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M E M O R Y  A C C E S S  A N D  

O R G A N I Z A T I O N

3.1 Chapter Overview

Earlier chapters in this text show you how to declare and access 
simple variables in an assembly language program. In this chapter 

you get the full picture on 80x86 memory access. You also learn how to 
efficiently organize your variable declarations to speed up access to their data. This 
chapter will also teach you about the 80x86 stack and how to manipulate data on the 
stack. Finally, this chapter will teach you about dynamic memory allocation and the 
heap.

3.2 The 80x86 Addressing Modes

The 80x86 processors let you access memory in many different ways. Until now, 
you’ve only seen a single way to access a variable, the so-called displacement-only
addressing mode. In this section you’ll see some additional ways your programs can 
access memory using 80x86 memory addressing modes. The 80x86 memory addressing 
modes provide flexible access to memory, allowing you to easily access variables, 
arrays, records, pointers, and other complex data types. Mastery of the 80x86 
addressing modes is the first step toward mastering 80x86 assembly language.



112 Chapter  3

When Intel designed the original 8086 processor, it provided it with a 
flexible, though limited, set of memory addressing modes. Intel added several 
new addressing modes when it introduced the 80386 microprocessor while 
retaining all the modes of the previous processors. However, in 32-bit 
environments like Windows, BeOS, and Linux, these earlier addressing modes 
are not very useful; indeed, HLA doesn’t even support the use of these older, 
16-bit-only addressing modes. Fortunately, anything you can do with the older 
addressing modes can be done with the new addressing modes as well (even 
better, as a matter of fact). Therefore, you won’t need to bother learning the old 
16-bit addressing modes when writing code for today’s high-performance 
operating systems. Do keep in mind, however, that if you intend to work under 
MS-DOS or some other 16-bit operating system, you will need to study up on 
those old addressing modes (see the 16-bit edition of this book on the 
accompanying CD-ROM for details).

3.2.1 80x86 Register Addressing Modes

Most 80x86 instructions can operate on the 80x86’s general purpose register set. 
By specifying the name of the register as an operand to the instruction, you can 
access the contents of that register. Consider the 80x86 mov (move) instruction:

mov( source, destination );

This instruction copies the data from the source operand to the destination
operand. The 8-bit, 16-bit, and 32-bit registers are certainly valid operands for 
this instruction. The only restriction is that both operands must be the same size. 
Now let’s look at some actual 80x86 mov instructions:

     mov( bx, ax );          // Copies the value from BX into AX

     mov( al, dl );          // Copies the value from AL into DL

     mov( edx, esi );      // Copies the value from EDX into ESI

     mov( bp, sp );          // Copies the value from BP into SP

     mov( cl, dh );          // Copies the value from CL into DH

     mov( ax, ax );          // Yes, this is legal!

The registers are the best place to keep variables. Instructions using the registers 
are shorter and faster than those that access memory. Of course, most compu-
tations require at least one register operand, so the register addressing mode is 
very popular in 80x86 assembly code. Throughout this chapter you’ll see the 
abbreviated operands reg and r/m (register/memory) used wherever you may use 
one of the 80x86’s general purpose registers.
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3.2.2 80x86 32-Bit Memory Addressing Modes

The 80x86 provides hundreds of different ways to access memory. This may seem 
like quite a bit at first, but fortunately most of the addressing modes are simple 
variants of one another so they’re very easy to learn. And learn them you should! 
The key to good assembly language programming is the proper use of memory 
addressing modes.

The addressing modes provided by the 80x86 family include displacement-
only, base, displacement plus base, base plus indexed, and displacement plus 
base plus indexed. Variations on these five forms provide all the different 
addressing modes on the 80x86. See, from hundreds down to five. It’s not so bad 
after all! 

3.2.2.1 The Displacement-Only Addressing Mode

The most common addressing mode, and the one that’s easiest to understand, is 
the displacement-only (or direct) addressing mode. The displacement-only 
addressing mode consists of a 32-bit constant that specifies the address of the 
target location. Assuming that variable J is an int8 variable appearing at address 
$8088, the instruction “mov( J, al );” loads the AL register with a copy of the byte 
at memory location $8088. Likewise, if int8 variable K is at address $1234 in 
memory, then the instruction “mov( dl, K );” stores the value in the DL register to 
memory location $1234 (see Figure 3-1).

Figure 3-1: Displacement-Only (Direct) Addressing Mode.

The displacement-only addressing mode is perfect for accessing simple scalar 
variables. 

Intel named this the displacement-only addressing mode because a 32-bit 
constant (displacement) follows the mov opcode in memory. On the 80x86 pro-
cessors, this displacement is an offset from the beginning of memory (that is, 
address zero). The examples in this chapter will often access bytes in memory. 
Don’t forget, however, that you can also access words and double words on the 
80x86 processors by specifying the address of their first byte (see Figure 3-2).

$8088 (Address of J)

mov ( J, al  );

AL

DL

mov ( dl,  K );

$1234 (Address of K)
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Figure 3-2: Accessing a Word or DWord Using the Displacement Only 
Addressing Mode.

3.2.2.2 The Register Indirect Addressing Modes

The 80x86 CPUs let you access memory indirectly through a register using the 
register indirect addressing modes. The term “indirect” means that the operand 
is not the actual address, but rather, the operand’s value specifies the memory 
address to use. In the case of the register indirect addressing modes, the value 
the register holds is the address of the memory location to access. For example, 
the instruction “mov( eax, [ebx] );” tells the CPU to store EAX’s value at the 
location whose address is in EBX (the square brackets around EBX tell HLA to 
use the register indirect addressing mode).

There are eight forms of this addressing mode on the 80x86; the following 
instructions are examples of these eight forms:

          mov( [eax], al );

          mov( [ebx], al );

          mov( [ecx], al );

          mov( [edx], al );

          mov( [edi], al );

          mov( [esi], al );

          mov( [ebp], al );

          mov( [esp], al );

These eight addressing modes reference the memory location at the offset found 
in the register enclosed by brackets (EAX, EBX, ECX, EDX, EDI, ESI, EBP, or 
ESP, respectively). 

$1235

mov ( K, ax );

AX $1234 (address of K)

$1000 (address of M)

$1003
$1002
$1002

mov ( edx,  M );

EDX
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Note that the register indirect addressing modes require a 32-bit register. 
You cannot specify a 16-bit or 8-bit register when using an indirect addressing 
mode.1 Technically, you could load a 32-bit register with an arbitrary numeric 
value and access that location indirectly using the register indirect addressing 
mode:

          mov( $1234_5678, ebx );

          mov( [ebx], al );     // Attempts to access location $1234_5678.

Unfortunately (or fortunately, depending on how you look at it), this will 
probably cause the operating system to generate a protection fault because it’s 
not always legal to access arbitrary memory locations. As it turns out, there are 
better ways to load the address of some object into a register; you’ll see how to do 
this shortly.

The register indirect addressing mode has many uses. You can use it to 
access data referenced by a pointer, you can use it to step through array data, 
and, in general, you can use it whenever you need to modify the address of a 
variable while your program is running.

The register indirect addressing mode provides an example of an anonymous
variable. When using the register indirect addressing mode you refer to the value 
of a variable by its numeric memory address (e.g., the value you load into a 
register) rather than by the name of the variable. Hence the phrase “anonymous 
variable.”

HLA provides a simple operator that you can use to take the address of a 
static variable and put this address into a 32-bit register. This is the “&” (address 
of) operator (note that this is the same symbol that C/C++ uses for the address-of 
operator). The following example loads the address of variable J into EBX and 
then stores EAX’s current value into J using the register indirect addressing 
mode:

     mov( &J, ebx );               // Load address of J into EBX.

     mov( eax, [ebx] );          // Store EAX into J.

Of course, it would have been easier to store EAX’s value directly into J rather 
than using two instructions to do this indirectly. However, you can easily imagine 
a code sequence where the program loads one of several different addresses into 
EBX prior to the execution of the “mov( eax, [ebx]);” statement, thus storing 
EAX into one of several different locations depending on the execution path of 
the program.

CAUTION The “&” (address-of) operator is not a general address-of operator like the “&” operator in 
C/C++. You may only apply this operator to static variables.2 You cannot apply it to generic 
address expressions or other types of variables. Later, you will learn about the “load effective 
address” instruction that provides a general solution for obtaining the address of some vari-
able in memory.
1 Actually, the 80x86 does support addressing modes involving certain 16-bit registers, as 
mentioned earlier. However, HLA does not support these modes and they are not useful under 
32-bit operating systems.
2 Note: The term “static” here indicates a static, read only, or storage object.
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3.2.2.3 Indexed Addressing Modes

The indexed addressing modes use the following syntax:

     mov( VarName[ eax ], al );

     mov( VarName[ ebx ], al );

     mov( VarName[ ecx ], al );

     mov( VarName[ edx ], al );

     mov( VarName[ edi ], al );

     mov( VarName[ esi ], al );

     mov( VarName[ ebp ], al );

     mov( VarName[ esp ], al );

VarName is the name of some variable in your program.
The indexed addressing mode computes an effective address3 by adding the 

address of the variable to the value of the 32-bit register appearing inside the 
square brackets. Their sum is the actual address in memory the instruction 
accesses. So if VarName is at address $1100 in memory and EBX contains an eight, 
then “mov(VarName[ ebx ], al);” loads the byte at address $1108 into the AL 
register (see Figure 3-3).

