
Solutions to
Programming Puzzles

Here are the solutions to the programming puzzles at
the ends of the chapters. There’s not always a single
solution to a puzzle, so the one you’ve come up with
may not match what you’ll find here, but the examples
will give you an idea of possible approaches.

2   Solutions for Chapter 3

Chapter 3
#1: Favorites
Here’s one solution with three favorite hobbies and three favorite
foods:

>>> hobbies = ['Pokemon', 'LEGO Mindstorms', 'Mountain Biking']
>>> foods = ['Pancakes', 'Chocolate', 'Apples']
>>> favorites = hobbies + foods
>>> print(favorites)
['Pokemon', 'LEGO Mindstorms', 'Mountain Biking', 'Pancakes',
'Chocolate', 'Apples']

#2: Counting Combatants
We can do the calculation in a number of different ways. We have
three buildings with 25 ninjas hiding on each roof, and two tunnels
with 40 samurai hiding in each. We could work out the total ninjas
and then the total samurai, and just add those two numbers together:

>>> 3*25
75
>>> 2*40
80
>>> 75+80
155

Much shorter (and better) is to combine those three equations,
using parentheses (the parentheses aren’t necessary, due to the
order of the mathematical operations, but they make the equation
easier to read):

>>> (3*25)+(2*40)

But perhaps a nicer Python program would be something like
the following, which tells us what we’re calculating:

>>> roofs = 3
>>> ninjas_per_roof = 25
>>> tunnels = 2
>>> samurai_per_tunnel = 40
>>> print((roofs * ninjas_per_roof) + (tunnels * samurai_per_tunnel))
155

Solutions for Chapter 4   3

#3: Greetings!
In this solution, we give the variables meaningful names, and then
use format placeholders (%s %s) in our string to embed the values of
those variables:

>>> first_name = 'Brando'
>>> last_name = 'Ickett'
>>> print('Hi there, %s %s!' % (first_name, last_name))
Hi there, Brando Ickett!

Chapter 4
#1: A Rectangle
Drawing a rectangle is almost exactly the same as drawing a
square, except that the turtle needs to draw two sides that are
longer than the other two:

>>> import turtle
>>> t = turtle.Pen()
>>> t.forward(100)
>>> t.left(90)
>>> t.forward(50)
>>> t.left(90)
>>> t.forward(100)
>>> t.left(90)
>>> t.forward(50)

#2: A Triangle
The puzzle didn’t specify what sort of triangle to draw. There are
three types of triangles: equilateral, isosceles, and scalene. Depend-
ing on how much you know about geometry, you may have drawn
any sort of triangle, perhaps by fiddling with the angles until you
ended up with something that looked right.

For this example, let’s concentrate on the first two types,
because they’re the most straightforward to draw. An equilateral
triangle has three equal sides and three equal angles:

>>> import turtle
>>> t = turtle.Pen()

u >>> t.forward(100)

4   Solutions for Chapter 4

v >>> t.left(120)
w >>> t.forward(100)
x >>> t.left(120)
y >>> t.forward(100)

We draw the base of the triangle by moving forward 100 pix-
els at u. We turn left 120 degrees (this creates an interior angle
of 60 degrees) at v, and again move forward 100 pixels at w. The
next turn is also 120 degrees at x, and the turtle moves back to
the starting position by moving forward another 100 pixels at y.
Here’s the result of running the code:

An isosceles triangle has two equal sides and two equal angles:

>>> import turtle
>>> t = turtle.Pen()
>>> t.forward(50)
>>> t.left(104.47751218592992)
>>> t.forward(100)
>>> t.left(151.04497562814015)
>>> t.forward(100)

In this solution, the turtle moves forward 50 pixels, and then
turns 104.47751218592992 degrees. It moves forward 100 pixels,
followed by a turn of 151.04497562714015 degrees, and then for-
ward 100 pixels again. To turn the turtle back to face its starting
position, we can call the following line again:

>>> t.left(104.47751218592992)

Solutions for Chapter 4   5

Here’s the result of running this code:

How do we come up with angles like 104.47751218592992
degrees and 151.04497562814015 degrees? After all, those are
rather obscure numbers!

Once we’ve decided on the lengths of each of the sides of the
triangle, we can calculate the interior angles using Python and a
bit of trigonometry. In the following diagram, you can see that if
we know the degree of angle a, we can work out the degrees of the
(outside) angle b that the turtle needs to turn. The two angles a
and b will add up to 180 degrees.

180°

a
b

turtle

It’s not difficult to calculate the inside angle if you know the
right equation. For example, say we want to create a triangle with
a bottom length of 50 pixels (let’s call that side C), and two sides A
and B, both 100 pixels long.

6   Solutions for Chapter 4

a

A

turtle

B

C

The equation to calculate the inside angle a using sides A, B,
and C would be:

a
A C B

AC
= + −







arccos

2 2 2

2

We can create a little Python program to calculate the value
using Python’s math module:

>>> import math
>>> A = 100
>>> B = 100
>>> C = 50

u >>> a = math.acos((math.pow(A,2) + math.pow(C,2) - \
 math.pow(B,2)) / (2*A*C))
>>> print(a)
1.31811607165

We first import the math module, and then create variables for
each of the sides (A, B, and C). At u, we the use the math function
acos (arc cosine) to calculate the angle. This calculation returns the
radians value 1.31811607165. Radians are another unit used to
measure angles, like degrees.

Note 	 The backslash (\) in the line at u isn’t part of the equation—
backslashes, as explained in Chapter 16, are used to separate long
lines of code. They’re not necessary, but in this case we’re splitting a
long line because it won’t fit on a page otherwise.

The radians value can be converted into degrees using the
math function degrees, and we can calculate the outside angle (the

Solutions for Chapter 4   7

amount we need to tell the turtle to turn), by subtracting this
value from 180 degrees:

>>> print(180 - math.degrees(a))
104.477512186

The equation for the turtle’s next turn is similar:

b
A B C

AB
= + −







arccos

2 2 2

2

The code for this equation also looks similar:

>>> b = math.acos((math.pow(A,2) + math.pow(B,2) - \
 math.pow(C,2)) / (2*A*B))
>>> print(180 - math.degrees(b))
151.04497562814015

Of course, you don’t need to use equations to work out the
angles. You can also just try playing with the degrees the turtle
turns until you get something that looks about right.

#3: A Box Without Corners
The solution to this puzzle (an octagon missing four sides) is to
do the same thing four times in a row. Move forward, turn left
45 degrees, lift the pen, move forward, put the pen down, and
turn left 45 degrees again:

t.forward(50)
t.left(45)
t.up()
t.forward(50)
t.down()
t.left(45)

So the final set of commands would be like the following code
(the best way to run this is to create a new window in the shell,
and then save the file as nocorners.py):

import turtle
t = turtle.Pen()
t.forward(50)

8   Solutions for Chapter 5

t.left(45)
t.up()
t.forward(50)
t.down()
t.left(45)
t.forward(50)
t.left(45)
t.up()
t.forward(50)
t.down()
t.left(45)
t.forward(50)
t.left(45)
t.up()
t.forward(50)
t.down()
t.left(45)
t.forward(50)
t.left(45)
t.up()
t.forward(50)
t.down()
t.left(45)

Chapter 5
#1: Are You Rich?
You will actually get an indentation error once you reach the last
line of the if statement:

>>> money = 2000
>>> if money > 1000:

u print("I'm rich!!")
else:
 print("I'm not rich!!")

v print("But I might be later...")
SyntaxError: unexpected indent

You get this error because the first block at u starts with four
spaces, so Python doesn’t expect to see two extra spaces on the
final line at v. It highlights the place where it sees a problem with
a vertical rectangular block, so you can tell where you went wrong.

