
4
Calcul at ions

In this chapter, we’ll look at various one-liners
for performing calculations, such as finding mini-
mum and maximum elements, counting, shuffling
and permuting words, and calculating dates and
numbers. You’ll also learn about the -a, -M, and -F
command-line arguments, the $, special variable,
and the @{[...]} construction that lets you run
code inside double quotes.

4.1	 Check if a number is a prime

perl -lne '(1x$_) !~ /^1?$|^(11+?)\1+$/ && print "$_ is prime"'

This one-liner uses an ingenious regular expression by Abigail
to detect whether a given number is a prime. (Don’t take this regular

 Perl One-Liners
© 2013 by Peteris Krumins

30 Chapter 4

expression too seriously; I’ve included it for its artistic value. For serious
purposes, use the Math::Primality module from CPAN to see whether a
number is prime.)

Here’s how this ingenious one-liner works: First, the number is con-
verted into its unary representation by (1x$_). For example, 5 is converted
into 1x5, which is 11111 (1 repeated 5 times). Next, the unary number is
tested against the regular expression. If it doesn’t match, the number is a
prime; otherwise it’s a composite. The !~ operator is the opposite of the
=~ operator and is true if the regular expression doesn’t match.

The regular expression consists of two parts: The first part, ^1?$,
matches 1 and the empty string. The empty string and 1 are clearly not
prime numbers, so this part of the regular expression discards them.

The second part, ^(11+?)\1+$, determines whether two or more 1s
repeatedly make up the whole number. If so, the regular expression
matches, which means the number is a composite. If not, it’s a prime.

Now consider how the second part of the regular expression would act
on the number 5. The number 5 in unary is 11111, so the (11+?) matches
the first two 1s, the back-reference \1 becomes 11, and the whole regular
expression now becomes ^11(11)+$. Because it can’t match five 1s, it fails.
Next, it attempts to match the first three 1s. The back-reference becomes
111, and the whole regular expression becomes ^111(111)+$, which doesn’t
match. The process repeats for 1111 and 11111, which also don’t match,
and as a result the entire regular expression doesn’t match and the num-
ber is a prime.

What about the number 4? The number 4 is 1111 in unary. The (11+?)
matches the first two 1s. The back-reference \1 becomes 11, and the regu-
lar expression becomes ^11(11)+$, which matches the original string and
confirms that the number is not prime.

4.2	 Print the sum of all fields on each line

perl -MList::Util=sum -alne 'print sum @F'

This one-liner turns on field auto-splitting with the -a command-line
option and imports the sum function from the List::Util module with
-Mlist::Util=sum. (List::Util is part of the Perl core, so you don’t need
install it.) Auto-splitting happens on whitespace characters by default,
and the resulting fields are put in the @F variable. For example, the line
1 4 8 would be split on each space so that @F would become (1, 4, 8).
The sum @F statement sums the elements in the @F array, giving you 13.

 Perl One-Liners
© 2013 by Peteris Krumins

Calculations 31

The -Mmodule=arg option imports arg from module. It’s the same as
writing

use module qw(arg);

This one-liner is equivalent to

use List::Util qw(sum);
while (<>) {
 @F = split(' ');
 print sum @F, "\n";
}

You can change auto-splitting’s default behavior by specifying an argu-
ment to the -F command-line switch. Say you have the following line:

1:2:3:4:5:6:7:8:9:10

And you wish to find the sum of all these numbers. You can simply
specify : as an argument to the -F switch, like this:

perl -MList::Util=sum -F: -alne 'print sum @F'

This splits the line on the colon character and sums all the numbers.
The output is 55 because that’s the sum of the numbers 1 through 10.

4.3	 Print the sum of all fields on all lines

perl -MList::Util=sum -alne 'push @S,@F; END { print sum @S }'

This one-liner keeps pushing the split fields in @F to the @S array.
Once the input stops and Perl is about to quit, the END { } block is exe-
cuted and it outputs the sum of all items in @F. This sums all fields over
all lines.

Notice how pushing the @F array to the @S array actually appends
elements to it. This differs from many other languages, where pushing
array1 to array2 would put array1 into array2, rather than appending the
elements of array1 onto array2. Perl performs list flattening by design.

Unfortunately, summing all fields on all lines using this solution cre-
ates a massive @S array. A better solution is to keep only the running sum,
like this:

perl -MList::Util=sum -alne '$s += sum @F; END { print $s }'

 Perl One-Liners
© 2013 by Peteris Krumins

32 Chapter 4

Here, each line is split into @F and the values are summed and stored
in the running sum variable $s. Once all input has been processed, the
one-liner prints the value of $s.

