Register) support
< > /dev/cpu/microcode - Intel IA32 CPU microcode support

You can alter an item’s configuration value by moving to the item
and pressing the SPACEBAR. The square brackets ([]) provide a simple
on/off toggle:

[*] indicates that the feature is on.

[] indicates that the feature is off.

You may not configure on/off features as kernel modules. Active features go
directly into the main kernel image.

By contrast, an item with angle brackets (< >) denotes a feature that
you may compile as a module. You can use the SPACEBAR to toggle between
these values:

<*> indicates that the feature is on.

<M> indicates that the feature is configured as a module.

< > indicates that the feature is off.

An item that includes regular parentheses like these, (), is a multiple-choice
option or a number that you can customize. Press ENTER to see the option
list, or enter a number.

When Should You Compile a Driver as a Module?

There aren’t many absolute rules for deciding which features to compile as
modules and which features to compile as part of the main kernel image, but
here are a few guidelines and rules that can help you:

� Always compile your root filesystem type directly into the kernel, not as a
module. Your system won’t boot otherwise.

� Most administrators prefer to compile crucial disk support (such as SCSI
host adapter drivers) directly into the kernel. There is a way to get
around this with an initial RAM disk, but that is more an ugly hack than
anything else.

� Most administrators also compile network interface card drivers directly
into the kernel. This isn’t as crucial as disk support, though.

� Compile obscure filesystems as modules. You may need them at some
point, but there is no point in wasting memory in the meantime.

hlwbook_03.book Page 206 Monday, April 5, 2004 4:50 PM

Main tai ni ng the Kerne l 207

When you are through with configuration and decide to exit, the menu
system will ask if you would like to save the current configuration. If you
choose Yes, the system backs up your previous .config file as .config.old and
writes a new .config file.

10.4.1 Configuration Options
Most of the configuration options are fairly self-explanatory. For example, in
the menu shown in Figure 10-1 on page 205, the items under Device Drivers
> SCSI device support > SCSI low-level drivers correspond to device drivers
for SCSI host controllers.

Some configuration options depend on other options, and until you
activate the dependency options you cannot reach configuration options
that have dependencies. For example, to reach the SCSI low-level drivers
submenu, you must first activate SCSI device support in the previous menu.
These dependencies are not always obvious; you may need to do a little bit of
experimentation to find what you’re looking for. If you’re really stumped on
a dependency, go to the source. Look at arch/i386/Kconfig, the master file for
all options and online help for the kernel configuration.

The following sections outline the most significant kernel options that
reside within the important top-level menus. Keep in mind that these options
change with time; you may see items not listed here, or the items may be in a
different place in the kernel that you decide to build.

Code Maturity Level Options

Inside this menu item you will find an option named Prompt for
development and/or incomplete code/drivers. To see the newest (but
perhaps unstable) drivers and features when perusing the rest of the kernel
configuration menus, select this option.

General Setup

This section has three settings that you should turn on:

Support for paging of anonymous memory Enables swap disk and
file support

System V IPC Enables interprocess communication

Sysctl support Enables kernel parameter changes through /proc

If you do not build your kernel with the support listed here, many major
packages and utilities will not work, including the X Window System.

In addition to these options, the General Setup menu in kernel 2.6.0
and newer versions have an option named Kernel .config support to make
the build process save the current .config file in the kernel image. If you
enable this option, you will also have the opportunity to enable a second
option that allows you to turn on access to the embedded .config file via

hlwbook_03.book Page 207 Monday, April 5, 2004 4:50 PM

208 Chap te r 10

/proc/config.gz. These options increase your kernel size slightly, but they can
come in extremely handy later on when you need to upgrade your kernel but
can’t remember what configuration options you selected.

Loadable Module Support

You have some control over the kernel’s module loader. In general, you
should always activate the kernel module system with the Enable loadable
module support option, as well as activating the kernel module loader
option, Automatic kernel module loading, sometimes called the autoloader.

The only item in the kernel module support menu that you should be
wary of is versioning support (at the moment, this is experimental). Kernels
compiled with this option enabled may try to load modules built for a differ-
ent kernel version, and this can cause trouble if you don’t know exactly what
you’re doing.

Processor Type and Features

The Linux kernel includes a number of optimizations and other
enhancements that are specific to certain processors. You can choose your
processor with the Processor family option. Be careful — a kernel built for
a “primitive” CPU supports advanced processors, but a kernel tailored to an
advanced CPU will likely not work on an older (or different brand of) CPU.

Other significant options in the processor category include:

High memory support This is for machines with more than 2GB of
physical memory.

Symmetric multi-processing support This is for machines with more
than one processor.