Solutions for Chapter 5   9

#2: Twinkies!
The code to check for a number of Twinkies less than 100 or more
than 500 should look like this:

>>> twinkies = 600
>>> if twinkies < 100 or twinkies > 500:
>>> print('Too few or too many')

Too few or too many

#3: Just the Right Number
You could write more than one if statement to check whether an
amount of money falls between 100 and 500 or 1000 and 5000,
but by using the and and or keywords, we can do it with a single
statement:

if (amount >= 100 and amount <= 500) or (amount >= 1000 \
 and amount <= 5000):
 print('amount is between 100 & 500 or between 1000 & 5000')

(Be sure to put brackets around the first and last two condi-
tions so that Python will check whether the amount is between 100
and 500 or between 1000 and 5000.)

We can test the code by setting the amount variable to different
values:

>>> amount = 800
>>> if (amount >= 100 and amount <= 500) or (amount >= 1000 \
 and amount <= 5000):
 print('amount is between 100 & 500 or between 1000 & 5000')

>>> amount = 400
>>> if (amount >= 100 and amount <= 500) or (amount >= 1000 \
 and amount <= 5000):
 print('amount is between 100 & 500 or between 1000 & 5000')

amount is between 100 & 500 or between 1000 & 5000
>>> amount = 3000
>>> if (amount >= 100 and amount <= 500) or (amount >= 1000 \
 and amount <= 5000):
 print('amount is between 100 & 500 or between 1000 & 5000')

amount is between 100 & 500 or between 1000 & 5000

10   Solutions for Chapter 6

#4: I Can Fight Those Ninjas
This was a bit of an evil, trick puzzle. If you create the if statement
in the same order as the instructions, you won’t get the result you
might be expecting. Here’s an example:

>>> ninjas = 5
>>> if ninjas < 50:
 print("That's too many")
elif ninjas < 30:
 print("It'll be a struggle, but I can take 'em")
elif ninjas < 10:
 print("I can fight those ninjas!")

That's too many

Even though the number of ninjas is less than 10, you get the
message “That’s too many.” This is because the first condition
(< 50) is evaluated first (in other words, Python checks it first), and
because the variable really is less than 50, the program prints the
message you didn’t expect to see.

To get it to work properly, reverse the order in which you check
the number, so that you see whether the number is less than 10 first:

>>> ninjas = 5
>>> if ninjas < 10:
 print("I can fight those ninjas!")
elif ninjas < 30:
 print("It'll be a struggle, but I can take 'em")
elif ninjas < 50:
 print("That's too many")

I can fight those ninjas!

Chapter 6
#1: The Hello Loop
The print statement in this for loop is run only once. This is
because when Python hits the if statement, x is less than 9, so
it immediately breaks out of the loop.

>>> for x in range(0, 20):
 print('hello %s' % x)

Solutions for Chapter 6   11

 if x < 9:
 break

hello 0

#2: Even Numbers
We can use the step parameter with the range function to produce
the list of even numbers. If you are 14 years old, the start param-
eter will be 2, and the end parameter will be 16 (because the for
loop will run until the value just before the end parameter).

>>> for x in range(2, 16, 2):
 print(x)
2
4
6
8
10
12
14

#3: My Five Favorite Ingredients
There are a couple of different ways to print numbers with the
items in the list. Here’s one way:

>>> ingredients = ['snails', 'leeches', 'gorilla belly-button lint',
 'caterpillar eyebrows', 'centipede toes']

u >>> x = 1
v >>> for i in ingredients:
w print('%s %s' % (x, i))
x x = x + 1

1 snails
2 leeches
3 gorilla belly-button lint
4 caterpillar eyebrows
5 centipede toes

We create a variable x to store the number we want to print
at u. Next, we create a for loop to loop through the items in the
list at v, assigning each to the variable i, and we print the value
of the x and i variables at w, using the %s placeholder. We add 1 to
the x variable at x, so that each time we loop, the number we print
increases.

12   Solutions for Chapter 7

#4: Your Weight on the Moon
To calculate your weight in kilograms on the moon over 15 years,
first create a variable to store your starting weight:

>>> weight = 30

For each year, you can calculate the new weight by adding a
kilogram, and then multiplying by 16.5 percent (0.165) to get the
weight on the moon:

>>> weight = 30
>>> for year in range(1, 16):
 weight = weight + 1
 moon_weight = weight * 0.165
 print('Year %s is %s' % (year, moon_weight))

Year 1 is 5.115
Year 2 is 5.28
Year 3 is 5.445
Year 4 is 5.61
Year 5 is 5.775
Year 6 is 5.94
Year 7 is 6.105
Year 8 is 6.2700000000000005
Year 9 is 6.4350000000000005
Year 10 is 6.6000000000000005
Year 11 is 6.765000000000001
Year 12 is 6.930000000000001
Year 13 is 7.095000000000001
Year 14 is 7.260000000000001
Year 15 is 7.425000000000001

Chapter 7
#1: Basic Moon Weight Function
The function should take two parameters: weight and increase (the
amount the weight will increase each year). The rest of the code is
very similar to the solution for Puzzle #4 in Chapter 6.

>>> def moon_weight(weight, increase):
 for year in range(1, 16):
 weight = weight + increase
 moon_weight = weight * 0.165
 print('Year %s is %s' % (year, moon_weight))

Solutions for Chapter 7   13

>>> moon_weight(40, 0.5)
Year 1 is 6.6825
Year 2 is 6.765
Year 3 is 6.8475
Year 4 is 6.93
Year 5 is 7.0125
Year 6 is 7.095
Year 7 is 7.1775
Year 8 is 7.26
Year 9 is 7.3425
Year 10 is 7.425
Year 11 is 7.5075
Year 12 is 7.59
Year 13 is 7.6725
Year 14 is 7.755
Year 15 is 7.8375

#2: Moon Weight Function and Years
We need only a minor change to the function so that the number of
years can be passed in as a parameter.

>>> def moon_weight(weight, increase, years):
 years = years + 1
 for year in range(1, years):
 weight = weight + increase
 moon_weight = weight * 0.165
 print('Year %s is %s' % (year, moon_weight))

>>> moon_weight(35, 0.3, 5)
Year 1 is 5.8245
Year 2 is 5.874
Year 3 is 5.9235
Year 4 is 5.973
Year 5 is 6.0225

Notice on the second line of the function that we add 1 to the
years parameter, so that the for loop will end on the correct year
(rather than the year before).

#3: Moon Weight Program
We can use the stdin object of the sys module to allow someone to
enter values (using the readline function). Because sys.stdin.readline
returns a string, we need to convert these strings into numbers so
that we can perform the calculations.

14   Solutions for Chapter 7

import sys
def moon_weight():
 print('Please enter your current Earth weight')

u weight = float(sys.stdin.readline())
 print('Please enter the amount your weight might increase each year')

v increase = float(sys.stdin.readline())
 print('Please enter the number of years')

w years = int(sys.stdin.readline())
 years = years + 1
 for year in range(1, years):
 weight = weight + increase
 moon_weight = weight * 0.165
 print('Year %s is %s' % (year, moon_weight))

At u, we read the input using sys.stdin.readline, and then con-
vert the string into a float, using the float function. This value is
stored as the weight variable. We do the same process at v for the
variable increase, but use the int function at w, because we enter
only whole numbers for a number of years (not fractional numbers).
The rest of the code after that line is exactly the same as in the
previous solution.