4.4	 Shuffle all fields on each line

perl -MList::Util=shuffle -alne 'print "@{[shuffle @F]}"'

The trickiest part of this one-liner is the @{[shuffle @F]} construction.
This construction allows you to execute the code inside the quotation
marks. Normally text and variables are placed inside quotation marks,
but with the @{[...]} construction you can run code, too.

In this one-liner, the code to execute inside of the quotation marks
is shuffle @F, which shuffles the fields and returns the shuffled list. The
[shuffle @F] creates an array reference containing the shuffled fields, and
the @{ ... } dereferences it. You simply create a reference and immediately
dereference it. This allows you to run the code inside the quotation marks.

Let’s look at several examples to understand why I chose to run the
code inside the quotation marks. If I had written print shuffle @F, the
fields on the line would be concatenated. Compare the output of this
one-liner:

$ echo a b c d | perl -MList::Util=shuffle -alne 'print "@{[shuffle @F]}"'
b c d a

to this:

$ echo a b c d | perl -MList::Util=shuffle -alne 'print shuffle @F'
bcda

In the first example, the array of shuffled fields (inside the double
quotation marks) is interpolated, and the array’s elements are separated
by a space, so the output is b c d a. In the second example, interpolation
doesn’t happen, and Perl simply dumps out element by element without
separating them, and the output is bcda.

You can use the $, special variable to change the separator between
array elements when they’re printed. For example, here’s what happens
when I change the separator to a colon:

$ echo a b c d | perl -MList::Util=shuffle -alne '$,=":"; print shuffle @F'
b:c:d:a

 Perl One-Liners
© 2013 by Peteris Krumins

Calculations 33

You can also use the join function to join the elements of @F with a
space:

perl -MList::Util=shuffle -alne 'print join " ", shuffle @F'

Here, the join function joins the elements of an array using the given
separator, but the @{[...]} construction is the cleanest way to do it.

4.5	 Find the numerically smallest element (minimum
element) on each line

perl -MList::Util=min -alne 'print min @F'

This one-liner is somewhat similar to the previous ones. It uses the
min function from List::Util. Once the line has been automatically split
by -a and the elements are in the @F array, the min function finds the
numerically smallest element, which it prints.

For example, if you have a file that contains these lines:

-8 9 10 5
7 0 9 3
5 -25 9 999

Running this one-liner produces the following output:

-8
0
-25

The smallest number on the first line is -8; on the second line, the
smallest number is 0; and on the third line, -25.

4.6	 Find the numerically smallest element (minimum
element) over all lines

perl -MList::Util=min -alne '@M = (@M, @F); END { print min @M }'

This one-liner combines one-liners 4.3 and 4.5. The @M = (@M, @F)
construct is the same as push @M, @F. It appends the contents of @F to the
@M array.

 Perl One-Liners
© 2013 by Peteris Krumins

34 Chapter 4

This one-liner stores all data in memory, and if you run it on a really
huge file, Perl will run out of memory. Your best bet is to find the smallest
element on every line and compare that element with the smallest ele-
ment on the previous line. If the element on the current line is less than
the previous one, it’s the smallest element so far. Once all lines have been
processed, you can just print the smallest element found through the END
block:

perl -MList::Util=min -alne '
 $min = min @F;
 $rmin = $min unless defined $rmin && $min > $rmin;
 END { print $rmin }
'

Here, you first find the minimum element on the current line and
store it in $min. Then you check to see if the smallest element on the
current line is the smallest element so far. If so, assign it to $rmin. Once
you’ve looped over the whole input, the END block executes and you print
the $rmin.

Say your file contains these lines:

-8 9 10 5
7 0 9 3
5 -25 9 999

Running this one-liner outputs -25 because that’s the smallest num-
ber in the file.

If you’re using Perl 5.10 or later, you can do the same thing with this
one-liner:

perl -MList::Util=min -alne '$min = min($min // (), @F); END { print $min }'

This one-liner uses the // operator, which is new to Perl 5.10. This
operator is similar to the logical OR operator (||), except that it tests
the left side’s definedness rather than the truth. What that means is it
tests whether the left side is defined rather than whether it is true or
false. In this one-liner, the expression $min // () returns $min if $min has
been defined, or else it returns an empty list (). The // operator saves
you from having to use defined to test definedness.

Consider what happens when this one-liner is run on the previ-
ous file. First, Perl reads the line -8 9 10 5 , splits it, and puts the
numbers in the @F array. The @F array is now (-8, 9, 10, 5). Next,
it executes $min = min ($min // (), @F). Because $min hasn’t been
defined, $min // () evaluates to (), so the whole expression becomes
$min = min ((), (-8, 9, 10, 5)).

