
2
I m p r o v i n g o n U s e r C o m m a n d s

A typical Unix or Linux system includes
hundreds of commands by default, which,

when you factor in flags and the possible
ways to combine commands with pipes, pro-

duces millions of different ways to work on the com-
mand line.

Before we go any further, Listing 2-1 shows a bonus script that will tell
you how many commands are in your PATH.

#!/bin/bash

How many commands: a simple script to count how many executable
commands are in your current PATH

IFS=":"
count=0 ; nonex=0
for directory in $PATH ; do
 if [-d "$directory"] ; then

52 Chapter 2

 for command in "$directory"/* ; do
 if [-x "$command"] ; then
 count="$(($count + 1))"
 else
 nonex="$(($nonex + 1))"
 fi
 done
 fi
done

echo "$count commands, and $nonex entries that weren't executable"

exit 0

Listing 2-1: Counting the number of executables and nonexecutables in the current PATH

This script counts the number of executable files rather than just the
number of files, and it can be used to reveal how many commands and
nonexecutables are in the default PATH variables of many popular operating
systems (see Table 2-1).

Table 2-1: Typical Command Count by OS

Operating system Commands Nonexecutables

Ubuntu 15.04 (including all developer libraries) 3,156 5

OS X 10.11 (with developer options installed) 1,663 11

FreeBSD 10.2 954 4

Solaris 11.2 2,003 15

Clearly, the different flavors of Linux and Unix offer a large number
of commands and executable scripts. Why are there so many? The answer
is based on the foundational Unix philosophy: commands should do one
thing, and do it well. Word processors that have spellcheck, find file, and
email capabilities might work well in the Windows and Mac world, but on
the command line, each of these functions should be separate and discrete.

There are lots of advantages to this design philosophy, the most
important being that each function can be modified and extended indi-
vidually, giving all applications that utilize it access to these new capabili-
ties. With any task you might want to perform on Unix, you can usually
cobble together something that’ll do the trick easily, whether by download-
ing some nifty utility that adds capabilities to your system, creating some
aliases, or dipping a toe into the shell-scripting pond.

The scripts throughout the book not only are helpful but also are a
logical extension of the Unix philosophy. After all, ’tis better to extend and
expand than to build complex, incompatible versions of commands for your
own installation.

Improving on User Commands 53

The scripts explored in this chapter are all similar to the script in
Listing 2-1 in that they add fun or useful features and capabilities without
a high degree of complexity. Some of the scripts accept different command
flags to allow even greater flexibility in their use, and some also demon-
strate how a shell script can be used as a wrapper, a program that intercedes
to allow users to specify commands or command flags in a common nota-
tion and then translates those flags into the proper format and syntax
required by the actual Unix command.

#14 Formatting Long Lines
If you’re lucky, your Unix system already includes the fmt command, a pro-
gram that’s remarkably useful if you work with text regularly. From refor-
matting emails to making lines use up all the available width in documents,
fmt is a helpful utility to know.

However, some Unix systems don’t include fmt. This is particularly true
of legacy systems, which often have fairly minimalistic implementations.

As it turns out, the nroff command, which has been part of Unix since
the very beginning and is a shell script wrapper in its own right, can be used
in short shell scripts to wrap long lines and fill in short lines to even out line
lengths, as shown in Listing 2-2.

The Code

#!/bin/bash

fmt--Text formatting utility that acts as a wrapper for nroff
Adds two useful flags: -w X for line width
and -h to enable hyphenation for better fills

 while getopts "hw:" opt; do
 case $opt in
 h) hyph=1 ;;
 w) width="$OPTARG" ;;
 esac
done

 shift $(($OPTIND - 1))

 nroff << EOF
 .ll ${width:-72}

.na

.hy ${hyph:-0}

.pl 1
 $(cat "$@")

EOF

exit 0

Listing 2-2: The fmt shell script for formatting long texts nicely

54 Chapter 2

How It Works
This succinct script offers two different command flags: -w X to specify that
lines should be wrapped when they exceed X characters (the default is 72)
and -h to enable hyphenated word breaks across lines. Notice the check for
flags at . The while loop uses getopts to read each option passed to the
script one at a time, and the inner case block decides what to do with them.
Once the options are parsed, the script calls shift at  to throw away all the
option flags using $OPTIND (which holds the index of the next argument to
be read by getopts) and leaves the remaining arguments to continue getting
processed.

This script also makes use of a here document (discussed in Script #9 on
page 34), which is a type of code block that can be used to feed multiple
lines of input to a command. Using this notational convenience, the script
at  feeds nroff all the necessary commands to achieve the desired output. In
this document, we use a bashism to replace a variable that isn’t defined , in
order to provide a sane default value if the user does not specify one as an
argument. Finally, the script calls the cat command with the requested file
names to process. To complete the task, the cat command’s output is also
fed directly to nroff . This is a technique that will appear frequently in the
scripts presented in this book.

Running the Script
This script can be invoked directly from the command line, but it would
more likely be part of an external pipe invoked from within an editor like
vi or vim (for example, !}fmt) to format a paragraph of text.

The Results
Listing 2-3 enables hyphenation and specifies a maximum width of
50 characters.

$ fmt -h -w 50 014-ragged.txt
So she sat on, with closed eyes, and half believed
herself in Wonderland, though she knew she had but
to open them again, and all would change to dull
reality--the grass would be only rustling in the
wind, and the pool rippling to the waving of the
reeds--the rattling teacups would change to tin-
kling sheep-bells, and the Queen's shrill cries
to the voice of the shepherd boy--and the sneeze
of the baby, the shriek of the Gryphon, and all
the other queer noises, would change (she knew) to
the confused clamour of the busy farm-yard--while
the lowing of the cattle in the distance would
take the place of the Mock Turtle's heavy sobs.

Listing 2-3: Formatting text with the fmt script to hyphenate wrapped words at
50 characters

Improving on User Commands 55

Compare Listing 2-3 (note the newly hyphenated word tinkling, high-
lighted on lines 6 and 7) with the output in Listing 2-4, generated using
the default width and no hyphenation.