If we call the function now, we’ll see something like the following:

>>> moon_weight()
Please enter your current Earth weight
45
Please enter the amount your weight might increase each year
0.4
Please enter the number of years
12
Year 1 is 7.491
Year 2 is 7.557
Year 3 is 7.623
Year 4 is 7.689
Year 5 is 7.755
Year 6 is 7.821
Year 7 is 7.887
Year 8 is 7.953
Year 9 is 8.019
Year 10 is 8.085
Year 11 is 8.151
Year 12 is 8.217

Solutions for Chapter 8   15

Chapter 8
#1: The Giraffe Shuffle
Before adding the functions to make Reginald dance a jig, let’s
take another look at the Animals, Mammals, and Giraffes classes.
Here’s the Animals class (this used to be a subclass of the Animate
class, which was removed to make this example a little simpler):

class Animals:
 def breathe(self):
 print('breathing')
 def move(self):
 print('moving')
 def eat_food(self):
 print('eating food')

The Mammals class is a subclass of Animals:

class Mammals(Animals):
 def feed_young_with_milk(self):
 print('feeding young')

And the Giraffes class is a subclass of Mammals:

class Giraffes(Mammals):
 def eat_leaves_from_trees(self):
 print('eating leaves')

The functions for moving each foot are pretty easy to add:

class Giraffes(Mammals):
 def eat_leaves_from_trees(self):
 print('eating leaves')
 def left_foot_forward(self):
 print('left foot forward')
 def right_foot_forward(self):
 print('right foot forward')
 def left_foot_backward(self):
 print('left foot back')
 def right_foot_backward(self):
 print('right foot back')

16   Solutions for Chapter 8

The dance function just needs to call each of the foot functions
in the right order:

 def dance(self):
 self.left_foot_forward()
 self.left_foot_backward()
 self.right_foot_forward()
 self.right_foot_backward()
 self.left_foot_backward()
 self.right_foot_backward()
 self.right_foot_forward()
 self.left_foot_forward()

To make Reginald dance, we create an object and call the
function:

>>> reginald = Giraffes()
>>> reginald.dance()

left foot forward
left foot back
right foot forward
right foot back
left foot back
right foot back
right foot forward
left foot forward

#2: Turtle Pitchfork
Pen is a class defined in the turtle module, so we can create more
than one object of the Pen class for each of the four turtles. If we
assign each object to a different variable, we can control them sep-
arately, which makes it simple to reproduce the arrowed lines in
this puzzle. The concept that each object is an independent thing is
an important one in programming, particularly when we’re talking
about classes and objects.

import turtle
t1 = turtle.Pen()
t2 = turtle.Pen()
t3 = turtle.Pen()
t4 = turtle.Pen()

Solutions for Chapter 9   17

t1.forward(100)
t1.left(90)
t1.forward(50)
t1.right(90)
t1.forward(50)
t2.forward(110)
t2.left(90)
t2.forward(25)
t2.right(90)
t2.forward(25)
t3.forward(110)
t3.right(90)
t3.forward(25)
t3.left(90)
t3.forward(25)
t4.forward(100)
t4.right(90)
t4.forward(50)
t4.left(90)
t4.forward(50)

There are a number of ways to draw the same thing, so your
code may not look exactly like this.

Chapter 9
#1: Mystery Code
The abs function returns the absolute value of a number, which
basically means that a negative number becomes positive. So in
this mystery code code, the first print statement displays 20, and
the second displays 0.

u >>> a = abs(10) + abs(-10)
>>> print(a)
20

v >>> b = abs(-10) + -10
>>> print(b)
0

The calculation at u ends up being 10 + 10. The calculation
at v turns into 10 + –10.

18   Solutions for Chapter 9

#2: A Hidden Message
The trick here is to first create a string containing the message,
and then use the dir function to find out which functions are avail-
able on the string:

>>> s = 'this if is you not are a reading very this good then way you
to have hide done a it message wrong'
>>> print(dir(s))
['__add__', '__class__', '__contains__', '__delattr__', '__doc__',
'__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__',
'__getnewargs__', '__gt__', '__hash__', '__init__', '__iter__',
'__le__', '__len__', '__lt__', '__mod__', '__mul__', '__ne__',
'__new__', '__reduce__', '__reduce_ex__', '__repr__', '__rmod__',
'__rmul__', '__setattr__', '__sizeof__', '__str__',
'__subclasshook__', '_formatter_field_name_split',
'_formatter_parser', 'capitalize', 'center', 'count',
'encode', 'endswith', 'expandtabs', 'find', 'format', 'index',
'isalnum', 'isalpha', 'isdecimal', 'isdigit', 'isidentifier',
'islower', 'isnumeric', 'isprintable', 'isspace', 'istitle',
'isupper', 'join', 'ljust', 'lower', 'lstrip', 'maketrans',
'partition', 'replace', 'rfind', 'rindex', 'rjust', 'rpartition',
'rsplit', 'rstrip', 'split', 'splitlines', 'startswith', 'strip',
'swapcase', 'title', 'translate', 'upper', 'zfill']

Looking at the list, a function called split looks useful. We can
use the help function to find out what it does:

>>> help(s.split)
Help on built-in function split:

split(...)
 S.split([sep[, maxsplit]]) -> list of strings

 Return a list of the words in S, using sep as the
 delimiter string. If maxsplit is given, at most maxsplit
 splits are done. If sep is not specified or is None, any
 whitespace string is a separator and empty strings are
 removed from the result.

According to this description, split returns the string sepa-
rated into words, according to whatever characters are provided
in the sep parameter. If there’s no sep parameter, the function uses
whitespace. So this function will break up our string.

Now that we know which function to use, we can loop through
the words in the string. There are a number of different ways to

Solutions for Chapter 10   19

print out every other word (starting with the first). Here’s one
possibility:

u >>> message = 'this if is you not are a reading very this good then
way you to have hide done a it message wrong'

v >>> words = message.split()
w >>> for x in range(0, len(words), 2):
x print(words[x])

We create the string at u, and at v, we use the split function
to separate the string into a list of individual words. We then cre-
ate a for loop using the range function at w. The first parameter
to this function is 0 (the beginning of the list); the next parameter
uses the len function to find the length of the list (this will be the
end of the range); and the final parameter is a step value of 2 (so the
range of numbers will look like 0, 2, 4, 6, 8, and so on). We use the
x variable from our for loop to print out values from the list at x.

#3: Copying a File
To copy a file, we open it, and then read the contents into a
variable. We open the destination file for writing (using the 'w'
parameter for writing), and then write out the contents of the
variable. The final code is as follows:

f = open('test.txt')
s = f.read()
f.close()
f = open('output.txt', 'w')
f.write(s)
f.close()

That example works, but actually a better way to copy a file is
using a Python module called shutil:

import shutil
shutil.copy('test.txt', 'output.txt')

Chapter 10
#1: Copied Cars
There are two print statements in this code, and we need to figure
out what’s printed for each one.

20   Solutions for Chapter 10

Here’s the first:

>>> car1 = Car()
u >>> car1.wheels = 4
v >>> car2 = car1

>>> car2.wheels = 3
>>> print(car1.wheels)

3

Why is the result of the print statement 3, when we clearly set
4 wheels for car1 at u? Because at v, both variables car1 and car2
are pointing at the same object.

Now, what about the second print statement?

>>> car3 = copy.copy(car1)
>>> car3.wheels = 6
>>> print(car1.wheels)

3

In this case, car3 is a copy of the object; it’s not labeling the
same object as car1 and car2. So when we set the number of wheels
to 6, it has no effect on car1’s wheels.

#2: Pickled Favorites
We use the pickle module to save the contents of a variable (or
variables) to a file:

u >>> import pickle
v >>> favorites = ['PlayStation', 'Fudge', 'Movies', 'Python for Kids']
w >>> f = open('favorites.dat', 'wb')
x >>> pickle.dump(favorites, f)

>>> f.close()

We import the pickle module at u, and create our list of favor-
ite things at v. We then open a file called favorites.dat by passing
the string 'wb' as the second parameter at w (this means write-
binary). We then use the pickle module’s dump function to save the
contents of the favorites variable into the file at x.

The second part of this solution is to read the file back in.
Assuming you closed and reopened the shell, we’ll need to import
the pickle module again.

Solutions for Chapter 11   21

>>> import pickle
>>> f = open('favorites.dat', 'rb')
>>> favorites = pickle.load(f)
>>> print(favorites)

['PlayStation', 'Fudge', 'Movies', 'Python for Kids']

This is similar to the other code, except that we open the file
with the parameter 'rb' (which means read-binary), and use the
pickle module’s load function.