Figure 3-3: Indexed Addressing Mode.

The indexed addressing mode is really handy for accessing elements of arrays. 
You will see how to use this addressing mode for that purpose a little later in this 
book.

3.2.2.4 Variations on the Indexed Addressing Mode

There are two important syntactical variations of the indexed addressing mode. 
Both forms generate the same basic machine instructions, but their syntax 
suggests other uses for these variants.

The first variant uses the following syntax:

     mov( [ ebx + constant ], al );

     mov( [ ebx - constant ], al );

3 The effective address is the ultimate address in memory that an instruction will access, once all 
the address calculations are complete.

mov ( VarName [ ebx  ], al  );

EBX

AL

+

VarName
This is the
address of
VarName

$1100

$1108

$08
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These examples use only the EBX register. However, you can use any of the other 
32-bit general purpose registers in place of EBX. This addressing mode 
computes its effective address by adding the value in EBX to the specified 
constant, or subtracting the specified constant from EBX (see Figures 3-4 
and 3-5).

Figure 3-4: Indexed Addressing Mode Using a Register Plus a Constant.

Figure 3-5: Indexed Addressing Mode Using a Register Minus a Constant.

This particular variant of the addressing mode is useful if a 32-bit register 
contains the base address of a multibyte object and you wish to access a memory 
location some number of bytes before or after that location. One important use 
of this addressing mode is accessing fields of a record (or structure) when you 
have a pointer to the record data. This addressing mode is also invaluable for 
accessing automatic (local) variables in procedures (see the chapter on pro-
cedures for more details).

The second variant of the indexed addressing mode is actually a 
combination of the previous two forms. The syntax for this version is the 
following:

     mov( VarName[ ebx + constant ], al );

     mov( VarName[ ebx - constant ], al );

mov ( [ ebx  + constant ], al  );

EBX

AL

+constant

mov ( [ ebx  - constant ], al  );

EBX

AL

-constant



118 Chapter  3

Once again, this example uses only the EBX register. You may, however, sub-
stitute any of the 32-bit general purpose registers in lieu of EBX in these two 
examples. This particular form is quite useful when accessing elements of an 
array of records (structures) in an assembly language program (more on that in 
the next chapter).

These instructions compute their effective address by adding or subtracting 
the constant value from VarName’s address and then adding the value in EBX to 
this result. Note that HLA, not the CPU, computes the sum or difference of 
VarName’s address and constant. The actual machine instructions above contain a 
single constant value that the instructions add to the value in EBX at runtime. 
Because HLA substitutes a constant for VarName, it can reduce an instruction of 
the form

mov( VarName[ ebx + constant], al );

to an instruction of the form

mov( constant1[ ebx + constant2], al );

Because of the way these addressing modes work, this is semantically equivalent 
to

mov( [ebx + (constant1 + constant2)], al );

HLA will add the two constants together at compile time, effectively producing 
the following instruction:

mov( [ebx + constant_sum], al );

Of course, there is nothing special about subtraction. You can easily convert the 
addressing mode involving subtraction to addition by simply taking the two’s 
complement of the 32-bit constant and then adding this complemented value 
(rather than subtracting the uncomplemented value).

3.2.2.5 Scaled Indexed Addressing Modes

The scaled indexed addressing modes are similar to the indexed addressing 
modes with two differences: (1) the scaled indexed addressing modes allow you 
to combine two registers plus a displacement, and (2) the scaled indexed 
addressing modes let you multiply the index register by a (scaling) factor of 1, 2, 
4, or 8. The syntax for these addressing modes is 

     VarName[ IndexReg32*scale ]

     VarName[ IndexReg32*scale + displacement ]

     VarName[ IndexReg32*scale - displacement ]

     [ BaseReg32 + IndexReg32*scale ]

     [ BaseReg32 + IndexReg32*scale + displacement ]

     [ BaseReg32 + IndexReg32*scale - displacement ]
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     VarName[ BaseReg32 + IndexReg32*scale ]

     VarName[ BaseReg32 + IndexReg32*scale + displacement ]

     VarName[ BaseReg32 + IndexReg32*scale - displacement ]

In these examples, BaseReg32 represents any general purpose 32-bit register; 
IndexReg32 represents any general purpose 32-bit register except ESP, and scale
must be one of the constants: 1, 2, 4, or 8.

The primary difference between the scaled indexed addressing mode and 
the indexed addressing mode is the inclusion of the IndexReg32*scale component. 
These modes compute the effective address by adding in the value of this new 
register multiplied by the specified scaling factor (see Figure 3-6 for an example 
involving EBX as the base register and ESI as the index register).

Figure 3-6: The Scaled Indexed Addressing Mode.

In Figure 3-6, suppose that EBX contains $100, ESI contains $20, and VarName is at 
base address $2000 in memory. Then the following instruction:

mov( VarName[ ebx + esi*4 + 4 ], al );

will move the byte at address $2184 ($2000 + $100 + $20*4 + 4) into the AL 
register.

The scaled indexed addressing mode is useful for accessing elements of 
arrays whose elements are 2, 4, or 8 bytes each. This addressing mode is also 
useful for access elements of an array when you have a pointer to the beginning 
of the array. 

CAUTION Although this addressing mode contains two variable components (the base and index regis-
ters), don’t get the impression that you use this addressing mode to access elements of a two-
dimensional array by loading the two array indices into the two registers. Two-dimensional 
array access is quite a bit more complicated than this. The next chapter will consider multi-
dimensional array access and discuss how to do this.

EBX

mov ( VarName [ ebx  + esi *scale ], al );

VarName

AL

+

ESI * scale +
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3.2.2.6 Addressing Mode Wrap-Up

Well, believe it or not, you’ve just learned several hundred addressing modes! 
That wasn’t hard now, was it? If you’re wondering where all these modes came 
from, just consider the fact that the register indirect addressing mode isn’t a 
single addressing mode, but eight different addressing modes (involving the 
eight different registers). Combinations of registers, constant sizes, and other 
factors multiply the number of possible addressing modes on the system. In fact, 
you need only memorize about two dozen forms and you’ve got it made. In 
practice, you’ll use less than half the available addressing modes in any given 
program (and many addressing modes you may never use at all). So learning all 
these addressing modes is actually much easier than it sounds.

3.3 Run-Time Memory Organization

An operating system like Linux or Windows tends to put different types of data 
into different sections (or segments) of memory. Although it is possible to 
reconfigure memory to your choice by running the linker and specify various 
parameters, by default Windows loads an HLA program into memory using the 
organization appearing in Figure 3-7 (Linux is similar, though it rearranges some 
of the sections).

Figure 3-7: HLA Typical Run-Time Memory Organization.

The operating system reserves the lowest memory addresses. Generally, your 
application cannot access data (or execute instructions) at these low addresses. 
One reason the OS reserves this space is to help trap NULL pointer references. If 
you attempt to access memory location zero, the operating system will generate a 
“general protection fault” meaning you’ve accessed a memory location that 
doesn’t contain valid data. Because programmers often initialize pointers to 
NULL (zero) to indicate that the pointer is not pointing anywhere, an access of 
location zero typically means that the programmer has made a mistake and has 
not properly initialized a pointer to a legal (non-NULL) value. Also note that if 
you attempt to use one of the 80x86 16-bit addressing modes (HLA doesn’t allow 

High Addresses

Adrs  = $0

Stack (Default Size = 16 MBytes) 

Heap (Default Size = 16 MBytes)

Code (program instructions)

Read-only data

Static variables

Storage (uninitialized) variables

Reserved by O/S (Typically 128 KBytes)

Constants (not user accessible)
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this, but were you to encode the instruction yourself and execute it . . .) the 
address will always be in the range 0..$1FFFE.4 This will also access a location in 
the reserved area, generating a fault.

The remaining six areas in the memory map hold different types of data 
associated with your program. These sections of memory include the stack 
section, the heap section, the code section, the readonly section, the static
section, and the storage section. Each of these memory sections correspond to 
some type of data you can create in your HLA programs. The following sections 
discuss each of these sections in detail.

3.3.1 The Code Section

The code section contains the machine instructions that appear in an HLA 
program. HLA translates each machine instruction you write into a sequence of 
one or more byte values. The CPU interprets these byte values as machine 
instructions during program execution.

By default, when HLA links your program it tells the system that your 
program can execute instructions in the code segment and you can read data 
from the code segment. Note, specifically, that you cannot write data to the code 
segment. The operating system will generate a general protection fault if you 
attempt to store any data into the code segment.

Machine instructions are nothing more than data bytes. In theory, you could 
write a program that stores data values into memory and then transfers control to 
the data it just wrote, thereby producing a program that writes itself as it exe-
cutes. This possibility produces romantic visions of artificially intelligent programs 
that modify themselves to produce some desired result. In real life, the effect is 
somewhat less glamorous.

Prior to the popularity of protected mode operating systems, like Windows and 
Linux, a program could overwrite the machine instructions during execution. 
Most of the time this was due to defects in a program, not because the program 
was artificially intelligent. A program would begin writing data to some array and 
fail to stop once it reached the end of the array, eventually overwriting the 
executing instructions that make up the program. Far from improving the 
quality of the code, such a defect usually causes the program to fail spectacularly.