$ fmt 014-ragged.txt
So she sat on, with closed eyes, and half believed herself in
Wonderland, though she knew she had but to open them again, and all
would change to dull reality--the grass would be only rustling in the
wind, and the pool rippling to the waving of the reeds--the rattling
teacups would change to tinkling sheep-bells, and the Queen's shrill
cries to the voice of the shepherd boy--and the sneeze of the baby, the
shriek of the Gryphon, and all the other queer noises, would change (she
knew) to the confused clamour of the busy farm-yard--while the lowing of
the cattle in the distance would take the place of the Mock Turtle's
heavy sobs.

Listing 2-4: The default formatting of the fmt script with no hyphenation

#15 Backing Up Files as They’re Removed
One of the most common problems that Unix users have is that there is
no easy way to recover a file or folder that has been accidentally removed.
There’s no user-friendly application like Undelete 360, WinUndelete, or
an OS X utility that allows you to easily browse and restore deleted files at
the touch of a button. Once you press enter after typing rm filename, the
file is history.

A solution to this problem is to secretly and automatically archive files
and directories to a .deleted-files archive. With some fancy footwork in a
script (as Listing 2-5 shows), this process can be made almost completely
invisible to users.

The Code

#!/bin/bash

newrm--A replacement for the existing rm command.
This script provides a rudimentary unremove capability by creating and
utilizing a new directory within the user's home directory. It can handle
directories of content as well as individual files. If the user specifies
the -f flag, files are removed and NOT archived.

Big Important Warning: You'll want a cron job or something similar to keep
the trash directories tamed. Otherwise, nothing will ever actually
be deleted from the system, and you'll run out of disk space!

archivedir="$HOME/.deleted-files"
realrm="$(which rm)"
copy="$(which cp) -R"

56 Chapter 2

if [$# -eq 0] ; then # Let 'rm' output the usage error.
 exec $realrm # Our shell is replaced by /bin/rm.
fi

Parse all options looking for '-f'

flags=""

while getopts "dfiPRrvW" opt
do
 case $opt in
 f) exec $realrm "$@" ;; # exec lets us exit this script directly.
 *) flags="$flags -$opt" ;; # Other flags are for rm, not us.
 esac
done
shift $(($OPTIND - 1))

BEGIN MAIN SCRIPT
=================

Make sure that the $archivedir exists.

 if [! -d $archivedir] ; then
 if [! -w $HOME] ; then
 echo "$0 failed: can't create $archivedir in $HOME" >&2
 exit 1
 fi
 mkdir $archivedir

 chmod 700 $archivedir # A little bit of privacy, please.
fi

for arg
do

 newname="$archivedir/$(date "+%S.%M.%H.%d.%m").$(basename "$arg")"
 if [-f "$arg" -o -d "$arg"] ; then
 $copy "$arg" "$newname"	
 fi
done

 exec $realrm $flags "$@" # Our shell is replaced by realrm.

Listing 2-5: The newrm shell script, which backs up files before they are deleted from the disk

How It Works
There are a bunch of cool things to consider in this script, not the least of
which is the significant effort it puts forth to ensure that users aren’t aware it
exists. For example, this script doesn’t generate error messages in situations
where it can’t work; it just lets realrm generate them by invoking (typically)
/bin/rm with possibly bad parameters. The calls to realrm are done with the
exec command, which replaces the current process with the new process spec-
ified. As soon as exec invokes realrm , it effectively exits this script, and the
return code from the realrm process is given to the invoking shell.

Improving on User Commands 57

Because this script secretly creates a directory in the user’s home direc-
tory , it needs to ensure that the files there aren’t suddenly readable by
others simply because of a badly set umask value. (The umask value defines
the default permissions for a newly created file or directory.) To avoid such
oversharing, the script at  uses chmod to ensure that the directory is set to
read/write/execute for the user and is closed for everyone else.

Finally at , the script uses basename to strip out any directory informa-
tion from the file’s path, and it adds a date- and timestamp to every deleted
file in the form second.minute.hour.day.month.filename :

newname="$archivedir/$(date "+"%S.%M.%H.%d.%m").$(basename "$arg")"

Notice the use of multiple $() elements in the same substitution.
Though perhaps a bit complicated, it’s nonetheless helpful. Remember,
anything between $(and) is fed into a subshell, and the whole expression
is then replaced by the result of that command.

So why bother with a timestamp anyway? To support storing multiple
deleted files with the same name. Once the files are archived, the script
makes no distinction between /home/oops.txt and /home/subdir/oops​.txt, other
than by the times they were deleted. If multiple files with same name are
deleted simultaneously (or within the same second), the files that were
archived first will get overwritten. One solution to this problem would be
to add the absolute paths of the original files to the archived filenames.

Running the Script
To install this script, add an alias so that when you enter rm, you actually run
this script, not the /bin/rm command. A bash or ksh alias would look like this:

alias rm=yourpath/newrm

The Results
The results of running this script are hidden by design (as Listing 2-6
shows), so let’s keep an eye on the .deleted-files directory along the way.

$ ls ~/.deleted-files
ls: /Users/taylor/.deleted-files/: No such file or directory
$ newrm file-to-keep-forever
$ ls ~/.deleted-files/
51.36.16.25.03.file-to-keep-forever

Listing 2-6: Testing the newrm shell script

Exactly right. While the file was deleted from the local directory, a
copy of it was secretly squirreled away in the .deleted-files directory. The
timestamp allows other deleted files with the same name to be stored in
the same directory without overwriting each other.