Chapter 11
#1: Drawing an Octagon
An octagon has eight sides, so we’ll need at least a for loop for
this drawing. If you think about the direction of the turtle for a
moment, and what it needs to do when drawing the octagon, you
may realize that the arrow for the turtle will turn completely
around, like the hand of a clock, by the time it finishes drawing.
This means it has turned a full 360 degrees. If we divide 360 by
the number of sides of the octagon, we get the number of degrees
for the angle that the turtle needs to turn after each step of the
loop (45 degrees, as mentioned in the hint).

>>> import turtle
>>> t = turtle.Pen()
>>> def octagon(size):
 for x in range(1,9):
 t.forward(size)
 t.right(45)

We can call the function to test it using 100 as the size of one
of the sides:

>>> octagon(100)

#2: Drawing a Filled Octagon
If we change the function so that it draws a filled octagon, we’ll
make it more difficult to draw the outline. A better approach is
to pass in a parameter to control whether the octagon should be
filled.

22   Solutions for Chapter 11

>>> import turtle
>>> t = turtle.Pen()
>>> def octagon(size, filled):

u if filled == True:
v t.begin_fill()
 for x in range(1,9):
 t.forward(size)
 t.right(45)
w if filled == True:
x t.end_fill()

First, we check if the filled parameter is set to True at u. If it
is, we tell the turtle to start filling using the begin_fill function
at v. We then draw the octagon on the next two lines, in the same
way as Puzzle #1, and then check to see if the filled parameter is
True at w. If it is, we call the end_fill function at x, which actually
fills our shape.

We can test this function by setting the color to yellow and
calling the function with the parameter set to True (so it will fill).
We can then set the color back to black, and call the function again
with the parameter set to False for our outline.

>>> t.color(1, 0.85, 0)
>>> octagon(40, True)
>>> t.color(0, 0, 0)
>>> octagon(40, False)

#3: A Star Function
The trick to this star function is to divide 360 degrees into the
number of points, which gives the interior angle for each point of
the star (see line u in the following code). To determine the exte-
rior angle, we subtract that number from 180 to get the number of
degrees the turtle must turn at x.

import turtle
t = turtle.Pen()
def draw_star(size, points):

u angle = 360 / points
v for x in range(0, points):
w t.forward(size)
x t.left(180 - angle)
y t.forward(size)
z t.right(180-(angle * 2))

Solutions for Chapter 12   23

We loop from 0 up to the number of points at v, and then
move the turtle forward the number of pixels specified in the size
parameter at w. We turn the turtle the number of degrees we’ve
previously calculated at x, and then move forward again at y,
which draws the first “spine” of the star. In order to move around
in a circular pattern, drawing the spines, we need to increase the
angle, so we multiply the calculated angle by two and turn the
turtle right at z.

For example, you can call this function with 80 pixels and
70 points:

>>> draw_star(80, 70)

This gives the following results:

Chapter 12
#1: Fill the Screen with Triangles
To fill the screen with triangles, the first step is to set up the can-
vas. Let’s give it a width and height of 400 pixels.

>>> from tkinter import *
>>> import random
>>> w = 400
>>> h = 400
>>> tk = Tk()
>>> canvas = Canvas(tk, width=w, height=h)
>>> canvas.pack()

24   Solutions for Chapter 12

A triangle has three points, which means three sets of x and y
coordinates. We can use the randrange function in the random module
(as in the random rectangle example in Chapter 12), to randomly
generate the coordinates for the three points (six numbers in total).
We can then use the random_triangle function to draw the triangle.

>>> def random_triangle():
 p1 = random.randrange(w)
 p2 = random.randrange(h)
 p3 = random.randrange(w)
 p4 = random.randrange(h)
 p5 = random.randrange(w)
 p6 = random.randrange(h)
 canvas.create_polygon(p1, p2, p3, p4, p5, p6, \
 fill="", outline="black")

Finally, we create a loop to draw a whole bunch of random
triangles.

>>> for x in range(0, 100):
 random_triangle()

This results in something like the following:

To fill the window with random colored triangles, first create a
list of colors. We can add this to the setup code at the beginning of
the program.

Solutions for Chapter 12   25

>>> from tkinter import *
>>> import random
>>> w = 400
>>> h = 400
>>> tk = Tk()
>>> canvas = Canvas(tk, width=w, height=h)
>>> canvas.pack()
>>> colors = ['red','green','blue','yellow','orange','white','purple']

We can then use the choice function of the random module to
randomly pick an item from this list of colors, and use it in the call
to create_polygon:

def random_triangle():
 p1 = random.randrange(w)
 p2 = random.randrange(h)
 p3 = random.randrange(w)
 p4 = random.randrange(h)
 p5 = random.randrange(w)
 p6 = random.randrange(h)
 color = random.choice(colors)
 canvas.create_polygon(p1, p2, p3, p4, p5, p6, \
 fill=color, outline="")

Suppose we loop 100 times again:

>>> for x in range(0, 100):
 random_triangle()

The result will be something like these triangles:

26   Solutions for Chapter 12

#2: The Moving Triangle
For the moving triangle, first we set up the canvas again, and then
draw the triangle using the create_polygon function:

import time
from tkinter import *
tk = Tk()
canvas = Canvas(tk, width=200, height=400)
canvas.pack()
canvas.create_polygon(10, 10, 10, 60, 50, 35)

To move the triangle horizontally across the screen, the x
value should be a positive number and the y value should be 0. We
can create a for loop for this, using 1 as the ID of the triangle, 10
as the x parameter, and 0 as the y parameter:

for x in range(0, 35):
 canvas.move(1, 10, 0)
 tk.update()
 time.sleep(0.05)

Moving down the screen is very similar, with a 0 value for the
x parameter and a positive value for the y parameter:

for x in range(0, 14):
 canvas.move(1, 0, 10)
 tk.update()
 time.sleep(0.05)

To move back across the screen, we need a negative value for
the x parameter (and, once again, 0 for the y parameter). To move
up, we need a negative value for the y parameter.

for x in range(0, 35):
 canvas.move(1, -10, 0)
 tk.update()
 time.sleep(0.05)

for x in range(0, 14):
 canvas.move(1, 0, -10)
 tk.update()
 time.sleep(0.05)

Solutions for Chapter 14   27

#3: The Moving Photo
The code for the moving photo solution depends on the size of your
image, but assuming your image is called face.gif, and you’ve saved
it to your C: drive, you can display it, and then move it just like
any other drawn shape.

import time
from tkinter import *
tk = Tk()
canvas = Canvas(tk, width=400, height=400)
canvas.pack()
myimage = PhotoImage(file='c:\\face.gif')
canvas.create_image(0, 0, anchor=NW, image=myimage)
for x in range(0, 35):
 canvas.move(1, 10, 10)
 tk.update()
 time.sleep(0.05)

This code will move the image diagonally down the screen.
If you’re using Ubuntu or Mac OS X, the filename of the image

will be different. If the file is in your home directory, on Ubuntu,
loading the image might look like this:

myimage = PhotoImage(file='/home/malcolm/face.gif')

On a Mac, loading the image might look like this:

myimage = PhotoImage(file='/Users/samantha/face.gif')

Chapter 14
#1: Delay the Game Start
To make the game start when the player clicks the canvas, we
need to make a couple of small changes to the program. The first
is to add a new function to the Paddle class:

 def turn_left(self, evt):
 self.x = -2

 def turn_right(self, evt):
 self.x = 2

28   Solutions for Chapter 14

 def start_game(self, evt):
 self.started = True

This function will set the object variable started to True when it’s
called. We also need to include this object variable in the __init__
function of Paddle (and set it to False), and then add an event bind-
ing for the start_game function (binding it to the mouse button).

 def __init__(self, canvas, color):
 self.canvas = canvas
 self.id = canvas.create_rectangle(0, 0, 100, 10, fill=color)
 self.canvas.move(self.id, 200, 300)
 self.x = 0
 self.canvas_width = self.canvas.winfo_width()

u self.started = False
 self.canvas.bind_all('<KeyPress-Left>', self.turn_left)
 self.canvas.bind_all('<KeyPress-Right>', self.turn_right)

v self.canvas.bind_all('<Button-1>', self.start_game)

You can see the addition of the new object variable started at u,
and the binding for the mouse button at v.