Of course, if a feature is available, someone is bound to take advantage of it. 
Some programmers have discovered that in some special cases, using self-
modifying code — that is, a program that modifies its machine instructions during 
execution — can produce slightly faster or slightly smaller programs. 
Unfortunately, self-modifying code is very difficult to test and debug. Given the 
speed of modern processors combined with their instruction set and wide variety 
of addressing modes, there is almost no reason to use self-modifying code in a 
modern program. Indeed, protected mode operating systems like Linux and 
Windows make it difficult for you to write self-modifying code.

4 It’s $1FFFE, not $FFFF, because you could use the indexed addressing mode with a 
displacement of $FFFF along with the value $FFFF in a 16-bit register.



122 Chapter  3

HLA automatically stores the data associated with your machine code into 
the code section. In addition to machine instructions, you can also store data 
into the code section by using the following pseudo-opcodes:5

� byte

� word

� dword

� uns8

� uns16

� uns32

� int8

� int16

� in32

� boolean

� char

The following byte statement exemplifies the syntax for each of these pseudo-
opcodes:

byte comma_separated_list_of_byte_constants ;

Here are some examples:

     boolean     true;

     char          'A';

     byte          0, 1, 2;

     byte          "Hello", 0

     word          0, 2;

     int8          -5;

     uns32          356789, 0;

If more than one value appears in the list of values after the pseudo-opcode, HLA 
emits each successive value to the code stream. So the first byte statement above 
emits three bytes to the code stream, the values zero, one, and two. If a string 
appears within a byte statement, HLA emits one byte of data for each character 
in the string. Therefore, the second byte statement above emits six bytes: the 
characters ‘H’, ‘e’, ‘l’, ‘l’, and ‘o’, followed by a zero byte.

Keep in mind that the CPU will attempt to treat data you emit to the code 
stream as machine instructions unless you take special care not to allow the 
execution of the data. For example, if you write something like the following:

          mov( 0, ax );

          byte 0,1,2,3;

          add( bx, cx );

5 This isn’t a complete list. HLA generally allows you to use any scalar data type name as a 
statement to reserve storage in the code section. You’ll learn more about the available data types 
later in this text.
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Your program will attempt to execute the 0, 1, 2, and 3 byte values as a machine 
instruction after executing the mov. Unless you know the machine code for a par-
ticular instruction sequence, sticking such data values into the middle of your 
code will almost always produce unexpected results. More often than not, this 
will crash your program. Therefore, you should never insert arbitrary data bytes 
into the middle of an instruction stream unless you understand exactly what you 
are doing. Typically when you place such data in your programs, you’ll execute 
some code that transfers control around the data.

3.3.2 The Static Sections

The static section is where you will typically declare your variables. Although the 
static section syntactically appears as part of a program or procedure, keep in 
mind that HLA moves all static variables to the static section in memory. 
Therefore, HLA does not sandwich the variables you declare in the static section 
between procedures in the code section.

In addition to declaring static variables, you can also embed lists of data into 
the static declaration section. You use the same technique to embed data into 
your static section that you use to embed data into the code section: You use the 
byte, word, dword, uns32, and so on, pseudo-opcodes. Consider the following 
example:

static

     b:     byte := 0;

          byte 1,2,3;

     u:     uns32 := 1;

          uns32 5,2,10;

     c:     char;

          char 'a', 'b', 'c', 'd', 'e', 'f';

     bn: boolean;

          boolean true;

Data that HLA writes to the static memory segment using these pseudo-opcodes 
is written to the segment after the preceding variables. For example, the byte 
values 1, 2, and 3 are emitted to the static section after b’s 0 byte. Because there 
aren’t any labels associated with these values, you do not have direct access to 
these values in your program. You can use the indexed addressing modes to 
access these extra values (examples will appear a little later in this chapter).

In the examples above, note that the c and bn variables do not have an 
(explicit) initial value. However, if you don’t provide an initial value, HLA will 
initialize the variables in the static section to all zero bits, so HLA assigns the 
NULL character (ASCII code zero) to c as its initial value. Likewise, HLA assigns 
false as the initial value for bn. In particular, you should note that your variable 
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declarations in the static section always consume memory, even if you haven’t 
assigned them an initial value. Any data you declare in a pseudo-opcode like byte
will always follow the actual data associated with the variable declaration.

3.3.3 The Read-Only Data Section

The readonly data section holds constants, tables, and other data that your 
program cannot change during execution. You create read-only objects by 
declaring them in the readonly declaration section. The readonly section is very 
similar to the static section with three primary differences:

� The readonly section begins with the reserved word readonly rather than 
static.

� All declarations in the readonly section generally have an initializer. 

� The system does not allow you to store data into a readonly object while the 
program is running.

Example:

readonly

     pi:               real32 := 3.14159;

     e:               real32 := 2.71;

     MaxU16:          uns16 := 65_535;

     MaxI16:          int16 := 32_767;

All readonly object declarations must have an initializer because you cannot ini-
tialize the value under program control.6 For all intents and purposes, you can 
think of readonly objects as constants. However, these constants consume memory 
and other than you cannot write data to readonly objects, they behave like, and 
you can use them like, static variables. Because they behave like static objects, 
you cannot use a readonly object everywhere a constant is allowed; in particular, 
readonly objects are memory objects, so you cannot supply a readonly object and 
some other memory object as the operands to an instruction.7

Like the static section, you may embed data values in the readonly section 
using the byte, word, dword, and so on, data declarations, e.g.,

readonly

     roArray: byte := 0;

                    byte 1, 2, 3, 4, 5;

     qwVal: qword := 1;

               qword 0;

6 There is one exception you’ll see a little later in this chapter.
7 mov is an exception to this rule because HLA emits special code for memory-to-memory move 
operations.
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3.3.4 The Storage Section

The readonly section requires that you initialize all objects you declare. The static
section lets you optionally initialize objects (or leave them uninitialized, in which 
case they have the default initial value of zero). The storage section completes the 
initialization coverage: You use it to declare variables that are always uninitialized 
when the program begins running. The storage section begins with the storage
reserved word and contains variable declarations without initializers. Here is an 
example:

storage

     UninitUns32:     uns32;

     i:               int32;

     character: char;

     b:               byte;

Linux and Windows will initialize all storage objects to zero when they load your 
program into memory. However, it’s probably not a good idea to depend upon 
this implicit initialization. If you need an object initialized with zero, declare it in 
a static section and explicitly set it to zero.

Variables you declare in the storage section may consume less disk space in 
the executable file for the program. This is because HLA writes out initial values 
for readonly and static objects to the executable file, but uses a compact 
representation for uninitialized variables you declare in the storage section; note, 
however, that this behavior is OS and object-module format dependent.
Because the storage section does not allow initialized values, you cannot put 
unlabeled values in the storage section using the byte, word, dword, and so on, 
pseudo-opcodes.

3.3.5 The @NOSTORAGE Attribute

The @nostorage attribute lets you declare variables in the static data declaration 
sections (i.e., static, readonly, and storage) without actually allocating memory 
for the variable. The @nostorage option tells HLA to assign the current address in 
a declaration section to a variable but do not allocate any storage for the object. 
That variable will share the same memory address as the next object appearing in 
the variable declaration section. Here is the syntax for the @nostorage option:

     variableName: varType; @nostorage;

Note that you follow the type name with “@nostorage;” rather than some initial 
value or just a semicolon. The following code sequence provides an example of 
using the @nostorage option in the readonly section:

readonly

     abcd: dword; nostorage;

               byte 'a', 'b', 'c', 'd';
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In this example, abcd is a double word whose L.O. byte contains 97 (‘a’), byte #1 
contains 98 (‘b’), byte #2 contains 99 (‘c’), and the H.O. byte contains 100 (‘d’). 
HLA does not reserve storage for the abcd variable, so HLA associates the fol-
lowing four bytes in memory (allocated by the byte directive) with abcd.

Note that the @nostorage attribute is only legal in the static, storage, and 
readonly sections (the so-called static declarations sections). HLA does not allow 
its use in the var section that you’ll read about next.

3.3.6 The Var Section

HLA provides another variable declaration section, the var section, that you can 
use to create automatic variables. Your program will allocate storage for automatic 
variables whenever a program unit (i.e., main program or procedure) begins 
execution, and it will deallocate storage for automatic variables when that 
program unit returns to its caller. Of course, any automatic variables you declare 
in your main program have the same lifetime8 as all the static, readonly, and
storage objects, so the automatic allocation feature of the var section is wasted in 
the main program. In general, you should only use automatic objects in 
procedures (see the chapter on procedures for details). HLA allows them in your 
main program’s declaration section as a generalization.

Because variables you declare in the var section are created at runtime, HLA 
does not allow initializers on variables you declare in this section. So the syntax 
for the var section is nearly identical to that for the storage section; the only real 
difference in the syntax between the two is the use of the var reserved word 
rather than the storage reserved word.9 The following example illustrates this:

var

     vInt: int32;

     vChar:     char;

HLA allocates variables you declare in the var section in the stack memory 
section. HLA does not allocate var objects at fixed locations within the stack 
segment; instead, it allocates these variables in an activation record associated 
with the current program unit. The chapter on procedures, later in this book, 
will discuss activation records in greater detail; for now it is important only to 
realize that HLA programs use the EBP register as a pointer to the current acti-
vation record. Therefore, any time you access a var object, HLA automatically 
replaces the variable name with “[EBP±displacement]”. Displacement is the 
offset of the object in the activation record. This means that you cannot use the 
full scaled indexed addressing mode (a base register plus a scaled index register) 
with var objects because var objects already use the EBP register as their base 
register. Although you will not directly use the two register addressing modes 
often, the fact that the var section has this limitation is a good reason to avoid 
using the var section in your main program.