MTRR support This permits optimizations that may improve certain
kinds of graphics performance.

Power Management Options

There are two types of power management in PC hardware: the older
APM (Advanced Power Management) and the newer ACPI (Advanced
Configuration and Power Interface). You can configure a kernel with both
varieties. Appropriate power management support is essential on notebooks
to preserve battery life, and it is a good idea for desktops so that your
machine doesn’t generate too much heat and use too much electricity.

Power management features enable interesting tricks with fans,
processor speeds, and more. There’s a lot to explore, but you may need
additional software such as apmd or acpid to take advantage of the kernel
features.

hlwbook_03.book Page 208 Monday, April 5, 2004 4:50 PM

Main tai ni ng the Kerne l 209

Bus Options

You shouldn’t need to change the bus options for most systems. Unless you
have an extremely old or odd system, include PCI support (and if you’d like
to list and diagnose devices on the PCI bus, install lspci, which is a part of
the pci-utils package).

You should enable the Support for hot-pluggable devices option so that
your system can take appropriate action when you attach and detach
removable devices.

Newer kernels include base PCMCIA (PC Card/CardBus) drivers as
configuration options in this menu — in previous systems, PCMCIA support
was completely separate from the main kernel distribution. You still need the
PCMCIA utilities if you intend to use PC cards, and at the moment, you can
still leave out PCMCIA kernel support here and get it from these utilities, but
this may change in the future.

Executable File Formats

To start a process from an executable file on the disk, the kernel needs
to know how to load the executable file, how to initialize the process in
memory, and where to start running the process. An executable’s file format
determines these characteristics. Most binaries on a modern Linux system
are ELF (Executable and Linkable Format) files. You probably do not need
to support the ancient “a.out” executable format (you may not even have
the shared libraries to support these binaries), but it does not take too much
memory to include support, and you can build it as a module.

Device Drivers

Configuring device drivers is a long process due to the wide variety of devices
that Linux supports. Unfortunately, it’s during this stage that you can get
bogged down with all of the options and end up building a kernel that is far
too large because you included drivers for devices that you will never have.
If you’re in doubt about whether you are going to use any particular driver
(other than a disk driver), build it as a module so that it does not unnec-
essarily take up kernel memory.

The following sections describe the driver configuration options inside
the Device drivers menu.

Plug and Play Support

You must enable Plug and Play support if you want any reasonably modern
built-in hardware in your computer to work. You may also need plug-and-play
support in order to use network cards, internal modems, and sound cards.

hlwbook_03.book Page 209 Monday, April 5, 2004 4:50 PM

210 Chap te r 10

Block Devices

The Block devices section of the kernel configuration contains miscell-
aneous random-access storage devices, such as floppy disks and RAM disks.
These devices normally hold filesystems that you directly attach to your
current system with the mount command. The interesting drivers here include
the following:

Normal floppy disk support A driver for the PC floppy disk drive.

Loopback device support A simple driver that maps a file into a
block device. This driver is very useful because it allows you to mount
a filesystem on a disk image.

Network block device support A driver that allows you to use a network
server as a block device.

RAM disk support A driver that designates a chunk of physical memory
as disk space.

Initial RAM disk (initrd) support A driver that provides a special kind
of RAM disk that a boot loader gives to the kernel as the initial / parti-
tion during the very first stages of init. Many distributions use an initial
RAM disk for SCSI drivers and other modules that may not be in their
stock kernels.

Parallel port IDE device support A driver for certain older portable
disk devices.

ATA (IDE) Support

You should always compile ATA (IDE) support directly into your kernel
unless you know exactly what you’re doing. There are several kinds of IDE
drivers that you can enable here:

Disk support A driver required if you want hard drives to work. Need-
less to say, you should compile this driver directly into the kernel.

CD-ROM support A driver for ATAPI CD-ROM and DVD-ROM drives.

Floppy support A driver for various removable-media drives with an
ATAPI interface.

SCSI emulation A driver for ATAPI CD-R and CD-RW drives. Older
Linux CD-burning software worked exclusively with SCSI drivers; if your
CD-burning software is up to date, you do not need this driver.

Various chipsets Drivers for various specific chipsets. If your mother-
board’s IDE chipset is listed, you might be able to squeak out a little
more performance with one of these drivers.

SCSI Support

Even if you have no SCSI devices, you may still need SCSI support because
many Linux device drivers work through emulated SCSI devices. For
example, if you want to use USB mass storage, you need SCSI disk support.

hlwbook_03.book Page 210 Monday, April 5, 2004 4:50 PM

Main tai ni ng the Kerne l 211

These are the media drivers:

SCSI disk support Covers all fixed and removable-media disk-like
storage devices, except CD-ROM drives.