The final change is to the last loop in the code. We need to check
that the object variable started is True before drawing the ball and
paddle, which you can see in this if statement.

while 1:
 if ball.hit_bottom == False and paddle.started == True:
 ball.draw()
 paddle.draw()
 tk.update_idletasks()
 tk.update()
 time.sleep(0.01)

#2: A Proper “Game Over”
We can use the create_text function to create the “Game Over”
text. We’ll add this just after the code to create the ball and
paddle.

paddle = Paddle(canvas, 'blue')
ball = Ball(canvas, paddle, 'red')
game_over_text = canvas.create_text(250, 200, text='GAME OVER', \
 state='hidden')

Solutions for Chapter 14   29

The create_text function has a named parameter called state,
which we set to the string 'hidden'. This means that Python draws
the text, but makes it invisible. To display the text once the game
is over, we add a new if statement to the loop at the bottom of
the code:

while 1:
 if ball.hit_bottom == False and paddle.started == True:
 ball.draw()
 paddle.draw()

u if ball.hit_bottom == True:
v time.sleep(1)
w canvas.itemconfig(game_over_text, state='normal')

 tk.update_idletasks()
 tk.update()
 time.sleep(0.01)

We see if the hit_bottom object variable is set to True at u. If it is,
we sleep for 1 second at v (to give a short delay before displaying
the text), and then change the state parameter of the text to 'normal'
rather than 'hidden' at w, using the itemconfig function of the can-
vas. We pass two parameters to this function: the identifier of the
text drawn on the canvas (stored in the variable game_over_text) and
the named parameter state.

#3: Accelerate the Ball
This change is simple, but you may have found it difficult to fig-
ure out where in the code to make the change. We want the ball to
speed up if it’s travelling in the same horizontal direction when it
hits the paddle, and slow down if it’s going in the opposite horizon-
tal direction. In order to do this, the left-right (horizontal) speed of
the paddle should be added to the horizontal speed of the ball.

The simplest place to make this change is in the hit_paddle
function of the Ball class:

 def hit_paddle(self, pos):
 paddle_pos = self.canvas.coords(self.paddle.id)
 if pos[2] >= paddle_pos[0] and pos[0] <= paddle_pos[2]:

u if pos[3] >= paddle_pos[1] and pos[3] <= paddle_pos[3]:
v self.x += self.paddle.x

 return True
 return False

30   Solutions for Chapter 14

Once we’ve determined that the ball has hit the paddle at u,
we add the value of the x variable of the paddle object to the x vari-
able of the ball at v. If the paddle is moving across the screen to
the right (its x variable might be set to 2, for example), and the ball
strikes it, traveling to the right with an x value of 3, the ball will
bounce off the paddle with a new (horizontal) speed of 5. Adding
both x variables together means the ball gets a new speed when it
hits the paddle.

#4: Record the Player’s Score
To add the score to our game, we can create a new class called
Score:

class Score:
 def __init__(self, canvas, color):

u self.score = 0
v self.canvas = canvas
w self.id = canvas.create_text(450, 10, text=self.score, \

 fill=color)

The __init__ function of the Score class takes three param-
eters: self, canvas, and color. The first line of this function sets up
an object variable score, with a value of 0, at u. We also store the
canvas parameter to use later as the object variable canvas at v.

We use the canvas parameter to create our score text, display-
ing it at position (450, 10), and setting the fill to the value of the
color parameter at w. The text to display is the current value of
the score variable (in other words, 0).

The Score class needs another function, which will be used to
increase the score and redisplay the new value:

class Score:
 def __init__(self, canvas, color):
 self.score = 0
 self.canvas = canvas
 self.id = canvas.create_text(450, 10, text=self.score, \
 fill=color)

u def hit(self):
v self.score += 1
w self.canvas.itemconfig(self.id, text=self.score)

Solutions for Chapter 14   31

The hit function takes no parameters u, and simply increases
the score by 1 at v, before using the itemconfig function of the canvas
object to change the text displayed to the new score value at w.

We can create an object of the Score class just before we create
the paddle and ball objects:

score = Score(canvas, 'green')
paddle = Paddle(canvas, 'blue')
ball = Ball(canvas, paddle, score, 'red')
game_over_text = canvas.create_text(250, 200, text='GAME OVER', \
 state='hidden')

The final change to this code is in the Ball class. We need
to store the Score object (which we use when we create the Ball
object), and then trigger the hit function in the hit_paddle function
of the ball.

The beginning of the Ball’s __init__ function now has a param-
eter score, which we use to create an object variable, also called
score.

 def __init__(self, canvas, paddle, score, color):
 self.canvas = canvas
 self.paddle = paddle
 self.score = score

The hit_paddle function should now look like this:

 def hit_paddle(self, pos):
 paddle_pos = self.canvas.coords(self.paddle.id)
 if pos[2] >= paddle_pos[0] and pos[0] <= paddle_pos[2]:
 if pos[3] >= paddle_pos[1] and pos[3] <= paddle_pos[3]:
 self.x += self.paddle.x
 self.score.hit()
 return True
 return False

The full game code once all four of these puzzles are completed
now looks like this:

from tkinter import *
import random
import time

32   Solutions for Chapter 14

class Ball:
 def __init__(self, canvas, paddle, score, color):
 self.canvas = canvas
 self.paddle = paddle
 self.score = score
 self.id = canvas.create_oval(10, 10, 25, 25, fill=color)
 self.canvas.move(self.id, 245, 100)
 starts = [-3, -2, -1, 1, 2, 3]
 random.shuffle(starts)
 self.x = starts[0]
 self.y = -3
 self.canvas_height = self.canvas.winfo_height()
 self.canvas_width = self.canvas.winfo_width()
 self.hit_bottom = False

 def hit_paddle(self, pos):
 paddle_pos = self.canvas.coords(self.paddle.id)
 if pos[2] >= paddle_pos[0] and pos[0] <= paddle_pos[2]:
 if pos[3] >= paddle_pos[1] and pos[3] <= paddle_pos[3]:
 self.x += self.paddle.x
 self.score.hit()
 return True
 return False

 def draw(self):
 self.canvas.move(self.id, self.x, self.y)
 pos = self.canvas.coords(self.id)
 if pos[1] <= 0:
 self.y = 3
 if pos[3] >= self.canvas_height:
 self.hit_bottom = True
 if self.hit_paddle(pos) == True:
 self.y = -3
 if pos[0] <= 0:
 self.x = 3
 if pos[2] >= self.canvas_width:
 self.x = -3

class Paddle:
 def __init__(self, canvas, color):
 self.canvas = canvas
 self.id = canvas.create_rectangle(0, 0, 100, 10, fill=color)
 self.canvas.move(self.id, 200, 300)
 self.x = 0
 self.canvas_width = self.canvas.winfo_width()
 self.started = False

Solutions for Chapter 14   33

 self.canvas.bind_all('<KeyPress-Left>', self.turn_left)
 self.canvas.bind_all('<KeyPress-Right>', self.turn_right)
 self.canvas.bind_all('<Button-1>', self.start_game)

 def draw(self):
 self.canvas.move(self.id, self.x, 0)
 pos = self.canvas.coords(self.id)
 if pos[0] <= 0:
 self.x = 0
 elif pos[2] >= self.canvas_width:
 self.x = 0

 def turn_left(self, evt):
 self.x = -2

 def turn_right(self, evt):
 self.x = 2

 def start_game(self, evt):
 self.started = True

class Score:
 def __init__(self, canvas, color):
 self.score = 0
 self.canvas = canvas
 self.id = canvas.create_text(450, 10, text=self.score, \
 fill=color)

 def hit(self):
 self.score += 1
 self.canvas.itemconfig(self.id, text=self.score)

tk = Tk()
tk.title("Game")
tk.resizable(0, 0)
tk.wm_attributes("-topmost", 1)
canvas = Canvas(tk, width=500, height=400, bd=0, highlightthickness=0)
canvas.pack()
tk.update()

score = Score(canvas, 'green')
paddle = Paddle(canvas, 'blue')
ball = Ball(canvas, paddle, score, 'red')
game_over_text = canvas.create_text(250, 200, text='GAME OVER', \
 state='hidden')