8 The lifetime of a variable is the point from which memory is first allocated to the point the 
memory is deallocated for that variable.
9 Actually, there are a few other, minor differences, but we won’t deal with those differences in 
this text. See the HLA Reference Manual for more details.
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3.3.7 Organization of Declaration Sections Within Your Programs

The static, readonly, storage, and var sections may appear zero or more times 
between the program header and the associated begin for the main program. 
Between these two points in your program, the declaration sections may appear 
in any order, as the following example demonstrates:

program demoDeclarations;

static

     i_static:     int32;

var

     i_auto:     int32;

storage

     i_uninit:     int32;

readonly

     i_readonly: int32 := 5;

static

     j:     uns32;

var

     k:     char;

readonly

     i2:     uns8 := 9;

storage

     c:     char;

storage

     d:     dword;

begin demoDeclarations;

 

     << code goes here >>

end demoDeclarations;

In addition to demonstrating that the sections may appear in an arbitrary order, 
this section also demonstrates that a given declaration section may appear more 
than once in your program. When multiple declaration sections of the same type 
(e.g., the three storage sections above) appear in a declaration section of your 
program, HLA combines them into a single group. 
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3.4 How HLA Allocates Memory for Variables

As you’ve seen, the 80x86 CPU doesn’t deal with variables that have names like I, 
Profits, and LineCnt. The CPU deals strictly with numeric addresses it can place 
on the address bus like $1234_5678, $0400_1000, and $8000_CC00. HLA, on the 
other hand, does not force you refer to variable objects by their addresses (which 
is nice, because names are so much easier to remember). This abstraction 
(allowing the use of names rather than numeric addresses in your programs) is 
nice, but it does obscure what is really going on. In this section, we’ll take a look 
at how HLA associates numeric addresses with your variables so you’ll 
understand (and appreciate) the process that is taking place behind your back.

Take another look at Figure 3-7. As you can see, the various memory sections 
tend to be adjacent to one another. Therefore, if the size of one memory section 
changes, then this affects the starting address of all the following sections in 
memory. For example, if you add a few additional machine instructions to your 
program and increase the size of the code section, this may affect the starting 
address of the static section in memory, thus changing the addresses of all your 
static variables.10 Keeping track of variables by their numeric address (rather 
than by their names) is difficult enough; imagine how much worse it would be if 
the addresses were constantly shifting around as you add and remove machine 
instructions in your program! Fortunately, you don’t have to keep track of all of 
this, HLA does that bookkeeping for you.

HLA associates a current location counter with each of the three static
declaration sections (static, readonly, and storage). These location counters 
initially contain zero and whenever you declare a variable in one of the static 
sections, HLA associates the current value of that section’s location counter with 
the variable; HLA also bumps up the value of that location counter by the size of 
the object you’re declaring. As an example, assume that the following is the only 
static declaration section in a program:

static

     b     :byte;                    // Location counter = 0, size = 1

     w     :word;                    // Location counter = 1, size = 2

     d     :dword;                    // Location counter = 3, size = 4

     q     :qword;                    // Location counter = 7, size = 8

     l     :lword;                    // Location counter = 15, size = 16

     // Location counter is now 31.

Of course, the run-time address of each of these variables is not the value of the 
location counter. First of all, HLA adds in the base address of the static memory 
section to each of these location counter values (that we call displacements or 
offsets). Secondly, there may be other static objects in modules that you link with 
your program (e.g., from the HLA Standard Library), or even additional static
sections in the same source file, and the linker has to merge the static sections 
together. Hence, these offsets may have very little bearing on the final address of 

10 Note that the operating system typically aligns the static section on a 4,096-byte boundary, so 
you many need to add a sufficient number of new instructions to cause the code section to grow 
in size across a 4K boundary before the static addresses actually change. This isn’t necessarily 
true for all memory sections, however.
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these variables in memory. Nevertheless, one important fact remains: HLA 
allocates variables you declare in a single static declaration section in contiguous 
memory locations. That is, given the declaration above, w will immediately follow 
b in memory, d will immediately follow w in memory, q will immediately follow d,
and so on. Generally, it’s not good coding style to assume that the system 
allocates variables this way, but sometimes it’s convenient to do so.

Note that HLA allocates memory objects you declare in readonly, static, and 
storage sections in completely different regions of memory. Therefore, you 
cannot assume that the following three memory objects appear in adjacent 
memory locations (indeed, they probably will not):

static

     b     :byte;

readonly

     w     :word := $1234;

storage

     d     :dword;

In fact, HLA will not even guarantee that variables you declare in separate static
(or whatever) sections are adjacent in memory, even if there is nothing between 
the declarations in your code (e.g., you cannot assume that b, w, and d are in 
adjacent memory locations in the following declarations, nor can you assume 
that they won’t be adjacent in memory):

static

     b     :byte;

static

     w     :word := $1234;

static

     d     :dword;

If your code requires these variables to consume adjacent memory locations, you 
must declare them in the same static section.

Note that HLA handles variables you declare in the var section a little 
differently than the variables you declare in one of the static sections. We’ll 
discuss the allocation of offsets to var objects in the chapter on procedures.

3.5 HLA Support for Data Alignment

In order to write fast programs, you need to ensure that you properly align data 
objects in memory. Proper alignment means that the starting address for an 
object is a multiple of some size, usually the size of object if the object’s size is a 
power of two for values up to 16 bytes in length. For objects greater than 16 bytes, 
aligning the object on an 8-byte or 16-byte address boundary is probably 
sufficient. For objects less than 16 bytes, aligning the object at an address that is 
the next power of two greater than the object’s size is usually fine.11 Accessing 

11 An exception are the real80 and tbyte (80-bit) types. These only need to be aligned on an 
address that is a multiple of eight bytes in memory.
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data that is not aligned on at an appropriate address may require extra time; so if 
you want to ensure that your program runs as rapidly as possible, you should try 
to align data objects according to their size.

Data becomes misaligned whenever you allocate storage for different-sized 
objects in adjacent memory locations. For example, if you declare a byte variable, 
it will consume one byte of storage, and the next variable you declare in that 
declaration section will have the address of that byte object plus one. If the byte 
variable’s address happens to be an address that is an even address, then the 
variable following that byte will start at an odd address. If that following variable 
is a word or double-word object, then its starting address will not be optimal. In 
this section, we’ll explore ways to ensure that a variable is aligned at an 
appropriate starting address based on that object’s size.

Consider the following HLA variable declarations:

static

     dw: dword;

     b:     byte;

     w:     word;

     dw2: dword;

     w2: word;

     b2: byte;

     dw3: dword;

The first static declaration in a program (running under Windows, Linux, and 
most 32-bit operating systems) places its variables at an address that is an even 
multiple of 4096 bytes. Whatever variable first appears in the static declaration is 
guaranteed to be aligned on a reasonable address. Each successive variable is 
allocated at an address that is the sum of the sizes of all the preceding variables 
plus the starting address of that static section. Therefore, assuming HLA allocates 
the variables in the previous example at a starting address of 4096, HLA will 
allocate them at the following addresses:

                         // Start Adrs            Length

     dw: dword; // 4096                    4

     b:     byte; //     4100                    1

     w:     word; //     4101                    2

     dw2: dword; //     4103                    4

     w2: word; //     4107                    2

     b2: byte; //     4109                    1

     dw3: dword; //     4110                    4

With the exception of the first variable (that is aligned on a 4K boundary) and 
the byte variables (whose alignment doesn’t matter), all of these variables are 
misaligned. The w, w2, and dw2 variables start at odd addresses, and the dw3 variable 
is aligned on an even address that is not a multiple of four.

An easy way to guarantee that your variables are aligned properly is to put all 
the double-word variables first, the word variables second, and the byte variables 
last in the declaration:
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static

     dw: dword;

     dw2: dword;

     dw3: dword;

     w: word;

     w2: word;

     b:     byte;

     b2: byte;

This organization produces the following addresses in memory:

                    // Start Adrs            Length

     dw: dword;     // 4096 4

     dw2: dword;     //     4100 4

     dw3: dword;     //     4104 4

     w:     word; //     4108 2

     w2: word; //     4110 2

     b:     byte; //     4112 1

     b2: byte; //     4113 1

As you can see, these variables are all aligned at reasonable addresses.
Unfortunately, it is rarely possible for you to arrange your variables in this 

manner. While there are many technical reasons that make this alignment 
impossible, a good practical reason for not doing this is because it doesn’t let you 
organize your variable declarations by logical function (that is, you probably want 
to keep related variables next to one another regardless of their size).

To resolve this problem, HLA provides the align directive. The align
directive uses the following syntax:

align( integer_constant );

The integer constant must be one of the following small unsigned integer values: 
1, 2, 4, 8, or 16. If HLA encounters the align directive in a static section, it will 
align the very next variable on an address that is an even multiple of the specified 
alignment constant. The previous example could be rewritten, using the align
directive, as follows:

static

     align( 4 );

     dw: dword;

     b:     byte;

     align( 2 );

     w:     word;

     align( 4 );

     dw2: dword;

     w2: word;

     b2: byte;
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     align( 4 );

     dw3: dword;

If you’re wondering how the align directive works, it’s really quite simple. If HLA 
determines that the current address (location counter value) is not an even 
multiple of the specified value, HLA will quietly emit extra bytes of padding after 
the previous variable declaration until the current address in the static section is 
an even multiple of the specified value. This has the effect of making your 
program slightly larger (by a few bytes) in exchange for faster access to your data; 
given that your program will only grow by a few bytes when you use this feature, 
this is probably a good trade-off.