SCSI tape support

SCSI CD-ROM support

SCSI generic support Allows applications talk to a SCSI device at a
low level. You need SCSI generic support for a wide range of devices,
including CD burners, changer devices on tape drives, SCSI scanners,
and more.

A look inside the SCSI low-level drivers submenu reveals drivers for many
kinds of SCSI host controllers. Some of the drivers are named after the SCSI
chipset on the host controller, so you may have to look carefully at your
hardware to find a match. The low-level driver list also includes support for
some parallel port devices, such as Zip drives.

NOTE If your kernel and root partition are on a SCSI disk, compile SCSI support (including
the disk and host controller drivers) directly into the kernel rather than as modules.
This makes booting much easier, because you do not need to worry about loading SCSI
modules from a disk that the kernel does not yet know how to access.

Networking Support

You need networking support for almost any system, even if you do not
have an external network connection. Many applications use local network
interface features.

Your first order of business is to pick the networking devices that you
need. For most Ethernet devices, look under Ethernet (10 or 100Mbit).
There are many devices to choose from. If you’re not too sure what you
need, don’t be afraid to configure several drivers as modules. In addition,
if you plan to dial up to the Internet or use certain DSL connections, you
need PPP support, along with asynchronous (serial port) or PPP over
Ethernet (PPPoE) support. If you’re not sure about PPP options, configure
them as modules.

The configuration options inside the Networking options submenu
represent the trickiest part of the kernel network configuration. You need to
select all of the options and protocols that you intend to use. The essential
options for many packages include the following:

TCP/IP networking

Unix domain sockets

Packet socket (for features such as promiscuous mode)

Not so obvious is Network packet filtering, which is required for any kind
of firewall or NAT (Network Address Translation, or “IP masquerading”)
support. Just selecting this option is not enough because, in general, your

hlwbook_03.book Page 211 Monday, April 5, 2004 4:50 PM

212 Chap te r 10

kernel needs all of the connection tracking, NAT, and masquerade options if
you want to use NAT. Therefore, you must enter the Netfilter Configuration
submenu and choose more options there, such as these:

Connection tracking for NAT (be sure to include any protocols you need
to track).

IP tables support for firewalling and NAT. Once you enable IP tables,
you get several more options, including various match options for filter-
ing. You don’t have to worry about most of these, except for Connection
state and Connection tracking, both of which you need for NAT. That’s
not the end of the things you need for NAT — look out for and enable
Full NAT and MASQUERADE target support.

Packet filtering and REJECT target support for firewalls.

Input Device Support

You need several configuration options to support your keyboard and
mouse. There are two levels of support. The basic drivers support the PS/2
keyboard. Also, look for PS/2 Mouse.

Character Devices and Parallel Port Support

Among the most important character devices are Virtual terminals
(/dev/tty0, /dev/tty1, and so on). Unless you have a special type of server,
you also need to put the console on the virtual terminal.

Here are some other things to check up on:

Serial drivers Standard PC serial ports use or emulate 8250/16550
UART chips. You almost certainly need this support if you plan to use
a modem.

Unix98 PTY support Some programs now expect to see the dynamic
Unix98 /dev/pts/* pseudo-terminal devices rather than old static names
like /dev/ttyp*.

Enhanced real time clock support This makes /dev/rtc available to
programs like hwclock. You should enable this option for any modern
machine.

/dev/agpart This is for direct-rendered graphics (GLX and DRI) on
AGP graphics cards.

Parallel printer support This gives you /dev/lp* devices. To get this
option, you must go back to the main kernel menu and enable Parallel
port support. You also need PC-style hardware for any standard PC.

NOTE There is a section for Mice in the character device configuration, but you can probably
safely ignore it, because the drivers there are for very old bus mice.

hlwbook_03.book Page 212 Monday, April 5, 2004 4:50 PM

Main tai ni ng the Kerne l 213

Sound

There are two parts to sound configuration: API support and drivers. The
current sound system is called Advanced Linux Sound Architecture (ALSA),
but you should also include the emulation support for the old OSS (Open
Sound System), because many programs still use the OSS interface.

The driver configuration for sound devices is very similar to that
for network devices — many of the sound drivers carry the names of the
sound chipset.

USB Support

When configuring USB, choose an interface driver first:

UHCI and OHCI are USB 1.1 interfaces. Even if you have a USB 2.0
motherboard, you need one of these. If you don’t know which one your
motherboard supports, pick both (modules are okay); the kernel will
sort it out.

EHCI is a USB 2.0 interface.

You also want to enable the USB device filesystem option that can maintain
USB device information in /proc/bus/usb.