58 Chapter 2

Hacking the Script
One useful tweak would be to change the timestamp so that it’s in reverse
time order to produce file listings from ls in chronological order. Here’s
the line to modify the script:

newname="$archivedir/$(date "+"%S.%M.%H.%d.%m").$(basename "$arg")"

You could reverse the order of tokens in that formatted request so that
the original filename is first and the date is second in the backed-up file-
name. However, since our time granularity is seconds, you might remove
more than one version of an identically named file within the same second
(for example, rm test testdir/test), resulting in two identically named files.
Therefore, another useful modification would be to incorporate the loca-
tion of the file into the archived copy. This would produce, for example,
timestamp.test and timestamp.testdir.test, which are clearly two different files.

#16 Working with the Removed File Archive
Now that a directory of deleted files is hidden within the user’s home direc-
tory, a script to let the user choose between different versions of deleted
files would be useful. However, it’s quite a task to address all the possible
situations, ranging from not finding the specified file at all to finding mul-
tiple deleted files that match the given criteria. In the case of more than
one match, for example, should the script automatically pick the newest file
to undelete? Throw an error indicating how many matches there are? Or
present the different versions and let the user pick? Let’s see what we can do
with Listing 2-7, which details the unrm shell script.

The Code

#!/bin/bash

unrm--Searches the deleted files archive for the specified file or
directory. If there is more than one matching result, it shows a list
of results ordered by timestamp and lets the user specify which one
to restore.

archivedir="$HOME/.deleted-files"
realrm="$(which rm)"
move="$(which mv)"

dest=$(pwd)

if [! -d $archivedir] ; then
 echo "$0: No deleted files directory: nothing to unrm" >&2
 exit 1
fi

Improving on User Commands 59

cd $archivedir

If given no arguments, just show a listing of the deleted files.
 if [$# -eq 0] ; then

 echo "Contents of your deleted files archive (sorted by date):"
 ls -FC | sed -e 's/\([[:digit:]][[:digit:]]\.\)\{5\}//g' \

 -e 's/^/ /'
 exit 0
fi

Otherwise, we must have a user-specified pattern to work with.
Let's see if the pattern matches more than one file or directory
in the archive.

 matches="$(ls -d *"$1" 2> /dev/null | wc -l)"

if [$matches -eq 0] ; then
 echo "No match for \"$1\" in the deleted file archive." >&2
 exit 1
fi

 if [$matches -gt 1] ; then
 echo "More than one file or directory match in the archive:"
 index=1
 for name in $(ls -td *"$1")
 do
 datetime="$(echo $name | cut -c1-14| \

 awk -F. '{ print $5"/"$4" at "$3":"$2":"$1 }')"
 filename="$(echo $name | cut -c16-)"
 if [-d $name] ; then

 filecount="$(ls $name | wc -l | sed 's/[^[:digit:]]//g')"
 echo " $index) $filename (contents = ${filecount} items," \
 " deleted = $datetime)"
 else

 size="$(ls -sdk1 $name | awk '{print $1}')"
 echo " $index) $filename (size = ${size}Kb, deleted = $datetime)"
 fi
 index=$(($index + 1))
 done
 echo ""
 /bin/echo -n "Which version of $1 should I restore ('0' to quit)? [1] : "
 read desired
 if [! -z "$(echo $desired | sed 's/[[:digit:]]//g')"] ; then
 echo "$0: Restore canceled by user: invalid input." >&2
 exit 1
 fi

 if [${desired:=1} -ge $index] ; then
 echo "$0: Restore canceled by user: index value too big." >&2
 exit 1
 fi

60 Chapter 2

 if [$desired -lt 1] ; then
 echo "$0: Restore canceled by user." >&2
 exit 1
 fi

 restore="$(ls -td1 *"$1" | sed -n "${desired}p")"

 if [-e "$dest/$1"] ; then
 echo "\"$1\" already exists in this directory. Cannot overwrite." >&2
 exit 1
 fi

 /bin/echo -n "Restoring file \"$1\" ..."
 $move "$restore" "$dest/$1"
 echo "done."

 /bin/echo -n "Delete the additional copies of this file? [y] "
 read answer

 if [${answer:=y} = "y"] ; then
 $realrm -rf *"$1"
 echo "Deleted."
 else
 echo "Additional copies retained."
 fi
else
 if [-e "$dest/$1"] ; then
 echo "\"$1\" already exists in this directory. Cannot overwrite." >&2
 exit 1
 fi

 restore="$(ls -d *"$1")"

 /bin/echo -n "Restoring file \"$1\" ... "
 $move "$restore" "$dest/$1"
 echo "Done."
fi

exit 0

Listing 2-7: The unrm shell script for restoring backed-up files

How It Works
The first chunk of code at , the if [$# -eq 0] conditional block, executes
if no arguments are specified, displaying the contents of the deleted files
archive. However, there’s a catch: we don’t want to show the user the time-
stamp data we added to the filenames since that’s only for the script’s inter-
nal use. It would just clutter up the output. In order to display this data in
a more attractive format, the sed statement at  deletes the first five occur-
rences of digit digit dot in the ls output.

Improving on User Commands 61

The user can specify the name of the file or directory to recover as an
argument. The next step at  is to ascertain how many matches there are
for the name provided.

The unusual use of nested double quotes in this line (around $1) is to
ensure ls matches filenames with embedded spaces, while the * wildcard
expands the match to include any preceding timestamp. The 2> /dev/null
sequence is used to discard any error resulting from the command instead
of showing it to the user. The errors being discarded will most likely be
No such file or directory, when the specified filename isn’t found.

If there are multiple matches for the given file or directory name, then
the most complex part of this script, the if [$matches -gt 1] block at , is
executed and displays all the results. Using the -t flag for the ls command
in the main for loop causes the archive files to be presented from newest
to oldest, and at , a succinct call to the awk command translates the time-
stamp portion of the filename into a deletion date and time in parentheses.
In the size calculation at , the inclusion of the -k flag to ls forces the file
sizes to be represented in kilobytes.

Rather than displaying the size of matching directory entries, the script
displays the number of files within each matching directory, which is a more
helpful statistic. The number of entries within a directory is easy to calculate.
At , we just count the number of lines given by ls and strip any spaces out
of the wc output.