34   Solutions for Chapter 16

while 1:
 if ball.hit_bottom == False and paddle.started == True:
 ball.draw()
 paddle.draw()
 if ball.hit_bottom == True:
 time.sleep(1)
 canvas.itemconfig(game_over_text, state='normal')
 tk.update_idletasks()
 tk.update()
 time.sleep(0.01)

Chapter 16
#1: Checkerboard
In order to draw a checkerboard background, we need to change
the loops in the __init__ function of our game, as follows:

 self.bg = PhotoImage(file="background.gif")
 w = self.bg.width()
 h = self.bg.height()

u draw_background = 0
 for x in range(0, 5):
 for y in range(0, 5):

v if draw_background == 1:
w self.canvas.create_image(x * w, y * h, \

 image=self.bg, anchor='nw')
x draw_background = 0
y else:
z draw_background = 1

At u, we create a variable called draw_background and set its
value to 0. At v, we check if the value of the variable is 1, and
if it is, we draw the background image at w and set the variable
back to 0 at x. If the value isn’t 1 (that’s the else at y), we set its
value to 1 at z.

What’s this change to our code doing? Well, the first time
we hit the if statement, it won’t draw the background image, and
draw_background will be set to 1. The next time we hit the if state-
ment, we will draw the image and set the variable value back to 0.
Each time we loop, we flip the value of the variable. One time we
draw the image; the next time we don’t.

Solutions for Chapter 16   35

#2: Two-Image Checkerboard
Once you’ve figured out the checkerboard, drawing two alternat-
ing images instead of an image and a blank is quite easy. We need
to load the new background image as well as the original. In the
following example, we load our new image background2.gif (you’ll
need to draw it in GIMP first) and save it as the object variable bg2.

 self.bg = PhotoImage(file="background.gif")
 self.bg2 = PhotoImage(file="background2.gif")
 w = self.bg.width()
 h = self.bg.height()
 draw_background = 0
 for x in range(0, 5):
 for y in range(0, 5):
 if draw_background == 1:
 self.canvas.create_image(x * w, y * h, \
 image=self.bg, anchor='nw')
 draw_background = 0
 else:
 self.canvas.create_image(x * w, y * h, \
 image=self.bg2, anchor='nw')
 draw_background = 1

In the second part of the if statement we created in the Puz-
zle #1 solution, we use the create_image function to draw the new
image on the screen.

#3: Bookshelf and Lamp
To draw different backgrounds, we can start with our alternating
checkerboard code, but we’ll change it again to load a couple of new
images, and then dot them around the canvas. For this example,
I first copied the image background2.gif and drew a bookshelf on
it, saving the new image as shelf.gif. I then made another copy of
background2.gif, drew a lamp, and called the new image lamp.gif.

 self.bg = PhotoImage(file="background.gif")
 self.bg2 = PhotoImage(file="background2.gif")

u self.bg_shelf = PhotoImage(file="shelf.gif")
v self.bg_lamp = PhotoImage(file="lamp.gif")

 w = self.bg.width()
 h = self.bg.height()

w count = 0

36   Solutions for Chapter 18

 draw_background = 0
 for x in range(0, 5):
 for y in range(0, 5):
 if draw_background == 1:
 self.canvas.create_image(x * w, y * h, \
 image=self.bg, anchor='nw')
 draw_background = 0
 else:

x count = count + 1
y if count == 5:
z self.canvas.create_image(x * w, y * h, \

 image=self.bg_shelf, anchor='nw')
{ elif count == 9:
| self.canvas.create_image(x * w, y * h, \

 image=self.bg_lamp, anchor='nw')
 else:
 self.canvas.create_image(x * w, y * h, \
 image=self.bg2, anchor='nw')
 draw_background = 1

We load the new images at u and v, saving them as variables
bg_shelf and bg_lamp, respectively, and then create a new variable
called count at w. In the previous solution, we had an if statement
where we drew one background image or another based on the
value in the variable draw_background. We do the same thing here,
except rather than just displaying the alternate background image,
we increment the value in the variable count by adding 1 (using
count = count + 1) at x. Based on the value in count, we then decide
which image to draw. At y, if the value has reached 5, we draw the
shelf image z. At {, if the value has reached 9, we draw the lamp
image |. Otherwise we just draw the alternate background as we
did previously.

Chapter 18
#1: “You Win!”
We can add the “You Win!” text as a variable of the Game class in its
__init__ function:

 for x in range(0, 5):
 for y in range(0, 5):
 self.canvas.create_image(x * w, y * h, \
 image=self.bg, anchor=’nw’)

Solutions for Chapter 18   37

 self.sprites = []
 self.running = True
 self.game_over_text = self.canvas.create_text(250, 250, \
 text='YOU WIN!', state='hidden')

To display the text when the game ends, we just need to add
an else statement to the mainloop function:

 def mainloop(self):
 while 1:
 if self.running == True:
 for sprite in self.sprites:
 sprite.move()

u else:
v time.sleep(1)
w self.canvas.itemconfig(self.game_over_text, \

 state='normal')
 self.tk.update_idletasks()
 self.tk.update()
 time.sleep(0.01)

You can see this change in lines u through w. We add an else
clause to the if statement at u, and Python runs this block of code
if the running variable is no longer set to True. At v, we sleep for a
second so that the “You Win!” text doesn’t immediately appear, and
then change the state of the text to 'normal' at w so that it appears
on the canvas.

#2: Animating the Door
To animate the door so that it opens and closes when the stick fig-
ure reaches it, we need to change the DoorSprite class first. Rather
than passing the image as a parameter, the sprite will now load
the two door images itself, in the __init__ function:

class DoorSprite(Sprite):
 def __init__(self, game, x, y, width, height):
 Sprite.__init__(self, game)

u self.closed_door = PhotoImage(file="door1.gif")
v self.open_door = PhotoImage(file="door2.gif")

 self.image = game.canvas.create_image(x, y, \
 image=self.closed_door, anchor='nw')
 self.coordinates = Coords(x, y, x + (width / 2), y + height)
 self.endgame = True

38   Solutions for Chapter 18

As you can see, the two images are loaded into object variables
at u and v. We’ll now need to change the code at the bottom of the
game where we create the door object so that it no longer tries to
use an image parameter:

door = DoorSprite(g, 45, 30, 40, 35)

DoorSprite needs two new functions: one to display the open
door image and one to display the closed door image.

 def opendoor(self):
u self.game.canvas.itemconfig(self.image, image=self.open_door)
v self.game.tk.update_idletasks()

 def closedoor(self):
w self.game.canvas.itemconfig(self.image,

 image=self.closed_door)
 self.game.tk.update_idletasks()

Using the itemconfig function of the canvas, we change the dis-
played image to the image stored in the open_door object variable
at u. We call the update_idletasks function of the tk object to force
the new image to be displayed at v. (If we don’t do this, the image
won’t change immediately.) The closedoor function is similar, but
displays the image stored in the closed_door variable at w.

The next new function is added to the StickFigureSprite class:

 def end(self, sprite):
u self.game.running = False
v sprite.opendoor()
w time.sleep(1)
x self.game.canvas.itemconfig(self.image, state='hidden')
y sprite.closedoor()

We set the running object variable of the game to False at u, and
then call the opendoor function of the sprite parameter at v. This
is actually a DoorSprite object, which we’ll see in the next section of
code. At w, we sleep for 1 second before hiding the stick figure at
x and then calling the closedoor function at y. This makes it look
as though the stick figure has gone through the door and closed
the door behind him.