Configuring the kernel to support USB devices is fairly straightforward,
but there are two gotchas:

� The Mass storage support option requires that you also enable SCSI and
SCSI disk support.

� The Interface device support (HID) option requires that you enable the
input drivers described earlier. To get USB mouse and keyboard sup-
port, you need to enable HID input layer support in the USB support
menu. Don’t use the boot protocol drivers unless you know exactly what
you’re doing.

Filesystems

You can add support for many different filesystems to your Linux kernel
configuration. However, make sure that you compile your primary filesystem
directly into the kernel. For example, if your root partition uses ext2, don’t
modularize ext2 support. Otherwise, your system will not be able to mount
the root filesystem and therefore will not boot.

These are the most important filesystems:

Second extended (ext2) The Linux standard for many years.

Third extended (ext3) A journaled version of ext2; now the standard
for many distributions.

Reiserfs A high-performance journaled filesystem.

hlwbook_03.book Page 213 Monday, April 5, 2004 4:50 PM

214 Chap te r 10

DOS/FAT/NT MS-DOS- and Windows-compatible filesystems. To
get MS-DOS filesystem support, you need to enable FAT. VFAT is the
extended filesystem introduced with Windows 95. You need VFAT if you
plan to read images from the flash memory cards in digital cameras and
similar devices.

ISO9660 A standard CD-ROM filesystem. The Linux driver includes
the Rock Ridge extensions. You can also add the Microsoft Joliet
extensions.

UDF A newer CD-ROM and DVD filesystem.

Minix A filesystem that was the Linux standard a long time ago
(it even predates Linux). It never hurts to include Minix filesystem
support as a module.

Pseudo filesystems These are system interfaces, not storage mecha-
nisms. The /proc filesystem is one of the best-known pseudo-filesystems,
and one that you should always configure. You should also include the
/dev/pts filesystem and the virtual memory filesystem.

Network filesystems These are used for sharing files with machines
over the network.

There are also a couple important filesystem-related options:

Kernel automounter support Enables automatic filesystem mounting
and unmounting. This is a popular solution for managing network file-
system access.

Partition types Allows Linux to read partitioning schemes other than
the regular PC partition tables, including BSD disklabels and Solaris x86
partitions.

This wraps up the important kernel configuration options. You shouldn’t
really have to worry about the other options (such as the Profiling support
used for kernel development); let’s turn our focus to compiling the kernel.

10.4.2 Compiling the Kernel and Modules
After you save your kernel configuration, you’re ready to build the kernel.
To get a list of make targets, you can run this command:

make help

Your main goals are to compile the bzImage compressed kernel image and the
kernel modules. Because these two are the default targets, you only need to
run the following to build everything:

make

hlwbook_03.book Page 214 Monday, April 5, 2004 4:50 PM

Main tai ni ng the Kerne l 215

The compile takes some time. As it runs along, you see messages like this:

 CC init/version.o

If you see a message containing [M], it means that make is compiling a module:

 CC [M] net/sctp/protocol.o

The following output appears when make builds bzImage:

Kernel: arch/i386/boot/bzImage is ready

As the preceding message indicates, the build process creates your kernel
image as arch/i386/boot/bzImage. The process also creates a file named
System.map that contains kernel symbols and locations. You may have to wait a
little while after the “Kernel ready” message appears, because make may still
need to compile some kernel modules. Don’t interrupt the build; make sure
that you wait until you get your prompt back before installing the kernel.

NOTE In kernel versions prior to 2.6, you had to run the following commands for a complete
kernel build:

make dep
make bzImage

Failed Compiles

Recent kernels are very self-contained; there are only two primary things that
can go wrong during the build process:

� If you get a parse error or some other sort of coherent compiler error,
the compiler on your machine probably doesn’t match the recom-
mended compiler in the README file. Kernel code is very particular about
the compiler, especially due to all of the assembly code involved.

� If the compiler dies unexpectedly midway through the build process,
your hardware may be at fault. Compiling a kernel stresses a machine
much more than almost any other task. Bad memory and overclocked or
overheated processors are the main culprits.

If you need to see each command in the build process to track down a
problem, use this command:

make V=1

hlwbook_03.book Page 215 Monday, April 5, 2004 4:50 PM

216 Chap te r 10

10.4.3 Installing Modules
Before you install and boot from your new kernel, you should put the new
kernel modules in /lib/modules with this command:

make modules_install

Your new modules should appear in /lib/modules/version, where version is
your kernel version. If you fail to install the modules before booting your
kernel, the kernel module utilities will not automatically recognize the new
modules, and you may end up missing a few drivers.

The module installation builds a module dependency list in /lib/mod-
ules/version/modules.dep. If this stage fails, it’s likely that your module utilities
are out of date. As of this writing, the module utilities are in a package
named module-init-tools.