As a general rule, if you want the fastest possible access you should choose an 
alignment value that is equal to the size of the object you want to align. That is, 
you should align words to even boundaries using an “align(2);” statement, 
double words to four-byte boundaries using “align(4);”, quad words to eight-byte 
boundaries using “align(8);”, and so on. If the object’s size is not a power of two, 
align it to the next higher power of two (up to a maximum of 16 bytes). Note, 
however, that you need only align real80 (and tbyte) objects on an eight-byte 
boundary.

Note that data alignment isn’t always necessary. The cache architecture of 
modern 80x86 CPUs actually handles most misaligned data. Therefore, you 
should only use the alignment directives with variables for whom speedy access is 
absolutely critical. This is a reasonable space/speed trade-off.

3.6 Address Expressions

Earlier, this chapter points out that addressing modes take a couple generic 
forms, including:

VarName[ Reg32 ]

VarName[ Reg32 + offset ]

VarName[ RegNotESP32*Scale ]

VarName[ Reg32 + RegNotESP32*Scale ]

VarName[ RegNotESP32*Scale + offset ]

and

VarName[ Reg32 + RegNotESP32*Scale + offset ]

Another legal form, which isn’t actually a new addressing mode but simply an 
extension of the displacement-only addressing mode, is

VarName[ offset ]

This latter example computes its effective address by adding the constant offset 
within the brackets to the variable’s address. For example, the instruction 
“mov(Address[3], AL);” loads the AL register with the byte in memory that is 
three bytes beyond the Address object (see Figure 3-8).
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Figure 3-8: Using an Address Expression to Access Data Beyond a Variable.

Always remember that the offset value in these examples must be a constant. If 
Index is an int32 variable, then Variable[Index] is not a legal address expression. If 
you wish to specify an index that varies at runtime, then you must use one of the 
indexed or scaled indexed addressing modes.

Another important thing to remember is that the offset in Address[offset] is
a byte address. Despite the fact that this syntax is reminiscent of array indexing in 
a high level language like C/C++ or Pascal, this does not properly index into an 
array of objects unless Address is an array of bytes.

This text will consider an address expression to be any legal 80x86 addressing 
mode that includes a displacement (i.e., variable name) or an offset. In addition 
to the above forms, the following are also address expressions:

                              [ Reg32 + offset ]

                              [ Reg32 + RegNotESP32*Scale + offset ]

This book will not consider the following to be address expressions because they 
do not involve a displacement or offset component:

                              [ Reg32 ]

                              [ Reg32 + RegNotESP32*Scale ]

Address expressions are special because those instructions containing an address 
expression always encode a displacement constant as part of the machine 
instruction. That is, the machine instruction contains some number of bits 
(usually 8 or 32) that hold a numeric constant. That constant is the sum of the 
displacement (i.e., the address or offset of the variable) plus the offset. Note that 
HLA automatically adds these two values together for you (or subtracts the offset 
if you use the “-” rather than “+” operator in the addressing mode).

Until this point, the offset in all the addressing mode examples has always 
been a single numeric constant. However, HLA also allows a constant expression
anywhere an offset is legal. A constant expression consists of one or more 
constant terms manipulated by operators such as addition, subtraction, 

AL

$1000 (address of I)

$1003 (i+3)
$1002
$1001

mov ( i[3], AL );
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multiplication, division, modulo, and a wide variety of other operators. Most 
address expressions, however, will only involve addition, subtraction, 
multiplication, and sometimes, division. Consider the following example:

mov( X[ 2*4+1 ], al );

This instruction will move the byte at address X+9 into the AL register.
The value of an address expression is always computed at compiletime, never 

while the program is running. When HLA encounters the instruction above, it 
calculates 2*4+1 on the spot and adds this result to the base address of X in 
memory. HLA encodes this single sum (base address of X plus nine) as part of the 
instruction; HLA does not emit extra instructions to compute this sum for you at 
runtime (which is good, because doing so would be less efficient). Because HLA 
computes the value of address expressions at compiletime, all components of the 
expression must be constants because HLA cannot know the run-time value of a 
variable while it is compiling the program.

Address expressions are useful for accessing the data in memory beyond a 
variable, particularly when you’ve used the byte, word, dword, and so on, 
statements in a static or readonly section to tack on additional bytes after a data 
declaration. For example, consider the program in Listing 3-1.

Listing 3-1: Demonstration of Address Expressions.

program adrsExpressions;

#include( "stdlib.hhf" )

static

  i: int8; @nostorage;

    byte 0, 1, 2, 3;

begin adrsExpressions;

  stdout.put

  (

    "i[0]=", i[0], nl,

    "i[1]=", i[1], nl,

    "i[2]=", i[2], nl,

    "i[3]=", i[3], nl

  );

end adrsExpressions;

The program in Listing 3-1 will display the four values 0, 1, 2, and 3 as though 
they were array elements. This is because the value at the address of i is 0 (this 
program declares i using the @nostorage option, so i is the address of the next 
object in the static section, which just happens to be the value 0 appearing as 
part of the byte statement). The address expression “i[1]” tells HLA to fetch the 
byte appearing at i’s address plus one. This is the value one, because the byte
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statement in this program emits the value one to the static segment immediately 
after the value 0. Likewise for i[2] and i[3], this program displays the values 2 
and 3.

3.7 Type Coercion

Although HLA is fairly loose when it comes to type checking, HLA does ensure 
that you specify appropriate operand sizes to an instruction. For example, 
consider the following (incorrect) program:

program hasErrors;

static

     i8:     int8;

     i16: int16;

     i32: int32;

begin hasErrors;

     mov( i8, eax );

     mov( i16, al );

     mov( i32, ax );

end hasErrors;

HLA will generate errors for these three mov instructions. This is because the 
operand sizes are incompatible. The first instruction attempts to move a byte into 
EAX, the second instruction attempts to move a word into AL and the third 
instruction attempts to move a double word into AX. The mov instruction, of 
course, requires both operands to be the same size.

While this is a good feature in HLA,12 there are times when it gets in the way. 
Consider the following code fragments:

static 

     byte_values: byte; @nostorage;

                         byte 0, 1;

     ...

          mov( byte_values, ax );

In this example let’s assume that the programmer really wants to load the word 
starting at the address of byte_values into the AX register because they want to 
load AL with 0 and AH with 1 using a single instruction. HLA will refuse, 
claiming there is a type mismatch error (because byte_values is a byte object and 
AX is a word object). The programmer could break this into two instructions, 
one to load AL with the byte at address byte_values and the other to load AH with 
the byte at address byte_values[1]. Unfortunately, this decomposition makes the 
program slightly less efficient (which was probably the reason for using the single 
12 After all, if the two operand sizes are different this usually indicates an error in the program.
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mov instruction in the first place). Somehow, it would be nice if we could tell HLA 
that we know what we’re doing and we want to treat the byte_values variable as a 
word object. HLA’s type coercion facilities provide this capability.

Type coercion13 is the process of telling HLA that you want to treat an object as 
an explicit type, regardless of its actual type. To coerce the type of a variable, you 
use the following syntax:

(type newTypeName addressExpression)

The newTypeName item is the new type you wish to associate with the memory 
location specified by addressExpression. You may use this coercion operator 
anywhere a memory address is legal. To correct the previous example, so HLA 
doesn’t complain about type mismatches, you would use the following statement:

 mov( (type word byte_values), ax );

This instruction tells HLA to load the AX register with the word starting at 
address byte_values in memory. Assuming byte_values still contains its initial 
values, this instruction will load zero into AL and one into AH.

Type coercion is necessary when you specify an anonymous variable as the 
operand to an instruction that directly modifies memory (e.g., neg, shl, not, and 
so on). Consider the following statement:

not( [ebx] );

HLA will generate an error on this instruction because it cannot determine the 
size of the memory operand. The instruction does not supply sufficient infor-
mation to determine whether the program should invert the bits in the byte 
pointed at by EBX, the word pointed at by EBX, or the double word pointed at by 
EBX. You must use type coercion to explicitly specify size of anonymous ref-
erences with these types of instructions:

not( (type byte [ebx]) );

not( (type dword [ebx]) );

CAUTION Do not use the type coercion operator unless you know exactly what you are doing and fully 
understand the effect it has on your program. Beginning assembly language programmers 
often use type coercion as a tool to quiet the compiler when it complains about type mis-
matches without solving the underlying problem. Consider the following statement (where 
byteVar is an 8-bit variable):

mov( eax, (type dword byteVar) );

Without the type coercion operator, HLA complains about this instruction 
because it attempts to store a 32-bit register into an 8-bit memory location. A 
beginning programmer, wanting their program to compile, may take a shortcut 
and use the type coercion operator as shown in this instruction; this certainly 
quiets the compiler — it will no longer complain about a type mismatch. So the 
13 Also called type casting in some languages.
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beginning programmer is happy. But the program is still incorrect; the only dif-
ference is that HLA no longer warns you about your error. The type coercion 
operator does not fix the problem of attempting to store a 32-bit value into an 8-
bit memory location — it simply allows the instruction to store a 32-bit value 
starting at the address specified by the 8-bit variable. The program still stores four 
bytes, overwriting the three bytes following byteVar in memory. This often 
produces unexpected results including the phantom modification of variables in 
your program.14 Another, rarer, possibility is for the program to abort with a 
general protection fault. This can occur if the three bytes following byteVar are 
not allocated in real memory or if those bytes just happen to fall in a read-only 
segment in memory. The important thing to remember about the type coercion 
operator is this: “If you cannot exactly state the affect this operator has, don’t 
use it.”