The final change is to the move function of the StickFigureSprite.
In the earlier version of the code, when the stick figure collided

Solutions for Chapter 18   39

with the door, we set the running variable to False, but since this
has been moved to the end function, we need to call that function
instead:

 if left and self.x < 0 and collided_left(co, sprite_co):
 self.x = 0
 left = False

u if sprite.endgame:
v self.end(sprite)

 if right and self.x > 0 and collided_right(co, sprite_co):
 self.x = 0
 right = False

w if sprite.endgame:
x self.end(sprite)

In the section of code where we check whether the stick figure
is moving left, and whether he has collided with a sprite to the left,
we check if the endgame variable is True at u. If it is, we know that
this is a DoorSprite object, and at v we call the end function using
the sprite variable as the parameter. We make the same change
in the section of code where we see if the stick figure is moving
right and has collided with a sprite to the right (at w and x).

#3: Moving Platforms
A moving platform class will be similar to the class for the stick
figure. We’ll need to recalculate the position of the platform, rather
than having a fixed set of coordinates. We can create a subclass of
the PlatformSprite class, so the __init__ function becomes as follows:

class MovingPlatformSprite(PlatformSprite):
u def __init__(self, game, photo_image, x, y, width, height):
v PlatformSprite.__init__(self, game, photo_image, x, y, \

 width, height)
w self.x = 2
x self.counter = 0
y self.last_time = time.time()
z self.width = width
{ self.height = height

We pass in the same parameters as the PlatformSprite class
at u, and then call the __init__ function of the parent class with
those same parameters at v. This means that any object of the

40   Solutions for Chapter 18

MovingPlatformSprite class will be set up exactly the same as an
object of the PlatformSprite class. We then create an x variable with
the value of 2 (the platform will start moving right) at w, followed
by a counter variable at x. We’ll use this counter to signal when the
platform should change direction. Because we don’t want the plat-
form to move back and forth as fast as possible, in the same way
that our StickFigureSprite shouldn’t move back and forth as fast as
possible, we’ll record the time in the last_time variable at y (this
last_time variable will be used to slow down the movement of the
platform). The final additions to this function are to save the width
and height at z and {.

The next addition to our new class is the coords function:

 self.last_time = time.time()
 self.width = width
 self.height = height

 def coords(self):
 xy = self.game.canvas.coords(self.image)
 self.coordinates.x1 = xy[0]
 self.coordinates.y1 = xy[1]

u self.coordinates.x2 = xy[0] + self.width
v self.coordinates.y2 = xy[1] + self.height

 return self.coordinates

The coords function is almost exactly the same as the one we
used for the stick figure, except that rather than using a fixed
width and height, we use the values we stored in the __init__ func-
tion. (You can see the difference on lines u and v.)

Since this is a moving sprite, we also need to add a move
function:

 self.coordinates.x2 = xy[0] + self.width
 self.coordinates.y2 = xy[1] + self.height
 return self.coordinates

 def move(self):
u if time.time() - self.last_time > 0.03:
v self.last_time = time.time()
w self.game.canvas.move(self.image, self.x, 0)
x self.counter = self.counter + 1
y if self.counter > 20:
z self.x = self.x * -1
{ self.counter = 0

Solutions for Chapter 18   41

The move function checks to see if the time is greater than
three-tenths of a second at u. If it is, we set the last_time vari-
able to the current time at v. At w, we move the platform image,
and then increment the counter variable at x. If the counter is
greater than 20 (the if statement at y), we reverse the direction
of movement by multiplying the x variable by –1 (so if it’s positive
it becomes negative, and if it’s negative it becomes positive) at z,
and reset the counter to 0 at {. Now the platform will move in
one direction for a count of 20, and then back the other way for a
count of 20.

To test the moving platforms, we can change a couple of the
existing platform objects from PlatformSprite to MovingPlatformSprite:

platform5 = MovingPlatformSprite(g, PhotoImage(file="platform2.gif"), \
 175, 350, 66, 10)
platform6 = PlatformSprite(g, PhotoImage(file="platform2.gif"), \
 50, 300, 66, 10)
platform7 = PlatformSprite(g, PhotoImage(file="platform2.gif"), \
 170, 120, 66, 10)
platform8 = PlatformSprite(g, PhotoImage(file="platform2.gif"), \
 45, 60, 66, 10)
platform9 = MovingPlatformSprite(g, PhotoImage(file="platform3.gif"), \
 170, 250, 32, 10)
platform10 = PlatformSprite(g, PhotoImage(file="platform3.gif"), \
 230, 200, 32, 10)

The following shows the full code with all the changes.

from tkinter import *
import random
import time

class Game:
 def __init__(self):
 self.tk = Tk()
 self.tk.title("Mr Stick Man Races for the Exit")
 self.tk.resizable(0, 0)
 self.tk.wm_attributes("-topmost", 1)
 self.canvas = Canvas(self.tk, width=500, height=500, \
 highlightthickness=0)
 self.canvas.pack()
 self.tk.update()
 self.canvas_height = 500
 self.canvas_width = 500
 self.bg = PhotoImage(file="background.gif")

42   Solutions for Chapter 18

 w = self.bg.width()
 h = self.bg.height()
 for x in range(0, 5):
 for y in range(0, 5):
 self.canvas.create_image(x * w, y * h, \
 image=self.bg, anchor='nw')
 self.sprites = []
 self.running = True
 self.game_over_text = self.canvas.create_text(250, 250, \
 text='YOU WIN!', state='hidden')

 def mainloop(self):
 while 1:
 if self.running:
 for sprite in self.sprites:
 sprite.move()
 else:
 time.sleep(1)
 self.canvas.itemconfig(self.game_over_text, \
 state='normal')
 self.tk.update_idletasks()
 self.tk.update()
 time.sleep(0.01)

class Coords:
 def __init__(self, x1=0, y1=0, x2=0, y2=0):
 self.x1 = x1
 self.y1 = y1
 self.x2 = x2
 self.y2 = y2

def within_x(co1, co2):
 if (co1.x1 > co2.x1 and co1.x1 < co2.x2) \
 or (co1.x2 > co2.x1 and co1.x2 < co2.x2) \
 or (co2.x1 > co1.x1 and co2.x1 < co1.x2) \
 or (co2.x2 > co1.x1 and co2.x2 < co1.x1):
 return True
 else:
 return False

def within_y(co1, co2):
 if (co1.y1 > co2.y1 and co1.y1 < co2.y2) \
 or (co1.y2 > co2.y1 and co1.y2 < co2.y2) \
 or (co2.y1 > co1.y1 and co2.y1 < co1.y2) \
 or (co2.y2 > co1.y1 and co2.y2 < co1.y1):
 return True

Solutions for Chapter 18   43

 else:
 return False

def collided_left(co1, co2):
 if within_y(co1, co2):
 if co1.x1 <= co2.x2 and co1.x1 >= co2.x1:
 return True
 return False

def collided_right(co1, co2):
 if within_y(co1, co2):
 if co1.x2 >= co2.x1 and co1.x2 <= co2.x2:
 return True
 return False

def collided_top(co1, co2):
 if within_x(co1, co2):
 if co1.y1 <= co2.y2 and co1.y1 >= co2.y1:
 return True
 return False

def collided_bottom(y, co1, co2):
 if within_x(co1, co2):
 y_calc = co1.y2 + y
 if y_calc >= co2.y1 and y_calc <= co2.y2:
 return True
 return False

class Sprite:
 def __init__(self, game):
 self.game = game
 self.endgame = False
 self.coordinates = None
 def move(self):
 pass
 def coords(self):
 return self.coordinates

class PlatformSprite(Sprite):
 def __init__(self, game, photo_image, x, y, width, height):
 Sprite.__init__(self, game)
 self.photo_image = photo_image
 self.image = game.canvas.create_image(x, y, \
 image=self.photo_image, anchor='nw')
 self.coordinates = Coords(x, y, x + width, y + height)