10.4.4 Kernel Parameters
Sometimes you need to send extra parameters to the kernel at boot time
in order to get devices or services working. For example, one of the most
elementary kernel parameters is root=partition, which sets the initial root
partition to partition.

You can enter a kernel parameter after the kernel image name.
For example, at a LILO prompt where your kernel label is Linux, you can
type this:

Linux root=/dev/hda3

Documentation/kernel-parameters.txt contains a list of all kernel parameters.
Most of them are for hardware. In addition to root=partition, here are the
most important parameters:

init=path This starts path as the first process on the system in place of
/sbin/init. For example, you can use init=/bin/sh to get out of a tight
spot if your init does not work properly.

mem=size This specifies that the machine has size memory; the kernel
should not autodetect the memory size. For example, to specify 512MB
of memory, you would use mem=512M.

rootfstype=type This specifies that the root filesystem’s type is type.

A number as a boot parameter indicates the init runlevel. You can use -s or S
for single-user mode.

10.5 Installing Your Kernel with a Boot Loader

Boot loaders load kernel images into memory and hand control of the CPU
over to the newly loaded kernel. To make your new kernel work, you must
tell the boot loader about the kernel.

hlwbook_03.book Page 216 Monday, April 5, 2004 4:50 PM

Main tai ni ng the Kerne l 217

If you have never worked with a boot loader before, you need to know
how a PC boots from the hard disk. On a normal Microsoft-based system, the
boot process works like this:

1. After performing the power-on self test (POST), the BIOS loads sector 1
of the hard disk into memory and runs whatever landed in that memory.
On most Windows-based systems, this sector is called the Master Boot
Record (MBR).

2. The MBR extracts the partition table from the disk and identifies the
“active” partition.

3. The MBR loads and runs yet another boot sector from the active parti-
tion, setting the operating system in motion.

On a Linux system, you can install the kernel boot loader on the active
partition or you can replace the MBR with the boot loader. If you decide to
replace the MBR with a boot loader such as GRUB or LILO, it is important to
remember that the active partition has little meaning — these boot loaders
address partitions based on their own configuration systems.

From a practical point of view, your decision to overwrite the MBR (and
thus circumvent the active partition) makes little difference. If your machine
runs Linux, you probably want GRUB or LILO as your default boot loader.
Even if you have a dual-boot machine, you still want to use GRUB or LILO,
because both boot loaders are capable of loading boot sectors from other
operating systems.

The important point is that you know exactly where your boot loader
resides. Let’s say that your disk is /dev/hda and you have a Linux root partition
at /dev/hda3. If you replace the MBR by writing GRUB to /dev/hda, you need
to remember that the active partition is now irrelevant; GRUB uses its own
configuration system to access partitions. However, if you decide to write the
boot loader to /dev/hda3 instead, keeping the old MBR, your system will get to
that boot loader only if /dev/hda3 is the active partition.

NOTE If you need to replace the MBR on a hard disk, run the DOS command FDISK /MBR.

When configuring a boot loader, be sure that you know the location of the
root partition and any kernel parameters.

10.5.1 Which Boot Loader?

Because there are two popular Linux boot loaders, you may wonder which
one you should choose:

LILO Linux Loader. This was one of the very first Linux boot loaders.
Its disadvantages are that it is not terribly flexible and that you must run
lilo to install a new boot block every time you install a new kernel. How-
ever, LILO is fairly self-contained.

hlwbook_03.book Page 217 Monday, April 5, 2004 4:50 PM

218 Chap te r 10

GRUB Grand Unified Boot Loader. This is a newer boot system
gaining in popularity, and it does not need a reconfiguration for every
new kernel because it can read many kinds of filesystems. This feature
is especially handy for situations where you might need to boot from an
old kernel. Initially, GRUB is slightly trickier to configure than LILO,
but it is much easier to deal with once installed, because you do not need
to replace the boot sector for every new kernel. I recommend GRUB.

10.5.2 GRUB

With GRUB, you need only install the boot loader code on your machine
once; after that, you can modify a GRUB menu file for any new kernel that
you want to boot on a permanent basis.

The GRUB boot files are in /boot/grub. GRUB loads the various stage files
into memory during the boot process. If you already have GRUB on your
machine, you just need to modify the /boot/grub/menu.lst file when you add a
new kernel image under a new name. (If you install a new kernel image with
the same name as the old kernel, you do not need to modify the menu file.)