Also keep in mind that the type coercion operator does not perform any 
translation of the data in memory. It simply tells the compiler to treat the bits in 
memory as a different type. It will not automatically sign extend an 8-bit value to 
32 bits nor will it convert an integer to a floating-point value. It simply tells the 
compiler to treat the bit pattern of the memory operand as a different type.

3.8 Register Type Coercion

You can also cast a register to a specific type using the type coercion operator. By 
default, the 8-bit registers are of type byte, the 16-bit registers are of type word, and 
the 32-bit registers are of type dword. With type coercion, you can cast a register as 
a different type as long as the size of the new type agrees with the size of the register. This 
is an important restriction that does not exist when applying type coercion to a 
memory variable.

Most of the time you do not need to coerce a register to a different type. As 
byte, word, and dword objects, registers are already compatible with all one, two, 
and four byte objects. However, there are a few instances where register type 
coercion is handy, if not downright necessary. Two examples include boolean 
expressions in HLA high-level language statements (e.g., if and while) and 
register I/O in the stdout.put and stdin.get (and related) statements.

In boolean expressions, HLA always treats byte, word, and dword objects as 
unsigned values. Therefore, without type coercion, the following if statement 
always evaluates false (because there is no unsigned value less than zero):

if( eax < 0 ) then

     stdout.put( "EAX is negative!", nl );

endif;

You can overcome this limitation by casting EAX as an int32 value:

14 If you have a variable immediately following byteVar in this example, the mov instruction will 
surely overwrite the value of that variable, whether or not you intend for this to happen.
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if( (type int32 eax) < 0 ) then

     stdout.put( "EAX is negative!", nl );

endif;

In a similar vein, the HLA Standard Library stdout.put routine always outputs 
byte, word, and dword values as hexadecimal numbers. Therefore, if you attempt 
to print a register, the stdout.put routine will print it as a hex value. If you would 
like to print the value as some other type, you can use register type coercion to 
achieve this:

stdout.put( "AL printed as a char = '", (type char al), "'", nl );

The same is true for the stdin.get routine. It will always read a hexadecimal value 
for a register unless you coerce its type to something other than byte, word, or 
dword.

3.9 The Stack Segment and the PUSH and POP 
Instructions

This chapter mentions that all variables you declare in the var section wind up in 
the stack memory segment. However, var objects are not the only things in the 
stack memory section; your programs manipulate data in the stack segment in 
many different ways. This section introduces the push and pop instructions that 
also manipulate data in stack memory.

The stack segment in memory is where the 80x86 maintains the stack. The 
stack is a dynamic data structure that grows and shrinks according to certain 
needs of the program. The stack also stores important information about 
program including local variables, subroutine information, and temporary data. 

The 80x86 controls its stack via the ESP (stack pointer) register. When your 
program begins execution, the operating system initializes ESP with the address 
of the last memory location in the stack memory segment. Data is written to the 
stack segment by “pushing” data onto the stack and “popping” or “pulling” data 
off of the stack. Whenever you push data onto the stack, the 80x86 decrements 
the stack pointer by the size of the data you are pushing, and then it copies the 
data to memory where ESP is then pointing. Therefore, the stack grows and 
shrinks as you push data onto the stack and pop data from the stack.

3.9.1 The Basic PUSH Instruction

Consider the syntax for the 80x86 push instruction:

push( reg16 );

push( reg32 );

push( memory16 );

push( memory32 );
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pushw( constant );

pushd( constant );

The pushw and pushd operands are always two- or four-byte constants, respectively.
These six forms allow you to push word or dword registers, memory locations, 

and constants. You should specifically note that you cannot push byte values onto 
the stack.

The push instruction does the following:

ESP := ESP - Size_of_Register_or_Memory_Operand (2 or 4)

 [ESP] := Operand's_Value

Assuming that ESP contains $00FF_FFE8, then the instruction “push( eax );” will 
set ESP to $00FF_FFE4, and store the current value of EAX into memory location 
$00FF_FFE4 as Figures 3-9 and 3-10 show.

Figure 3-9: Before “PUSH( EAX );” Operation.

Figure 3-10: Stack Segment After “PUSH( EAX );” Operation.
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Note that the “push( eax );” instruction does not affect the value of the EAX 
register.

Although the 80x86 supports 16-bit push operations, their primary use in is 
16-bit environments such as DOS. For maximum performance, the stack 
pointer’s value should always be an even multiple of four; indeed, your program 
may malfunction under Windows or Linux if ESP contains a value that is not a 
multiple of four and you make an operating system API call. The only practical 
reason for pushing less than four bytes at a time on the stack is because you’re 
building up a double word via two successive word pushes.

3.9.2 The Basic POP Instruction

To retrieve data you’ve pushed onto the stack, you use the pop instruction. The 
basic pop instruction allows the following different forms:

                                        pop( reg16 );

                                        pop( reg32 );

                                        pop( memory16 );

                                        pop( memory32 );

Like the push instruction, the pop instruction only supports 16-bit and 32-bit 
operands; you cannot pop an 8-bit value from the stack. Also like the push
instruction, you should avoid popping 16-bit values (unless you do two 16-bit 
pops in a row) because 16-bit pops may leave the ESP register containing a value 
that is not an even multiple of four. One major difference between push and pop is 
that you cannot pop a constant value (which makes sense, because the operand 
for push is a source operand while the operand for pop is a destination operand).

Formally, here’s what the pop instruction does:

Operand := [ESP]

ESP := ESP + Size_of_Operand (2 or 4)

As you can see, the pop operation is the converse of the push operation. Note that 
the pop instruction copies the data from memory location [ESP] before adjusting 
the value in ESP. See Figures 3-11 and 3-12 for details on this operation.

Note that the value popped from the stack is still present in memory. Pop-
ping a value does not erase the value in memory; it just adjusts the stack pointer 
so that it points at the next value above the popped value. However, you should 
never attempt to access a value you’ve popped off the stack. The next time some-
thing is pushed onto the stack, the popped value will be obliterated. Because 
your code isn’t the only thing that uses the stack (i.e., the operating system uses 
the stack as do subroutines), you cannot rely on data remaining in stack memory 
once you’ve popped it off the stack.
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Figure 3-11: Memory Before a “POP( EAX );” Operation.

Figure 3-12: Memory After the “POP( EAX );” Instruction.

As Chapter One notes, HLA provides an extended syntax for the mov
instruction that allows two memory operands (that is, the instruction provides a 
memory-to-memory move). HLA actually generates the following two 
instructions in place of such a mov:

// mov( src, dest );

          push( src );

          pop( dest );

This is the reason that the memory-to-memory form of the mov instruction only 
allows 16-bit and 32-bit operands — because push and pop only allow 16-bit and 
32-bit operands.
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3.9.3 Preserving Registers with the PUSH and POP Instructions

Perhaps the most common use of the push and pop instructions is to save register 
values during intermediate calculations. A problem with the 80x86 architecture 
is that it provides very few general purpose registers. Because registers are the 
best place to hold temporary values, and registers are also needed for the various 
addressing modes, it is very easy to run out of registers when writing code that 
performs complex calculations. The push and pop instructions can come to your 
rescue when this happens.

Consider the following program outline:

     << Some sequence of instructions that use the EAX register >>

     << Some sequence of instructions that need to use EAX, for a

          different purpose than the above instructions >>

     << Some sequence of instructions that need the original value in EAX >>

The push and pop instructions are perfect for this situation. By inserting a push
instruction before the middle sequence and a pop instruction after the middle 
sequence above, you can preserve the value in EAX across those calculations:

     << Some sequence of instructions that use the EAX register >>

     push( eax );

     << Some sequence of instructions that need to use EAX, for a

          different purpose than the above instructions >>

     pop( eax );

     << Some sequence of instructions that need the original value in EAX >>

The push instruction above copies the data computed in the first sequence of 
instructions onto the stack. Now the middle sequence of instructions can use 
EAX for any purpose it chooses. After the middle sequence of instructions 
finishes, the pop instruction restores the value in EAX so the last sequence of 
instructions can use the original value in EAX.

3.9.4 The Stack Is a LIFO Data Structure

You can push more than one value onto the stack without first popping previous 
values off the stack. However, the stack is a last-in, first-out (LIFO) data structure, 
so you must be careful how you push and pop multiple values. For example, 
suppose you want to preserve EAX and EBX across some block of instructions. 
The following code demonstrates the obvious way to handle this:

          push( eax );

          push( ebx );

          << Code that uses EAX and EBX goes here >>

          pop( eax );

          pop( ebx );
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Unfortunately, this code will not work properly! Figures 3-13 through 3-16 show 
the problem. Because this code pushes EAX first and EBX second, the stack 
pointer is left pointing at EBX’s value on the stack. When the “pop( eax );” 
instruction comes along, it removes the value that was originally in EBX from the 
stack and places it in EAX! Likewise, the “pop( EBX );” instruction pops the 
value that was originally in EAX into the EBX register. The end result is that this 
code manages to swap the values in the registers by popping them in the same 
order that it pushes them.