Once the user specifies one of the possible matching files or directories,
the exact file is identified at . This statement contains a slightly different
use of sed. Specifying the -n flag with a line number (${desired}) followed
by the p (print) command is a very fast way to extract only the specified line
from the input stream. Want to see only line 37? The command sed -n 37p
does just that.

Then there’s a test at  to ensure that unrm isn’t going to step on an
existing copy of the file, and the file or directory is restored with a call to
/bin/mv. Once that’s finished, the user is given a chance to remove the addi-
tional (probably superfluous) copies of the file , and the script is done.

Note that using ls with *"$1" matches any filenames ending with the
value in $1, so the list of multiple “matching files” may contain more than
just the file the user wants to restore. For instance, if the deleted files direc-
tory contains the files 11.txt and 111.txt, running unrm 11.txt would signal
that it found multiple matches and return listings for both 11.txt and 111​
.txt. While that might be okay, once the user chooses to restore the correct
file (11.txt), accepting the prompt to delete additional copies of the file
would also remove 111.txt. Therefore, defaulting to delete under those cir-
cumstances might not be optimal. However, this could be easily overcome
by using the ??.??.??.??.??."$1" pattern instead, if you kept the same time-
stamp format for newrm as shown in Script #15 on page 55.

Running the Script
There are two ways to run this script. Without any arguments, the script will
show a listing of all files and directories in the user’s deleted files archive.

62 Chapter 2

When given a filename as its argument, the script will try to restore that file
or directory (if there’s only one match), or it will show a list of candidates
for restoration and allow the user to specify which version of the deleted file
or directory to restore.

The Results
Without any arguments specified, the script shows what’s in the deleted files
archive as Listing 2-8 shows.

$ unrm
Contents of your deleted files archive (sorted by date):
 detritus this is a test
 detritus garbage

Listing 2-8: Running the unrm shell script with no arguments lists the current files available
to restore

When a filename is specified, the script displays more information about
the file if there are multiple files with that name, as shown in Listing 2-9.

$ unrm detritus
More than one file or directory match in the archive:
 1) detritus (size = 7688Kb, deleted = 11/29 at 10:00:12)
 2) detritus (size = 4Kb, deleted = 11/29 at 09:59:51)

Which version of detritus should I restore ('0' to quit)? [1] : 0
unrm: Restore canceled by user.

Listing 2-9: Running the unrm shell script with a single argument attempts to restore the file

Hacking the Script
If you use this script, be aware that without any controls or limits, the files
and directories in the deleted files archive will grow without bound. To
avoid this, invoke find from within a cron job to prune the deleted files
archive, using the -mtime flag to identify those files that have been sitting
untouched for weeks. A 14-day archive is probably quite sufficient for most
users and will keep the archival script from consuming too much disk
space.

While we’re at it, there are some improvements that could make this
script more user friendly. Think about adding starting flags like -l to
restore latest and -D to delete 00additional copies of the file. Which flags
would you add, and how would they streamline processing?

#17 Logging File Removals
Instead of archiving deleted files, you may just want to keep track of what
deletions are happening on your system. In Listing 2-10, file deletions with
the rm command will be logged in a separate file without notifying the user.

Improving on User Commands 63

This can be accomplished by using the script as a wrapper. The basic idea
of wrappers is that they live between an actual Unix command and the user,
offering the user useful functionality that’s not available with the original
command alone.

N o t e 	 Wrappers are such a powerful concept that you’ll see them show up time and again as
you go through this book.

The Code

#!/bin/bash
logrm--Logs all file deletion requests unless the -s flag is used

removelog="/var/log/remove.log"

 if [$# -eq 0] ; then
 echo "Usage: $0 [-s] list of files or directories" >&2
 exit 1
fi

 if ["$1" = "-s"] ; then
 # Silent operation requested ... don't log.
 shift
else

 echo "$(date): ${USER}: $@" >> $removelog
fi

 /bin/rm "$@"

exit 0

Listing 2-10: The logrm shell script

How It Works
The first section  tests the user input, generating a simple file listing if no
arguments are given. Then at , the script tests whether argument 1 is -s; if
so, it skips logging the removal request. Finally, the timestamp, user, and
command are added to the $removelog file , and the user command is
silently passed over to the real /bin/rm program .

Running the Script
Rather than giving this script a name like logrm, a typical way to install a
wrapper program is to rename the underlying command it’s intending to
wrap and then install the wrapper using the original command’s old name.
If you choose this route, however, make sure that the wrapper invokes the
newly renamed program, not itself! For example, if you rename /bin/rm to
/bin/rm.old, and name this script /bin/rm, then the last few lines of the script
will need to be changed so that it invokes /bin/rm.old instead of itself.

64 Chapter 2

Alternatively, you can use an alias to replace standard rm calls with this
command:

alias rm=logrm

In either case, you will need write and execute access to /var/log, which
might not be the default configuration on your particular system.

The Results
Let’s create a few files, delete them, and then examine the remove log, as
shown in Listing 2-11.

$ touch unused.file ciao.c /tmp/junkit
$ logrm unused.file /tmp/junkit
$ logrm ciao.c
$ cat /var/log/remove.log
Thu Apr 6 11:32:05 MDT 2017: susan: /tmp/central.log
Fri Apr 7 14:25:11 MDT 2017: taylor: unused.file /tmp/junkit
Fri Apr 7 14:25:14 MDT 2017: taylor: ciao.c

Listing 2-11: Testing the logrm shell script

Aha! Notice that on Thursday, user Susan deleted the file /tmp/central.log.

Hacking the Script
There’s a potential log file ownership permission problem here. Either the
remove.log file is writable by all, in which case a user could clear its contents
out with a command like cat /dev/null > /var/log/remove.log, or it isn’t writ-
able by all, in which case the script can’t log the events. You could use a setuid
permission—with the script running as root—so that the script runs with
the same permissions as the log file. However, there are two problems with
this approach. First, it’s a really bad idea! Never run shell scripts under
setuid! By using setuid to run a command as a specific user, no matter who
is executing the command, you are potentially introducing security weak-
nesses to your system. Second, you could get into a situation where the users
have permission to delete their files but the script doesn’t, and because the
effective uid set with setuid would be inherited by the rm command itself,
things would break. Great confusion would ensue when users couldn’t even
remove their own files!