Some distributions preinstall GRUB but have a different name for
menu.lst. You may need to dig around in /boot to find the correct filename.
In any case, the menu file looks like this:

default 0
timeout 10

title Linux
 kernel (hd0,0)/boot/vmlinuz root=/dev/hda1

title backup
 kernel (hd0,0)/boot/vmlinuz.0 root=/dev/hda1

The parameters in the menu file are as follows:

default The title entry that GRUB should boot by default. 0 is the first
entry, 1 is the second, and so on.

timeout How long GRUB should wait before loading the default image.

title A label for a kernel.

kernel The kernel image and parameters, possibly including the
root device.

In GRUB, (hd0) is the first hard disk on your system, usually /dev/hda. GRUB
assigns disk mappings in the order that they appear on your system, so if you
have /dev/hda and /dev/hdc devices but no /dev/hdb, GRUB would assign (hd0)
to /dev/hda and (hd1) to /dev/hdc. The first number in the GRUB name is for
the disk, and the second is for the partition (if there is a partition). Check
the /boot/grub/device.map file for your system’s hard drive mapping.

hlwbook_03.book Page 218 Monday, April 5, 2004 4:50 PM

Main tai ni ng the Kerne l 219

The kernel images in the preceding example are on the root partition
of the primary master ATA hard disk. There are two kernel images: a regular
kernel at /boot/vmlinuz and a backup at /boot/vmlinuz.0.

Root Device Confusion

You may find it odd that the root partition is actually specified twice in the
kernel line in the preceding example (you can see (hd0,0) and /dev/hda1).
This is easy to explain: the (hd0,0) is where GRUB expects to find the kernel
image, and root=/dev/hda1 is a Linux kernel parameter that tells the kernel
what it should mount as the root partition. These two locations are usually,
but not always, the same. However, the GRUB and Linux device names
are completely different, and so you need them in two places in the config-
uration file.

Unfortunately, you may see this alternate syntax in menu.lst:

root (hd0,0)
kernel /boot/vmlinuz.0 root=/dev/hda1

This is confusing, because GRUB does not pass its root parameter (hd0,0)
to the Linux kernel. Omitting the GRUB root parameter can prevent some
head scratching.

Booting Other Operating Systems

There are all sorts of other things you can do with GRUB, like load splash
screens and change the title (use info grub to see all of the options).
However, the only other essential thing you should know is how to make
a dual-boot system.

Here is a definition for a DOS or Windows system on /dev/hda3:

title dos
 rootnoverify (hd0,2)
 makeactive
 chainloader +1

Remember how the PC boot loaders usually work, by first loading whatever
is on the first sector of the disk, then loading the first sector of the active
partition.

Installing GRUB

To put GRUB on your system for the first time, you must make sure that you
have a menu.lst file. The GRUB installation process does not create menu.lst;
you must come up with this file on your own. If you don’t, you can still boot
your system, but you must type a series of commands resembling entries in
menu.lst to do so, as follows:

kernel (hd0,0)/boot/vmlinuz root=/dev/hda1
boot

hlwbook_03.book Page 219 Monday, April 5, 2004 4:50 PM

220 Chap te r 10

To install the GRUB software, run this command to put the boot sector on
your disk:

grub-install device

Here, device is your boot device, such as /dev/hda. However, if you have
a special /boot partition, you need to do something like this:

grub-install --root-directory=/boot device

After running grub-install, review your /boot/grub/device.map file to make
sure that the devices relevant to booting the kernel are in the map file and
agree with your menu.lst file.

10.5.3 LILO
To load your kernel with LILO, you must settle on a permanent location for
your kernel image and install a new boot block for every change you make to
the kernel configuration.

Let’s say that you want to boot /vmlinuz as your kernel with a root
partition of /dev/hda1. Furthermore, you want to install the boot loader on
/dev/hda (replacing the MBR). Do the following:

1. Move the new image into place at /boot/vmlinuz.

2. Create the LILO configuration file, /etc/lilo.conf. An elementary
configuration might look like this:

boot=/dev/hda
root=/dev/hda1
install=/boot/boot.b
map=/boot/map
vga=normal
delay=20

image=/boot/vmlinuz
 label=Linux
 read-only

3. Run lilo -t -v to test the configuration without changing the system.

4. Run lilo to install the boot loader code at /dev/hda.

You can add more images and boot sectors to the LILO configuration.
For example, if you saved your previous kernel as /boot/vmlinuz.0, you could
add this to your lilo.conf to make the old image available as backup at the
LILO prompt:

image=/boot/vmlinuz.0
 label=backup
 read-only

hlwbook_03.book Page 220 Monday, April 5, 2004 4:50 PM

Main tai ni ng the Kerne l 221

You can use the other keyword for foreign operating systems. The following
addition to lilo.conf offers a Windows partition on /dev/hda3 as dos at the
LILO prompt:

other=/dev/hda3
 label=dos

LILO Parameters

Some of the most important lilo.conf parameters are listed here:

boot=bootdev Writes the new boot sector to the bootdev device.