44   Solutions for Chapter 18

class MovingPlatformSprite(PlatformSprite):
 def __init__(self, game, photo_image, x, y, width, height):
 PlatformSprite.__init__(self, game, photo_image, x, y, \
 width, height)
 self.x = 2
 self.counter = 0
 self.last_time = time.time()
 self.width = width
 self.height = height

 def coords(self):
 xy = self.game.canvas.coords(self.image)
 self.coordinates.x1 = xy[0]
 self.coordinates.y1 = xy[1]
 self.coordinates.x2 = xy[0] + self.width
 self.coordinates.y2 = xy[1] + self.height
 return self.coordinates

 def move(self):
 if time.time() - self.last_time > 0.03:
 self.last_time = time.time()
 self.game.canvas.move(self.image, self.x, 0)
 self.counter += 1
 if self.counter > 20:
 self.x *= -1
 self.counter = 0

class DoorSprite(Sprite):
 def __init__(self, game, x, y, width, height):
 Sprite.__init__(self, game)
 self.closed_door = PhotoImage(file="door1.gif")
 self.open_door = PhotoImage(file="door2.gif")
 self.image = game.canvas.create_image(x, y, \
 image=self.closed_door, anchor='nw')
 self.coordinates = Coords(x, y, x + (width / 2), y + height)
 self.endgame = True

 def opendoor(self):
 self.game.canvas.itemconfig(self.image, image=self.open_door)
 self.game.tk.update_idletasks()

 def closedoor(self):
 self.game.canvas.itemconfig(self.image, \
 image=self.closed_door)
 self.game.tk.update_idletasks()

Solutions for Chapter 18   45

class StickFigureSprite(Sprite):
 def __init__(self, game):
 Sprite.__init__(self, game)
 self.images_left = [
 PhotoImage(file="figure-L1.gif"),
 PhotoImage(file="figure-L2.gif"),
 PhotoImage(file="figure-L3.gif")
]
 self.images_right = [
 PhotoImage(file="figure-R1.gif"),
 PhotoImage(file="figure-R2.gif"),
 PhotoImage(file="figure-R3.gif")
]
 self.image = game.canvas.create_image(200, 470, \
 image=self.images_left[0], anchor='nw')
 self.x = -2
 self.y = 0
 self.current_image = 0
 self.current_image_add = 1
 self.jump_count = 0
 self.last_time = time.time()
 self.coordinates = Coords()
 game.canvas.bind_all('<KeyPress-Left>', self.turn_left)
 game.canvas.bind_all('<KeyPress-Right>', self.turn_right)
 game.canvas.bind_all('<space>', self.jump)

 def turn_left(self, evt):
 if self.y == 0:
 self.x = -2

 def turn_right(self, evt):
 if self.y == 0:
 self.x = 2

 def jump(self, evt):
 if self.y == 0:
 self.y = -4
 self.jump_count = 0

 def animate(self):
 if self.x != 0 and self.y == 0:
 if time.time() - self.last_time > 0.1:
 self.last_time = time.time()
 self.current_image += self.current_image_add
 if self.current_image >= 2:
 self.current_image_add = -1
 if self.current_image <= 0:
 self.current_image_add = 1

46   Solutions for Chapter 18

 if self.x < 0:
 if self.y != 0:
 self.game.canvas.itemconfig(self.image, \
 image=self.images_left[2])
 else:
 self.game.canvas.itemconfig(self.image, \
 image=self.images_left[self.current_image])
 elif self.x > 0:
 if self.y != 0:
 self.game.canvas.itemconfig(self.image, \
 image=self.images_right[2])
 else:
 self.game.canvas.itemconfig(self.image, \
 image=self.images_right[self.current_image])

 def coords(self):
 xy = self.game.canvas.coords(self.image)
 self.coordinates.x1 = xy[0]
 self.coordinates.y1 = xy[1]
 self.coordinates.x2 = xy[0] + 27
 self.coordinates.y2 = xy[1] + 30
 return self.coordinates

 def move(self):
 self.animate()
 if self.y < 0:
 self.jump_count += 1
 if self.jump_count > 20:
 self.y = 4
 if self.y > 0:
 self.jump_count -= 1
 co = self.coords()
 left = True
 right = True
 top = True
 bottom = True
 falling = True
 if self.y > 0 and co.y2 >= self.game.canvas_height:
 self.y = 0
 bottom = False
 elif self.y < 0 and co.y1 <= 0:
 self.y = 0
 top = False
 if self.x > 0 and co.x2 >= self.game.canvas_width:
 self.x = 0
 right = False

Solutions for Chapter 18   47

 elif self.x < 0 and co.x1 <= 0:
 self.x = 0
 left = False
 for sprite in self.game.sprites:
 if sprite == self:
 continue
 sprite_co = sprite.coords()
 if top and self.y < 0 and collided_top(co, sprite_co):
 self.y = -self.y
 top = False
 if bottom and self.y > 0 and collided_bottom(self.y, \
 co, sprite_co):
 self.y = sprite_co.y1 - co.y2
 if self.y < 0:
 self.y = 0
 bottom = False
 top = False
 if bottom and falling and self.y == 0 \
 and co.y2 < self.game.canvas_height \
 and collided_bottom(1, co, sprite_co):
 falling = False
 if left and self.x < 0 and collided_left(co, sprite_co):
 self.x = 0
 left = False
 if sprite.endgame:
 self.end(sprite)
 if right and self.x > 0 \
 and collided_right(co, sprite_co):
 self.x = 0
 right = False
 if sprite.endgame:
 self.end(sprite)
 if falling and bottom and self.y == 0 \
 and co.y2 < self.game.canvas_height:
 self.y = 4
 self.game.canvas.move(self.image, self.x, self.y)

 def end(self, sprite):
 self.game.running = False
 sprite.opendoor()
 time.sleep(1)
 self.game.canvas.itemconfig(self.image, state='hidden')
 sprite.closedoor()

48   Solutions for Chapter 18

g = Game()
platform1 = PlatformSprite(g, PhotoImage(file="platform1.gif"), \
 0, 480, 100, 10)
platform2 = PlatformSprite(g, PhotoImage(file="platform1.gif"), \
 150, 440, 100, 10)
platform3 = PlatformSprite(g, PhotoImage(file="platform1.gif"), \
 300, 400, 100, 10)
platform4 = PlatformSprite(g, PhotoImage(file="platform1.gif"), \
 300, 160, 100, 10)
platform5 = MovingPlatformSprite(g, PhotoImage(file="platform2.gif"),\
 175, 350, 66, 10)
platform6 = PlatformSprite(g, PhotoImage(file="platform2.gif"), \
 50, 300, 66, 10)
platform7 = PlatformSprite(g, PhotoImage(file="platform2.gif"), \
 170, 120, 66, 10)
platform8 = PlatformSprite(g, PhotoImage(file="platform2.gif"), \
 45, 60, 66, 10)
platform9 = MovingPlatformSprite(g, PhotoImage(file="platform3.gif"),\
 170, 250, 32, 10)
platform10 = PlatformSprite(g, PhotoImage(file="platform3.gif"), \
 230, 200, 32, 10)
g.sprites.append(platform1)
g.sprites.append(platform2)
g.sprites.append(platform3)
g.sprites.append(platform4)
g.sprites.append(platform5)
g.sprites.append(platform6)
g.sprites.append(platform7)
g.sprites.append(platform8)
g.sprites.append(platform9)
g.sprites.append(platform10)
door = DoorSprite(g, 45, 30, 40, 35)
g.sprites.append(door)
sf = StickFigureSprite(g)
g.sprites.append(sf)
g.mainloop()