If you have an ext2, ext3, or ext4 filesystem (as is usually the case with
Linux), a different solution is to use the chattr command to set a specific
append-only file permission on the log file and then leave it writable to
all without any danger. Yet another solution is to write the log messages to
syslog, using the helpful logger command. Logging the rm commands with
logger is straightforward, as shown here:

logger -t logrm "${USER:-LOGNAME}: $*"

Improving on User Commands 65

This adds an entry to the syslog data stream, which is untouchable by
regular users and is tagged with logrm, the username, and the command
specified.

N o t e 	 If you opt to use logger, you’ll want to check syslogd(8) to ensure that your configura-
tion doesn’t discard user.notice priority log events. It’s almost always specified in the
/etc/syslogd.conf file.

#18 Displaying the Contents of Directories
One aspect of the ls command has always seemed pointless: when a direc-
tory is listed, ls either lists the directory’s contents file by file or shows the
number of 1,024-byte blocks required for the directory data. A typical entry
in an ls -l output might be something like this:

drwxrwxr-x 2 taylor taylor 4096 Oct 28 19:07 bin

But that’s not very useful! What we really want to know is how many
files are in the directory. That’s what the script in Listing 2-12 does. It gen-
erates a nice multicolumn listing of files and directories, showing files with
their sizes and directories with the number of files they contain.

The Code

#!/bin/bash

formatdir--Outputs a directory listing in a friendly and useful format

Note that you need to ensure "scriptbc" (Script #9) is in your current path
because it's invoked within the script more than once.

scriptbc=$(which scriptbc)

Function to format sizes in KB to KB, MB, or GB for more readable output
 readablesize()

{

 if [$1 -ge 1048576] ; then
 echo "$($scriptbc -p 2 $1 / 1048576)GB"
 elif [$1 -ge 1024] ; then
 echo "$($scriptbc -p 2 $1 / 1024)MB"
 else
 echo "${1}KB"
 fi
}

#################
MAIN CODE

66 Chapter 2

if [$# -gt 1] ; then
 echo "Usage: $0 [dirname]" >&2
 exit 1

 elif [$# -eq 1] ; then # Specified a directory other than the current one?
 cd "$@" # Then let's change to that one.
 if [$? -ne 0] ; then # Or quit if the directory doesn't exist.
 exit 1
 fi
fi

for file in *
do
 if [-d "$file"] ; then

 size=$(ls "$file" | wc -l | sed 's/[^[:digit:]]//g')
 if [$size -eq 1] ; then
 echo "$file ($size entry)|"
 else
 echo "$file ($size entries)|"
 fi
 else
 size="$(ls -sk "$file" | awk '{print $1}')"

 echo "$file ($(readablesize $size))|"
 fi
done | \

 sed 's/ /^^^/g' | \
 xargs -n 2 | \
 sed 's/\^\^\^/ /g' | \

 awk -F\| '{ printf "%-39s %-39s\n", $1, $2 }'

exit 0

Listing 2-12: The formatdir shell script for more readable directory listings

How It Works
One of the most interesting parts of this script is the readablesize function ,
which accepts numbers in kilobytes and outputs their value in either kilo-
bytes, megabytes, or gigabytes, depending on which unit is most appropri-
ate. Instead of having the size of a very large file shown as 2,083,364KB,
for example, this function will instead show a size of 2.08GB. Note that
readablesize is called with the $() notation :

echo "$file ($(readablesize $size))|"

Since subshells automatically inherit any functions defined in the
running shell, the subshell created by the $() sequence has access to the
readablesize function. Handy.

Near the top of the script at , there is also a shortcut that allows users to
specify a directory other than the current directory and then changes the
current working directory of the running shell script to the desired location,
simply by using cd.

Improving on User Commands 67

The main logic of this script involves organizing its output into two
neat, aligned columns. One issue to deal with is that you can’t simply replace
spaces with line breaks in the output stream, because files and directories
may have spaces within their names. To get around this problem, the
script at  first replaces each space with a sequence of three carets (^^^).
Then it uses the xargs command to merge paired lines so that every group
of two lines becomes one line separated by a real, expected space. Finally,
at  it uses the awk command to output columns in the proper alignment.

Notice how the number of (nonhidden) entries in a directory is easily
calculated at  with a quick call to wc and a sed invocation to clean up the
output:

size=$(ls "$file" | wc -l | sed 's/[^[:digit:]]//g')

Running the Script
For a listing of the current directory, invoke the command without argu-
ments, as Listing 2-13 shows. For information about the contents of a differ-
ent directory, specify a directory name as the sole command line argument.

The Results

$ formatdir ~
Applications (0 entries) Classes (4KB)
DEMO (5 entries) Desktop (8 entries)
Documents (38 entries) Incomplete (9 entries)
IntermediateHTML (3 entries) Library (38 entries)
Movies (1 entry) Music (1 entry)
NetInfo (9 entries) Pictures (38 entries)
Public (1 entry) RedHat 7.2 (2.08GB)
Shared (4 entries) Synchronize! Volume ID (4KB)
X Desktop (4KB) automatic-updates.txt (4KB)
bin (31 entries) cal-liability.tar.gz (104KB)
cbhma.tar.gz (376KB) errata (2 entries)
fire aliases (4KB) games (3 entries)
junk (4KB) leftside navbar (39 entries)
mail (2 entries) perinatal.org (0 entries)
scripts.old (46 entries) test.sh (4KB)
testfeatures.sh (4KB) topcheck (3 entries)
tweakmktargs.c (4KB) websites.tar.gz (18.85MB)

Listing 2-13: Testing the formatdir shell script

Hacking the Script
An issue worth considering is whether you happen to have a user who likes
to use sequences of three carets in filenames. This naming convention is
pretty unlikely—a 116,696-file Linux install that we spot-tested didn’t have

68 Chapter 2

even a single caret within any of its filenames—but if it did occur, you’d get
some confusing output. If you’re concerned, you could address this poten-
tial pitfall by translating spaces into another sequence of characters that’s
even less likely to occur in user filenames. Four carets? Five?