root=rootdev Uses rootdev as the kernel’s default root partition.

read-only Mounts the root partition initially as read-only. You should
include this for normal boot situations (init remounts the root partition
in read-write mode later).

append="options" Includes options as kernel boot parameters.

delay=num Displays the LILO prompt for num tenths of a second at boot
time before booting the default kernel image.

map=map_file Stores the kernel’s location in map_file. Don’t delete
this file.

install=file Specifies that file is the actual boot loader code that lilo
writes to the boot sector.

image=file Defines a bootable kernel image with file. You should
always use the label parameter directly following this definition to name
the image.

label=name Uses name to label the current boot entry.

other=partition Defines another partition that contains a boot sector;
analogous to image for other operating systems. Use label to define a
label for the boot sector.

linear Remaps the boot sector load references when the BIOS disk
geometry is different than the geometry that the Linux kernel sees. This
is usually not necessary, because most modern BIOS code can recognize
very large disks.

10.5.4 Initial RAM Disks

An initial RAM disk is a temporary root partition that the kernel should
mount before doing anything else. Red Hat Linux uses initial RAM disks
to support SCSI host controller drivers and other drivers that are compiled
as modules.

NOTE You do not need an initial RAM disk if you compile all the drivers necessary to mount
your root filesystem directly into your kernel. The overwhelming majority of systems do
not need an initial RAM disk.

hlwbook_03.book Page 221 Monday, April 5, 2004 4:50 PM

222 Chap te r 10

To install an initial RAM disk on a Red Hat Linux system, follow these steps:

1. Build your kernel and install the modules. Do not run any boot loader
configuration or reboot just yet.

2. Run this command to create a RAM disk image (where version is your
kernel version):

mkinitrd /boot/initrd-version version

3. If your boot loader is LILO, add this line to your new kernel’s section in
lilo.conf and run lilo:

initrd=/boot/initrd-version

4. For GRUB, add the following to the appropriate kernel section:

initrd /boot/initrd-version

10.6 Testing the Kernel

When you boot your new kernel for the first time, you should take a careful
look at the kernel diagnostic messages to make sure that all of your hardware
shows up and that the drivers are doing what they are supposed to do.
Unfortunately, kernel messages tend to fly by so quickly that you can’t see
them. You can run dmesg to see the most recent messages, but to see every-
thing, you need to look at your log files.

Most /etc/syslog.conf files send kernel messages to a file such as
/var/log/kernel.log. If you don’t see it anywhere, add a line like this to your
/etc/syslog.conf:

kern.* /var/log/kernel.log

Then run this command:

kill -HUP `/var/run/syslogd.pid`

You may wish to make a checklist for your new kernel to make sure that your
system still operates as it should. Here’s an example:

� Do the network interface and network firewalls work?

� Are all of your disk partitions still visible?

� Does the kernel see your serial, parallel, and USB ports?

� Does all of your external hardware work?

� Does the X Window System work?

hlwbook_03.book Page 222 Monday, April 5, 2004 4:50 PM

Main tai ni ng the Kerne l 223

10.7 Boot Floppies

You can also boot the kernel from a floppy disk. Creating a boot floppy can
be useful when recovering a Linux system that has no active kernel.

To create a boot floppy, put a freshly formatted floppy disk in the drive,
go to the kernel source directory, and run this command:

make bzdisk

Of course, this only works if the size of your bzImage is smaller than the floppy
disk capacity.

You may also need to run rdev to set the floppy’s default root device. For
example, if your root partition is /dev/hda1, use this command:

rdev /dev/fd0 /dev/hda1

Again, boot floppies are primarily useful during a system recovery when
there is no active kernel. For testing new kernels, it’s far better just to use an
advanced boot loader such as GRUB.

10.8 Working with Loadable Kernel Modules

Loadable modules are little pieces of kernel code that you can load and
unload into the kernel memory space while the kernel is running.

The make modules_install command (discussed in the “Installing
Modules” section) installs the kernel module object files in /lib/modules/ver-
sion, where version is your kernel version number. Module object filenames
end with .ko in kernel versions 2.6.0 and later, and .o in older releases.

All distributions use modules in some capacity. If you would like to see
the modules currently loaded on your system, run this command:

lsmod

The output should look something like this:

Module Size Used by
es1370 24768 0 (autoclean)
appletalk 19696 13 (autoclean)

This output includes es1370 (a sound card driver) and appletalk (a network
protocol driver). autoclean means that the kernel may try to automatically
unload the module if it is not used for some time.