Figure 3-13: Stack After Pushing EAX.

Figure 3-14: Stack After Pushing EBX.
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Figure 3-15: Stack After Popping EAX.

Figure 3-16: Stack After Popping EBX.
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This generally means that the number of pushes and pops must exactly agree. If 
you have too few pops, you will leave data on the stack, which may confuse the 
running program: If you have too many pops, you will accidentally remove pre-
viously pushed data, often with disastrous results.

A corollary to the maxim above is, “Be careful when pushing and popping 
data within a loop.” Often it is quite easy to put the pushes in a loop and leave the 
pops outside the loop (or vice versa), creating an inconsistent stack. Remember, 
it is the execution of the push and pop instructions that matters, not the number of 
push and pop instructions that appear in your program. At runtime, the number 
(and order) of the push instructions the program executes must match the 
number (and reverse order) of the pop instructions.

3.9.5 Other PUSH and POP Instructions

The 80x86 provides several additional push and pop instructions in addition to the 
basic push/pop instructions. These instructions include the following:

� pusha

� pushad

� pushf

� pushfd

� popa

� popad

� popf

� popfd

The pusha instruction pushes all the general-purpose 16-bit registers onto the 
stack. This instruction exists primarily for older 16-bit operating systems like 
DOS. In general, you will have very little need for this instruction. The pusha
instruction pushes the registers onto the stack in the following order:

ax

cx

dx

bx

sp

bp

si

di

The pushad instruction pushes all the 32-bit (double-word) registers onto the 
stack. It pushes the registers onto the stack in the following order:

eax

ecx

edx

ebx

esp
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ebp

esi

edi

Because the pusha and pushad instructions inherently modify the SP/ESP register, 
you may wonder why Intel bothered to push this register at all. It was probably 
easier in the hardware to go ahead and push SP/ESP rather than make a special 
case out of it. In any case, these instructions do push SP or ESP, so don’t worry 
about it too much — there is nothing you can do about it.

The popa and popad instructions provide the corresponding “pop all” 
operation to the pusha and pushad instructions. This will pop the registers pushed 
by pusha or pushad in the appropriate order (that is, popa and popad will properly 
restore the register values by popping them in the reverse order that pusha or 
pushad pushed them). 

Although the pusha/popa and pushad/popad sequences are short and 
convenient, they are actually slower than the corresponding sequence of push/pop
instructions, this is especially true when you consider that you rarely need to 
push a majority, much less all the registers.15 So if you’re looking for maximum 
speed, you should carefully consider whether to use the pusha(d)/popa(d) 
instructions.

The pushf, pushfd, popf, and popfd instructions push and pop the (E)FLAGs 
register. These instructions allow you to preserve condition code and other flag 
settings across the execution of some sequence of instructions. Unfortunately, 
unless you go to a lot of trouble, it is difficult to preserve individual flags. When 
using the pushf(d) and popf(d) instructions it’s an all-or-nothing proposition: You 
preserve all the flags when you push them; you restore all the flags when you pop 
them.

Like the pushad and popad instructions, you should really use the pushfd and 
popfd instructions to push the full 32-bit version of the EFLAGs register. Although 
the extra 16 bits you push and pop are essentially ignored when writing applica-
tions, you still want to keep the stack aligned by pushing and popping only 
double words.

3.9.6 Removing Data from the Stack Without Popping It

Once in a while you may discover that you’ve pushed data onto the stack that you 
no longer need. Although you could pop the data into an unused register or 
memory location, there is an easier way to remove unwanted data from the stack: 
Simply adjust the value in the ESP register to skip over the unwanted data on the 
stack.

Consider the following dilemma:

          push( eax );

          push( ebx );

          << Some code that winds up computing some values we want to keep

               into EAX and EBX >>

15 For example, it is extremely rare for you to need to push and pop the ESP register with the 
PUSHAD/POPAD instruction sequence.
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          if( Calculation_was_performed ) then

               // Whoops, we don't want to pop EAX and EBX!

               // What to do here?

          else

               // No calculation, so restore EAX, EBX.

               pop( ebx );

               pop( eax );

          endif;

Within the then section of the if statement, this code wants to remove the old 
values of EAX and EBX without otherwise affecting any registers or memory 
locations. How to do this?

Because the ESP register simply contains the memory address of the item on 
the top of the stack, we can remove the item from the top of stack by adding the 
size of that item to the ESP register. In the preceding example, we wanted to 
remove two double-word items from the top of stack. We can easily accomplish 
this by adding eight to the stack pointer (see Figures 3-17 and 3-18 for the 
details):

          push( eax );

          push( ebx );

          << Some code that winds up computing some values we want to keep

               into EAX and EBX >>

          

          if( Calculation_was_performed ) then

               add( 8, ESP );     // Remove unneeded EAX and EBX values from the 
stack.

          else

               // No calculation, so restore EAX, EBX.

               pop( ebx );

               pop( eax );

          endif;
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Figure 3-17: Removing Data from the Stack, Before ADD( 8, ESP ).

Figure 3-18: Removing Data from the Stack, After ADD( 8, ESP ).

Effectively, this code pops the data off the stack without moving it anywhere. Also 
note that this code is faster than two dummy pop instructions because it can 
remove any number of bytes from the stack with a single add instruction.

CAUTION Remember to keep the stack aligned on a double-word boundary. Therefore, you should 
always add a constant that is an even multiple of four to ESP when removing data from the 
stack.

ESP + 8
ESP + 7
ESP + 6
ESP + 5
ESP + 4
ESP + 3
ESP + 2
ESP + 1
ESP + 0ESP

EAX

EBX

ESP  + 8
ESP  + 7
ESP  + 6
ESP  + 5
ESP  + 4
ESP  + 3
ESP  + 2
ESP  + 1
ESP  + 0

ESP

EAX

EBX



Memor y Access and Organiza t ion 149

3.9.7 Accessing Data You’ve Pushed on the Stack Without Popping It

Once in a while you will push data onto the stack and you will want to get a copy 
of that data’s value, or perhaps you will want to change that data’s value, without 
actually popping the data off the stack (that is, you wish to pop the data off the 
stack at a later time). The 80x86 “[reg32 + offset]” addressing mode provides the 
mechanism for this.

Consider the stack after the execution of the following two instructions (see 
Figure 3-19):

          push( eax );

          push( ebx );

Figure 3-19: Stack After Pushing EAX and EBX.

If you wanted to access the original EBX value without removing it from the 
stack, you could cheat and pop the value and then immediately push it again. 
Suppose, however, that you wish to access EAX’s old value, or some other value 
even farther up on the stack. Popping all the intermediate values and then 
pushing them back onto the stack is problematic at best and impossible at worst. 
However, as you will notice from Figure 3-19, each of the values pushed on the 
stack is at some offset from the ESP register in memory. Therefore, we can use 
the “[ESP + offset]” addressing mode to gain direct access to the value we are 
interested in. In the example above, you can reload EAX with its original value by 
using the single instruction

          mov( [esp+4], eax );

This code copies the four bytes starting at memory address ESP + 4 into the EAX 
register. This value just happens to be the previous value of EAX that was pushed 
onto the stack. You can use this same technique to access other data values you’ve 
pushed onto the stack.
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CAUTION Don’t forget that the offsets of values from ESP into the stack change every time you push or 
pop data. Abusing this feature can create code that is hard to modify; if you use this feature 
throughout your code, it will make it difficult to push and pop other data items between the 
point you first push data onto the stack and the point you decide to access that data again 
using the “[ESP + offset]” memory addressing mode.

The previous section pointed out how to remove data from the stack by adding a 
constant to the ESP register. That code example could probably be written more 
safely as:

          push( eax );

          push( ebx );

          << Some code that winds up computing some values we want to keep

               into EAX and EBX >>

          

          if( Calculation_was_performed ) then

               << Overwrite saved values on stack with new EAX/EBX values.

                (so the pops that follow won't change the values in EAX/EBX.) >>

               mov( eax, [esp+4] );

               mov( ebx, [esp] );

          endif;

          pop( ebx );

          pop( eax );

In this code sequence, the calculated result was stored over the top of the values 
saved on the stack. Later on, when the program pops the values, it loads these 
calculated values into EAX and EBX.

3.10 Dynamic Memory Allocation and the 
Heap Segment

Although static and automatic variables are all simple programs may need, more 
sophisticated programs need the ability to allocate and deallocate storage 
dynamically (at runtime) under program control. In the C language, you would 
use the malloc and free functions for this purpose. C++ provides the new and delete
operators. Pascal uses new and dispose. Other languages provide comparable 
facilities. These memory allocation routines share a couple of things in common: 
They let the programmer request how many bytes of storage to allocate, they 
return a pointer to the newly allocated storage, and they provide a facility for 
returning the storage to the system so the system can reuse it in a future 
allocation call. As you’ve probably guessed, HLA also provides a set of routines in 
the HLA Standard Library that handle memory allocation and deallocation.
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The HLA Standard Library malloc and free routines handle the memory 
allocation and deallocation chores (respectively). The malloc routine uses the 
following calling sequence:

malloc( Number_of_Bytes_Requested );

The single parameter is a double word value specifying the number of bytes of 
storage you need. This procedure allocates storage in the heap segment in 
memory. The HLA malloc function locates an unused block of memory of the size 
you specify in the heap segment and marks the block as “in use” so that future 
calls to malloc will not allocate this same storage. After marking the block as “in 
use” the malloc routine returns a pointer to the first byte of this storage in the 
EAX register.