#19 Locating Files by Filename
One command that’s quite useful on Linux systems, but isn’t always present
on other Unix flavors, is locate, which searches a prebuilt database of file-
names for a user-specified regular expression. Ever want to quickly find the
location of the master .cshrc file? Here’s how that’s done with locate:

$ locate .cshrc
/.Trashes/501/Previous Systems/private/etc/csh.cshrc
/OS9 Snapshot/Staging Archive/:home/taylor/.cshrc
/private/etc/csh.cshrc
/Users/taylor/.cshrc
/Volumes/110GB/WEBSITES/staging.intuitive.com/home/mdella/.cshrc

You can see that the master .cshrc file is in the /private/etc directory on
this OS X system. The version of locate we’re going to build sees every file
on the disk when building its internal file index, whether the file is in the
trash queue or on a separate volume or even if it’s a hidden dotfile. This is
both an advantage and a disadvantage, as we will discuss shortly.

The Code
This method of finding files is simple to implement and comes in two scripts.
The first (shown in Listing 2-14) builds a database of all filenames by invok-
ing find, and the second (shown in Listing 2-15) is a simple grep of the new
database.

#!/bin/bash

mklocatedb--Builds the locate database using find. User must be root
to run this script.

locatedb="/var/locate.db"

 if ["$(whoami)" != "root"] ; then
 echo "Must be root to run this command." >&2
 exit 1
fi

find / -print > $locatedb

exit 0

Listing 2-14: The mklocatedb shell script

Improving on User Commands 69

The second script is even shorter.

#!/bin/sh

locate--Searches the locate database for the specified pattern

locatedb="/var/locate.db"

exec grep -i "$@" $locatedb

Listing 2-15: The locate shell script

How It Works
The mklocatedb script must be run as the root user to ensure that it can see
all the files in the entire system, so this is checked at  with a call to whoami.
Running any script as root, however, is a security problem because if a
directory is closed to a specific user’s access, the locate database shouldn’t
store any information about the directory or its contents. This issue will
be addressed in Chapter 5 with a new, more secure locate script that takes
privacy and security into account (see Script #39 on page 127). For now,
however, this script exactly emulates the behavior of the locate command
in standard Linux, OS X, and other distributions.

Don’t be surprised if mklocatedb takes a few minutes or longer to run; it’s
traversing the entire filesystem, which can take a while on even a medium-
sized system. The results can be quite large, too. On one OS X system we
tested, the locate.db file had over 1.5 million entries and ate up 1874.5MB of
disk space.

Once the database is built, the locate script itself is a breeze to write; it’s
just a call to the grep command with whatever arguments are specified by
the user.

Running the Script
To run the locate script, it’s first necessary to run mklocatedb. Once that’s
done, locate invocations will almost instantly find all matching files on the
system for any pattern specified.

The Results
The mklocatedb script has no arguments or output, as Listing 2-16 shows.

$ sudo mklocatedb
Password:
...
Much time passes
...
$

Listing 2-16: Running the mklocatedb shell script as root with the sudo command

70 Chapter 2

We can check the size of the database with a quick ls, as shown here:

$ ls -l /var/locate.db
-rw-r--r-- 1 root wheel 174088165 Mar 26 10:02 /var/locate.db

Now we’re ready to start finding files on the system using locate:

$ locate -i solitaire
/Users/taylor/Documents/AskDaveTaylor image folders/0-blog-pics/vista-search-
solitaire.png
/Users/taylor/Documents/AskDaveTaylor image folders/8-blog-pics/windows-play-
solitaire-1.png
/usr/share/emacs/22.1/lisp/play/solitaire.el.gz
/usr/share/emacs/22.1/lisp/play/solitaire.elc
/Volumes/MobileBackups/Backups.backupdb/Dave's MBP/2014-04-03-163622/BigHD/
Users/taylor/Documents/AskDaveTaylor image folders/0-blog-pics/vista-search-
solitaire.png
/Volumes/MobileBackups/Backups.backupdb/Dave's MBP/2014-04-03-163622/BigHD/
Users/taylor/Documents/AskDaveTaylor image folders/8-blog-pics/windows-play-
solitaire-3.png

This script also lets you ascertain other interesting statistics about your
system, such as how many C source files you have, like this:

$ locate '\.c$' | wc -l
 1479

N o t e 	 Pay attention to the regular expression here. The grep command requires us to escape
the dot (.) or it will match any single character. Also, the $ denotes the end of the line
or, in this case, the end of the filename.

With a bit more work, we could feed each one of these C source files to
the wc command and ascertain the total number of lines of C code on the
system, but, um, that would be kinda daft, wouldn’t it?

Hacking the Script
To keep the database reasonably up-to-date, it would be easy to schedule
mklocatedb to run from cron in the wee hours of the night on a weekly basis—
as most systems with built-in locate commands do—or even more frequently
based on local usage patterns. As with any script executed by the root user,
take care to ensure that the script itself isn’t editable by non-root users.

One potential improvement to this script would be to have locate check
its invocation and fail with a meaningful error message if no pattern is speci-
fied or if the locate.db file doesn’t exist. As it’s written now, the script will spit
out a standard grep error instead, which isn’t very useful. More importantly,
as we discussed earlier, there’s a significant security issue with letting users

Improving on User Commands 71

have access to a listing of all filenames on the system, including those they
wouldn’t ordinarily be able to see. A security improvement to this script is
addressed in Script #39 on page 127.