 Perl One-Liners
© 2013 by Peteris Krumins

Calculations 35

Perl does list flattening by design, so after flattening the arguments
to the min function, the expression becomes $min = min(-8, 9, 10, 5).
This defines $min, setting it to -8. Perl proceeds to the next line, where
it sets @F to (7, 0, 9, 3) and again evaluates $min = min($min // (), @F).
Because $min has now been defined, $min // () evaluates to $min and the
expression becomes $min = min(-8, 7, 0, 9, 3). At this point, -8 is still the
smallest element, so $min remains -8. Finally, Perl reads in the last line,
and after evaluating $min = min(-8, 5, -25, 9, 999), it finds that -25 is the
smallest element in the file.

4.7	 Find the numerically largest element (maximum
element) on each line

perl -MList::Util=max -alne 'print max @F'

This works the same as one-liner 4.5, except that you replace min
with max.

4.8	 Find the numerically largest element (maximum
element) over all lines

perl -MList::Util=max -alne '@M = (@M, @F); END { print max @M }'

This one-liner is similar to one-liners 4.6 and 4.7. In this one-liner,
each line is auto-split and put in the @F array, and then this array is
merged with the @M array. When the input has been processed, the END
block executes and the maximum element is printed.

Here’s another way to find the maximum element, keeping just the
running maximum element instead of all elements in memory:

perl -MList::Util=max -alne '
 $max = max @F;
 $rmax = $max unless defined $rmax && $max < $rmax;
 END { print $rmax }
'

If you’re using Perl 5.10 or later, you can use the // operator to
shorten this one-liner:

perl -MList::Util=max -alne '$max = max($max // (), @F); END { print $max }'

This is the same as one-liner 4.6, except you replace min with max.

 Perl One-Liners
© 2013 by Peteris Krumins

36 Chapter 4

4.9	 Replace each field with its absolute value

perl -alne 'print "@{[map { abs } @F]}"'

This one-liner first auto-splits the line using the -a option. The split
fields end up in the @F variable. Next, it calls the absolute value function
abs on each field with the help of the map function. Essentially, the map
function applies a given function to each element of the list and returns
a new list that contains the results of applying the function. For example,
if the list @F is (-4, 2, 0), mapping abs over it produces the list (4, 2, 0).
Finally, this one-liner prints the new list of positive values.

The @{[...]} construct, introduced in one-liner 4.4, allows you to
execute the code inside the quotation marks.

4.10	 Print the total number of fields on each line

perl -alne 'print scalar @F'

This one-liner forces the evaluation of @F in the scalar context, which
in Perl means “the number of elements in @F.” As a result, it prints the
number of elements on each line.

For example, if your file contains the following lines:

foo bar baz
foo bar
baz

Running this one-liner produces the following output:

3
2
1

The first line has three fields, the second line has two fields, and the
last line has one field.

 Perl One-Liners
© 2013 by Peteris Krumins

Calculations 37

4.11	 Print the total number of fields on each line,
followed by the line

perl -alne 'print scalar @F, " $_"'

This one-liner is the same as one-liner 4.10, with the addition of $_
at the end, which prints the whole line. (Remember that -n puts each
line in the $_ variable.)

Let’s run this one-liner on the same example file that I used in one-
liner 4.10:

foo bar baz
foo bar
baz

Running the one-liner produces the following output:

3 foo bar baz
2 foo bar
1 baz

4.12	 Print the total number of fields on all lines

perl -alne '$t += @F; END { print $t }'

Here, the one-liner keeps adding the number of fields on each line
to variable $t until all lines have been processed. Next, it prints the result,
which contains the number of words on all lines. Notice that you add the
@F array to the scalar variable $t. Because $t is scalar, the @F array is evalu-
ated in the scalar context and returns the number of elements it contains.

Running this one-liner on the following file:

foo bar baz
foo bar
baz

produces the number 6 as output because the file contains a total of
six words.

 Perl One-Liners
© 2013 by Peteris Krumins

38 Chapter 4

4.13	 Print the total number of fields that match a
pattern

perl -alne 'map { /regex/ && $t++ } @F; END { print $t || 0 }'

This one-liner uses map to apply an operation to each element in the
@F array. In this example, the operation checks to see if each element
matches /regex/, and if it does, it increments the $t variable. It then
prints the $t variable, which contains the number of fields that match
the /regex/ pattern. The $t || 0 construct is necessary because if no fields
match, $t wouldn’t exist, so you must provide a default value. Instead of 0,
you can provide any other default value, even a string!

Looping would be a better approach:

perl -alne '$t += /regex/ for @F; END { print $t }'

Here, each element in @F is tested against /regex/. If it matches, /regex/
returns true; otherwise it returns false. When used numerically, true con-
verts to 1 and false converts to 0, so $t += /regex/ adds either 1 or 0 to the
$t variable. As a result, the number of matches is counted in $t. You do
not need a default value when printing the result in the END block because
the += operator is run regardless of whether the field matches. You will
always get a value, and sometimes that value will be 0.