To load a module, use the modprobe command:

modprobe module

hlwbook_03.book Page 223 Monday, April 5, 2004 4:50 PM

224 Chap te r 10

To remove a single module, use the -r option:

modprobe -r module

As mentioned earlier, you can find module dependencies in
/lib/modules/version/modules.dep. Dependencies don’t arrive on your system
by magic; you must build an explicit list (the kernel module install process
usually does this for you). You may need to create module dependencies by
hand for all installed kernel versions after installing a module that doesn’t
come with the kernel. You can do this by running this command:

depmod -a

However, this doesn’t always work, because depmod may try to read the symbol
function memory address locations in the currently running kernel. This
won’t work if you’re trying to build dependencies for kernels other than the
one you’re running. To zero in on a particular kernel version, find a
System.map file that corresponds to that kernel, and then run this command:

depmod -a -F System.map version

As mentioned earlier, though, you do not need to run depmod under normal
circumstances, because make modules_install runs it for you.

HINT If you can’t find the module that corresponds to a particular feature, go to the feature
in the kernel configuration menu and press ? to get the help screen. This usually dis-
plays the module name.

10.8.1 Kernel Module Loader
It’s inconvenient to manually load a module every time you need to use a
particular feature or driver. For example, if you compiled a certain filesystem
as a module, it would be too much work to run a modprobe before a mount
command that referenced the filesystem.

The Linux kernel provides an automatic module loader that can load
most modules without additional modprobe or insmod commands. To use the
loader, enable the Kernel module loader option in the kernel configuration.
A kernel with the module loader runs modprobe to load modules that it wants.

There are limits to what the module loader can do without additional
configuration. In general, it can load most modules that do not involve
specific devices. For example, the module loader can load IP tables modules,
and it can load filesystem modules as long as you specify the filesystem type
with a mount command.

The module loader cannot guess your hardware. For instance, the
module loader will not try to figure out what kind of Ethernet card is in your
system. Therefore, you need to provide extra hints with the modprobe.conf file.

hlwbook_03.book Page 224 Monday, April 5, 2004 4:50 PM

Main tai ni ng the Kerne l 225

10.8.2 modprobe Configuration

The modprobe program reads /etc/modprobe.conf for important device
information. Most entries are aliases such as this:

alias eth0 tulip

Here, the kernel loads the tulip module if you configure the eth0 network
interface. In other cases, you may need to specify drivers by their major
device numbers, such as this entry for an Adaptec host controller:

alias block-major-8 aic7xxx

Wildcards are also possible in modprobe.conf aliases. For example, if all of your
Ethernet interface cards use the tulip driver, you can use this line to catch all
interfaces:

alias eth* tulip

NOTE The module utilities discussed here are the ones that go with kernel version 2.6.0. These
programs are part of the module-init-utils package. Earlier kernel versions used the
modutils package. The most significant difference between the two sets of utilities is that
the new package reads modprobe.conf instead of modules.conf. The syntax in both files
is very similar.

Chaining Modules and the install Keyword

You can chain modules together with the install keyword. For example,
if SCSI disk support isn’t compiled directly into the kernel, you can force
it, as in this example for /dev/sda on the Adaptec host controller from the
preceding section:

alias block-major-8 my_scsi_modules
install my_scsi_modules /sbin/modprobe sd_mod; /sbin/modprobe aic7xxx

This works as follows:

1. A process (or the kernel) tries to access /dev/sda. Assume that this device
is not yet mapped to an actual device.

2. The kernel sees that /dev/sda isn’t mapped to its device, which has a
block major number of 8. Therefore, the kernel runs this command:

modprobe block-major-8

3. modprobe searches though /etc/modprobe.conf for block-major-8 and finds
the alias line.

hlwbook_03.book Page 225 Monday, April 5, 2004 4:50 PM

226 Chap te r 10

4. The alias line says to look for my_scsi_modules, so modprobe runs itself, this
time as follows:

modprobe my_scsi_modules

5. The new modprobe sees install my_scsi_modules in modprobe.conf, and then
runs the command(s) that follow in the file. In this case, these com-
mands are two additional modprobe commands.

You can include any command that you like in an install line. If you need to
debug something or just want to experiment, try adding an echo command.

NOTE There is a remove keyword that works like install but runs its command when you
remove a module.

Module Options

Kernel modules can take various parameters with the options keyword, as
shown in this example for a SoundBlaster 16:

alias snd-card-0 snd-sb16
options snd-sb16 port=0x220 irq=5 dma8=1 dma16=5 mpu_port=0x330

hlwbook_03.book Page 226 Monday, April 5, 2004 4:50 PM