#20 Emulating Other Environments: MS-DOS
Though it’s unlikely you’ll ever need them, it’s interesting and illustrative
of some scripting concepts to create versions of classic MS-DOS commands,
like DIR, as Unix-compatible shell scripts. Sure, we could just use a shell alias
to map DIR to the Unix ls command, as in this example:

alias DIR=ls

But this mapping doesn’t emulate the actual behavior of the command;
it just helps forgetful people learn new command names. If you’re hip to the
ancient ways of computing, you’ll remember that the /W option produces
a wide listing format, for example. But if you specify /W to the ls command
now, the program will just complain that the /W directory doesn’t exist.
Instead, the following DIR script in Listing 2-17 can be written so that it works
with the forward-slash style of command flags.

The Code

#!/bin/bash
DIR--Pretends we're the DIR command in DOS and displays the contents
of the specified file, accepting some of the standard DIR flags

function usage
{
cat << EOF >&2
 Usage: $0 [DOS flags] directory or directories
 Where:
 /D sort by columns
 /H show help for this shell script
 /N show long listing format with filenames on right
 /OD sort by oldest to newest
 /O-D sort by newest to oldest
 /P pause after each screenful of information
 /Q show owner of the file
 /S recursive listing
 /W use wide listing format
EOF
 exit 1
}

#####################
MAIN BLOCK

postcmd=""
flags=""

72 Chapter 2

while [$# -gt 0]
do
 case $1 in
 /D) flags="$flags -x" ;;
 /H) usage ;;

 /[NQW]) flags="$flags -l" ;;
 /OD) flags="$flags -rt" ;;
 /O-D) flags="$flags -t" ;;
 /P) postcmd="more" ;;
 /S) flags="$flags -s" ;;
 *) # Unknown flag: probably a DIR specifier break;
 # so let's get out of the while loop.
 esac
 shift # Processed flag; let's see if there's another.
done

Done processing flags; now the command itself:

if [! -z "$postcmd"] ; then
 ls $flags "$@" | $postcmd
else
 ls $flags "$@"
fi

exit 0

Listing 2-17: The DIR shell script for emulating the DIR DOS command on Unix

How It Works
This script highlights the fact that shell case statement conditional tests are
actually regular expression tests. You can see at  that the DOS flags /N, /Q,
and /W all map to the same -l Unix flag in the final invocation of the ls com-
mand and that all this is done in a simple regular expression /[NQW].

Running the Script
Name this script DIR (and consider creating a system-wide shell alias of
dir=DIR since DOS was case insensitive but Unix is most assuredly case sensi-
tive). This way, whenever users type DIR at the command line with typical
MS-DOS DIR flags, they’ll get meaningful and useful output (shown in
Listing 2-18) rather than a command not found error message.

The Results

$ DIR /OD /S ~/Desktop
total 48320
 7720 PERP - Google SEO.pdf 28816 Thumbs.db
 0 Traffic Data 8 desktop.ini
 8 gofatherhood-com-crawlerrors.csv 80 change-lid-close-behavior-win7-1.png
 16 top-100-errors.txt 176 change-lid-close-behavior-win7-2.png
 0 $RECYCLE.BIN 400 change-lid-close-behavior-win7-3.png

Improving on User Commands 73

 0 Drive Sunshine 264 change-lid-close-behavior-win7-4.png
 96 facebook-forcing-pay.jpg 32 change-lid-close-behavior-win7-5.png
10704 WCSS Source Files

Listing 2-18: Testing the DIR shell script to list files

This listing of the specified directory, sorted from oldest to newest,
indicates file sizes (though directories always have a size of 0).

Hacking the Script
At this point, it might be tough to find someone who remembers the
MS-DOS command line, but the basic concept is powerful and worth know-
ing. One improvement you could make, for example, would be to have the
Unix or Linux equivalent command be displayed before being executed
and then, after a certain number of system invocations, have the script show
the translation but not actually invoke the command. The user would be
forced to learn the new commands just to accomplish anything!

#21 Displaying Time in Different Time Zones
The most fundamental requirement for a working date command is that
it displays the date and time in your time zone. But what if you have users
across multiple time zones? Or, more likely, what if you have friends and
colleagues in different locations, and you’re always confused about what
time it is in, say, Casablanca, Vatican City, or Sydney?

It turns out that the date command on most modern Unix flavors is
built atop an amazing time zone database. Usually stored in the directory
/usr/share/zoneinfo, this database lists over 600 regions and details the appro-
priate time zone offset from UTC (Coordinated Universal Time, also often
referred to as GMT, or Greenwich Mean Time) for each. The date command
pays attention to the TZ time zone variable, which we can set to any region
in the database, like so:

$ TZ="Africa/Casablanca" date
Fri Apr 7 16:31:01 WEST 2017

However, most system users aren’t comfortable specifying temporary
environment variable settings. Using a shell script, we can create a more
user-friendly frontend to the time zone database.

The bulk of the script in Listing 2-19 involves digging around in the
time zone database (which is typically stored across several files in the
zonedir directory) and trying to find a file that matches a specified pattern.
Once it finds a matching file, the script grabs the full time zone name (as
with TZ="Africa/Casablanca" in this example) and invokes date with that as a
subshell environment setting. The date command checks TZ to see what time
zone it’s in and has no idea if it’s a one-off or the time zone you sit in most
of the time.

74 Chapter 2

The Code

#!/bin/bash

timein--Shows the current time in the specified time zone or
geographic zone. Without any argument, this shows UTC/GMT.
Use the word "list" to see a list of known geographic regions.
Note that it's possible to match zone directories (regions),
but that only time zone files (cities) are valid specifications.