For many objects, you will know the number of bytes that you need in order 
to represent that object in memory. For example, if you wish to allocate storage 
for an uns32 variable, you could use the following call to the malloc routine:

malloc( 4 );

Although you can specify a literal constant as this example suggests, it’s generally 
a poor idea to do so when allocating storage for a specific data type. Instead, use 
the HLA built-in compile-time function16 @size to compute the size of some data 
type. The @size function uses the following syntax:

@size( variable_or_type_name )

The @size function returns an unsigned integer constant that is the size of its 
parameter in bytes. So you should rewrite the previous call to malloc as follows:

malloc( @size( uns32 ));

This call will properly allocate a sufficient amount of storage for the specified 
object, regardless of its type. While it is unlikely that the number of bytes 
required by an uns32 object will ever change, this is not necessarily true for other 
data types, so you should always use @size rather than a literal constant in these 
calls.

Upon return from the malloc routine, the EAX register contains the address 
of the storage you have requested (see Figure 3-20).

16 A compile-time function is one that HLA evaluates during the compilation of your program 
rather than at runtime.
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Figure 3-20: Call to malloc Returns a Pointer in the EAX Register.

To access the storage malloc allocates you must use a register indirect addressing 
mode. The following code sequence demonstrates how to assign the value 1234 
to the uns32 variable malloc creates:

malloc( @size( uns32 ));

mov( 1234, (type uns32 [eax]));

Note the use of the type coercion operator. This is necessary in this example 
because anonymous variables don’t have a type associated with them, and the 
constant 1234 could be a word or dword value. The type coercion operator elim-
inates the ambiguity.

The malloc routine may not always succeed. If there isn’t a single contiguous 
block of free memory in the heap segment that is large enough to satisfy the 
request, then the malloc routine will raise an ex.MemoryAllocationFailure exception. 
If you do not provide a try..exception..endtry handler to deal with this situation, a 
memory allocation failure will cause your program to stop. Because most 
programs do not allocate massive amounts of dynamic storage using malloc, this 
exception rarely occurs. However, you should never assume that the memory 
allocation will always occur without error.

When you are done using a value that malloc allocates on the heap, you can 
release the storage (that is, mark it as “no longer in use”) by calling the free
procedure. The free routine requires a single parameter that must be an address 
returned by a previous call to malloc (that you have not already freed). The 
following code fragment demonstrates the nature of the malloc/free pairing:
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          malloc( @size( uns32));

               << use the storage pointed at by EAX >>

               << Note: this code must not modify EAX >>

          free( eax );

This code demonstrates a very important point: In order to properly free the 
storage that malloc allocates, you must preserve the value that malloc returns. 
There are several ways to do this if you need to use EAX for some other purpose; 
you could save the pointer value on the stack using push and pop instructions, or 
you could save EAX’s value in a variable until you need to free it.

Storage you release is available for reuse by future calls to the malloc routine. 
The ability to allocate storage when you need it and then free the storage for 
other use when you are done with it improves the memory efficiency of your 
program. By deallocating storage once you are finished with it, your program can 
reuse that storage for other purposes, allowing your program to operate with less 
memory than it would if you statically allocated storage for the individual objects.

Several problems can occur when you use pointers. You should be aware of a 
few common errors that beginning programmers make when using dynamic 
storage allocation routines like malloc and free:

� Mistake #1: Continuing to refer to storage after you free it. Once you return 
storage to the system via the call to free, you should no longer access that 
storage. Doing so may cause a protection fault or, worse yet, corrupt other 
data in your program without indicating an error.

� Mistake #2: Calling free twice to release a single block of storage. Doing so 
may accidentally free some other storage that you did not intend to release 
or, worse yet, it may corrupt the system memory management tables.

The next chapter will discuss some additional problems you will typically 
encounter when dealing with dynamically allocated storage.

The examples thus far in this section have all allocated storage for a single 
unsigned 32-bit object. Obviously you can allocate storage for any data type using 
a call to malloc by simply specifying the size of that object as malloc’s parameter. It 
is also possible to allocate storage for a sequence of contiguous objects in 
memory when calling malloc. For example, the following code will allocate 
storage for a sequence of eight characters:

malloc( @size( char ) * 8 );

Note the use of the constant expression to compute the number of bytes 
required by an eight-character sequence. Because “@size(char)” always returns a 
constant value (one in this case), the compiler can compute the value of the 
expression “@size(char) * 8” without generating any extra machine instructions.
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Calls to malloc always allocate multiple bytes of storage in contiguous 
memory locations. Hence the former call to malloc produces the sequence 
appearing in Figure 3-21.

Figure 3-21: Allocating a Sequence of Eight-Character Objects Using Malloc.

To access these extra character values you use an offset from the base address 
(contained in EAX upon return from malloc). For example, 
“mov( ch, [eax + 2] );” stores the character found in CH into the third byte that 
malloc allocates. You can also use an addressing mode like “[EAX + EBX]” to step 
through each of the allocated objects under program control. For example, the 
following code will set all the characters in a block of 128 bytes to the NULL 
character (#0):

          malloc( 128 );

          for( mov( 0, ebx ); ebx < 128; add( 1, ebx ) ) do

               mov( 0, (type byte [eax+ebx]) );

          endfor;

The next chapter discusses composite data structures (including arrays) and 
describes additional ways to deal with blocks of memory.

You should note that a call to malloc will actually allocate slightly more 
memory than you request. For one thing, memory allocation requests are 
generally of some minimum size (often a power of 2 between 4 and 16, though 
this is OS dependent). Furthermore, malloc requests also require a few bytes of 
overhead for each request (generally around 8 to 16 bytes) to keep track of 
allocated and free blocks. Therefore, it is not efficient to allocate a large number 
of small objects with individual calls to malloc. The overhead for each allocation 
may be greater than the storage you actually use. Typically, you’ll use malloc to 
allocate storage for arrays or large records (structures) rather than small objects.

EAX

Heap Segment

Eight char values
allocated via a call to
malloc (@size(char) *8)

EAX + 7
EAX + 6
EAX + 5
EAX + 4
EAX + 3
EAX + 2
EAX + 1
EAX + 0



Memor y Access and Organiza t ion 155

3.11 The INC and DEC Instructions

As the example in the last section indicates, indeed, as several examples up to 
this point have indicated, adding or subtracting one from a register or memory 
location is a very common operation. In fact, this operation is so common that 
Intel’s engineers included a pair of instructions to perform these specific 
operations: the inc (increment) and dec (decrement) instructions.

The inc and dec instructions use the following syntax:

inc( mem/reg );

dec( mem/reg );

The single operand can be any legal 8-bit, 16-bit, or 32-bit register or memory 
operand. The inc instruction will add one to the specified operand; the dec
instruction will subtract one from the specified operand.

These two instructions are slightly more efficient (they are smaller) than the 
corresponding add or sub instructions. There is also one slight difference between 
these two instructions and the corresponding add or sub instructions: they do not 
affect the carry flag.

As an example of the inc instruction, consider the example from the 
previous section, recoded to use inc rather than add:

          malloc( 128 );

          for( mov( 0, ebx ); ebx < 128; inc( ebx ) ) do

               mov( 0, (type byte [eax+ebx]) );

          endfor;

3.12 Obtaining the Address of a Memory Object

An earlier section of this chapter discusses how to use the address-of operator, 
“&”, to take the address of a static variable.17 Unfortunately, you cannot use the 
address-of operator to take the address of an automatic variable (one you declare 
in the var section); you cannot use it to compute the address of an anonymous 
variable, nor can you use this operator to take the address of a memory reference 
that uses an indexed or scaled indexed addressing mode (even if a static variable 
is part of the address expression). You may only use the address-of operator to 
take the address of a simple static object. Often, you will need to take the address 
of other memory objects as well; fortunately, the 80x86 provides the load effective 
address instruction, lea, to give you this capability.

The lea instruction uses the following syntax:

lea( reg32, Memory_operand );

17 A static variable is one that you declare in the static, readonly, or storage of your program.
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The first operand must be a 32-bit register; the second operand can be any legal 
memory reference using any valid memory addressing mode. This instruction 
will load the address of the specified memory location into the register. This 
instruction does not access or modify the value of the memory operand in any 
way.

Once you load the effective address of a memory location into a 32-bit 
general purpose register, you can use the register indirect, indexed, or scaled 
indexed addressing modes to access the data at the specified memory address. 
Consider the following code fragment:

static

     b:byte; @nostorage;

          byte 7, 0, 6, 1, 5, 2, 4, 3;

               .

               .

               .

     lea( ebx, b );

     for( mov( 0, ecx ); ecx < 8; inc( ecx )) do

          stdout.put( "[ebx+ecx]=", (type byte [ebx+ecx]), nl );

     endwhile;

This code steps through each of the eight bytes following the b label in the static
section and prints their values. Note the use of the “[ebx+ecx]” addressing mode. 
The EBX register holds the base address of the list (that is, the address of the first 
item in the list), and ECX contains the byte index into the list.

3.13 For More Information

The CD-ROM that accompanies this book contains an older, 16-bit version of The 
Art of Assembly Language Programming. In that text you will find information about 
the 80x86’s 16-bit addressing modes and segmentation. Please consult that 
documentation for more details.