Time zone database ref: http://www.twinsun.com/tz/tz-link.htm

zonedir="/usr/share/zoneinfo"

if [! -d $zonedir] ; then
 echo "No time zone database at $zonedir." >&2
 exit 1
fi

if [-d "$zonedir/posix"] ; then
 zonedir=$zonedir/posix # Modern Linux systems
fi

if [$# -eq 0] ; then
 timezone="UTC"
 mixedzone="UTC"

 elif ["$1" = "list"] ; then
 (echo "All known time zones and regions defined on this system:"
 cd $zonedir
 find -L * -type f -print | xargs -n 2 | \
 awk '{ printf " %-38s %-38s\n", $1, $2 }'
) | more
 exit 0
else

 region="$(dirname $1)"
 zone="$(basename $1)"

 # Is the given time zone a direct match? If so, we're good to go.
 # Otherwise we need to dig around a bit to find things. Start by
 # just counting matches.

 matchcnt="$(find -L $zonedir -name $zone -type f -print |\
 wc -l | sed 's/[^[:digit:]]//g')"

 # Check if at least one file matches.
 if ["$matchcnt" -gt 0] ; then
 # But exit if more than one file matches.
 if [$matchcnt -gt 1] ; then
 echo "\"$zone\" matches more than one possible time zone record." >&2
 echo "Please use 'list' to see all known regions and time zones." >&2
 exit 1

Improving on User Commands 75

 fi
 match="$(find -L $zonedir -name $zone -type f -print)"
 mixedzone="$zone"
 else # Maybe we can find a matching time zone region, rather than a specific
 # time zone.
 # First letter capitalized, rest of word lowercase for region + zone
 mixedregion="$(echo ${region%${region#?}} \
 | tr '[[:lower:]]' '[[:upper:]]')\
 $(echo ${region#?} | tr '[[:upper:]]' '[[:lower:]]')"
 mixedzone="$(echo ${zone%${zone#?}} | tr '[[:lower:]]' '[[:upper:]]') \
 $(echo ${zone#?} | tr '[[:upper:]]' '[[:lower:]]')"

 if ["$mixedregion" != "."] ; then
 # Only look for specified zone in specified region
 # to let users specify unique matches when there's
 # more than one possibility (e.g., "Atlantic").
 match="$(find -L $zonedir/$mixedregion -type f -name $mixedzone -print)"
 else
 match="$(find -L $zonedir -name $mixedzone -type f -print)"
 fi

 # If file exactly matched the specified pattern
 if [-z "$match"] ; then
 # Check if the pattern was too ambiguous.
 if [! -z $(find -L $zonedir -name $mixedzone -type d -print)] ; then

 echo "The region \"$1\" has more than one time zone. " >&2
 else # Or if it just didn't produce any matches at all
 echo "Can't find an exact match for \"$1\". " >&2
 fi
 echo "Please use 'list' to see all known regions and time zones." >&2
 exit 1
 fi
 fi

 timezone="$match"
fi

nicetz=$(echo $timezone | sed "s|$zonedir/||g") # Pretty up the output.

echo It\'s $(TZ=$timezone date '+%A, %B %e, %Y, at %l:%M %p') in $nicetz

exit 0

Listing 2-19: The timein shell script for reporting the time in a certain time zone

How It Works
This script exploits the ability of the date command to show the date and
time for a specified time zone, regardless of your current environment
settings. In fact, the entire script is all about identifying a valid time zone
name so that the date command will work when invoked at the very end.

Most of the complexity of this script comes from trying to anticipate
names of world regions entered by users that do not match the names of
regions in the time zone database. The time zone database is laid out with
timezonename and region/locationname columns, and the script tries to display

76 Chapter 2

useful error messages for typical input problems, like a time zone that’s not
found because the user is specifying a country like Brazil, which has more
than one time zone.

For example, although TZ="Casablanca" date would fail to find a match-
ing region and display the UTC/GMT time instead, the city Casablanca
does exist in the time zone database. The issue is that you have to use its
proper region name of Africa/Casablanca in order for it to work, as was
shown in the introduction to this script.

This script, on the other hand, can find Casablanca in the Africa direc-
tory on its own and identify the zone accurately. However, just specifying
Africa wouldn’t be specific enough, as the script knows there are subregions
within Africa, so it produces an error message indicating that the informa-
tion is insufficient to uniquely identify a specific time zone . You can also
just use list to list all time zones  or an actual time zone name  (for
example, UTC or WET), which can be used as an argument to this script.

N o t e 	 An excellent reference to the time zone database can be found online at http://www​
.twinsun.com/tz/tz-link.htm.

Running the Script
To check the time in a region or city, specify the region or city name as an
argument to the timein command. If you know both the region and the city,
you can also specify them as region/city (for example, Pacific/Honolulu).
Without any arguments, timein shows UTC/GMT. Listing 2-20 shows the
timein script running with a variety of time zones.

The Results

$ timein
It's Wednesday, April 5, 2017, at 4:00 PM in UTC
$ timein London
It's Wednesday, April 5, 2017, at 5:00 PM in Europe/London
$ timein Brazil
The region "Brazil" has more than one time zone. Please use 'list'
to see all known regions and time zones.
$ timein Pacific/Honolulu
It's Wednesday, April 5, 2017, at 6:00 AM in Pacific/Honolulu
$ timein WET
It's Wednesday, April 5, 2017, at 5:00 PM in WET
$ timein mycloset
Can't find an exact match for "mycloset". Please use 'list'
to see all known regions and time zones.

Listing 2-20: Testing the timein shell script with various time zones

http://www.twinsun.com/tz/tz-link.htm
http://www.twinsun.com/tz/tz-link.htm

Improving on User Commands 77

Hacking the Script
Knowing the time in a specific time zone across the world is a great ability,
especially for a systems admin who manages global networks. But sometimes,
you really just want to know the difference in time between two time zones
quickly. The timein script could be hacked to provide just this functionality.
By creating a new script, perhaps called tzdiff, based on the timein script,
you could accept two arguments instead of one.

Using both of the arguments, you could determine the current time
in both time zones and then print the hour difference between the two.
Keep in mind, though, that a two-hour difference between two time zones
could be two hours forward or two hours backward, and this makes a big
difference. Distinguishing between a two-hour difference going forward or
backward is crucial in making this hack a useful script.