Another way to do this is to use grep in the scalar context:

perl -alne '$t += grep /regex/, @F; END { print $t }'

Here, grep returns the number of matches because it’s evaluated in
the scalar context. In the list context, grep returns all matching elements,
but in the scalar context, it returns the number of matching elements. This
number is accumulated in $t and printed in the END block. In this case, you
don’t need to provide a default value for $t because grep returns 0 in those
situations.

4.14	 Print the total number of lines that match a pattern

perl -lne '/regex/ && $t++; END { print $t || 0 }'

Here, /regex/ evaluates to true if the current line of input matches
this regular expression. Writing /regex/ && $t++ is the same as writing
if ($_ =~ /regex/) { $t++ }, which increments the $t variable if the line
matches the specified pattern. In the END block, the $t variable contains
the total number of pattern matches and is printed; but if no lines match,
$t is once again undefined, so you must print a default value.

 Perl One-Liners
© 2013 by Peteris Krumins

Calculations 39

4.15	 Print the number π

perl -Mbignum=bpi -le 'print bpi(21)'

The bignum package exports the bpi function that calculates the π con-
stant to the desired accuracy. This one-liner prints π to 20 decimal places.
(Notice that you need to specify n+1 to print it to an accuracy of n.)

The bignum library also exports the constant π, precomputed to 39
decimal places:

perl -Mbignum=PI -le 'print PI'

4.16	 Print the number e

perl -Mbignum=bexp -le 'print bexp(1,21)'

The bignum library exports the bexp function, which takes two argu-
ments: the power to raise e to, and the desired accuracy. This one-liner
prints the constant e to 20 decimal places.

For example, you could print the value of e 2 to 30 decimal places:

perl -Mbignum=bexp -le 'print bexp(2,31)'

As with π, bignum also exports the constant e precomputed to 39 deci-
mal places:

perl -Mbignum=e -le 'print e'

4.17	 Print UNIX time (seconds since January 1, 1970,
00:00:00 UTC)

perl -le 'print time'

The built-in time function returns seconds since the epoch. This one-
liner simply prints the time.

 Perl One-Liners
© 2013 by Peteris Krumins

40 Chapter 4

4.18	 Print Greenwich Mean Time and local computer time

perl -le 'print scalar gmtime'

The gmtime function is a built-in Perl function. When used in the scalar
context, it returns the time localized to Greenwich Mean Time (GMT).

The built-in localtime function acts like gmtime, except it returns the
computer’s local time when it’s used in the scalar context:

perl -le 'print scalar localtime'

In the list context, both gmtime and localtime return a nine-element
list (known as struct tm to UNIX programmers) with the following
elements:

($second, [0]
$minute, [1]
$hour, [2]
$month_day, [3]
$month, [4]
$year, [5]
$week_day, [6]
$year_day, [7]
$is_daylight_saving [8]
)

You can slice this list (that is, extract elements from it) or print indi-
vidual elements if you need just some part of the information it contains.
For example, to print H:M:S, slice the elements 2, 1, and 0 from localtime,
like this:

perl -le 'print join ":", (localtime)[2,1,0]'

To slice elements individually, specify a list of elements to extract, for
instance [2,1,0]. Or slice them as a range:

perl -le 'print join ":", (localtime)[2..6]'

This one-liner prints the hour, date, month, year, and day of the week.
You can also use negative indexes to select elements from the oppo-

site end of a list:

perl -le 'print join ":", (localtime)[-2, -3]'

This one-liner prints elements 7 and 6, which are the day of the year
(for example, the 200th day) and of the week (for example, the 4th day),
respectively.

 Perl One-Liners
© 2013 by Peteris Krumins

Calculations 41

4.19	 Print yesterday’s date

perl -MPOSIX -le '
 @now = localtime;
 $now[3] -= 1;
 print scalar localtime mktime @now
'

Remember that localtime returns a nine-item list (see one-liner 4.18)
of various date elements. The fourth element in the list is the current
month’s day. If you subtract 1 from this element, you get yesterday.

The mktime function constructs the UNIX epoch time from this modi-
fied nine-element list, and the scalar localtime construct prints the new
date, which is yesterday. This one-liner also works in edge cases, such as
when the current day is the first day of the month. You need the POSIX
package because it exports the mktime function.

For example, if it’s Mon May 20 05:49:55 right now, running this one-
liner prints Sun May 19 05:49:55.

4.20	 Print the date 14 months, 9 days, and 7 seconds ago

perl -MPOSIX -le '
 @now = localtime;
 $now[0] -= 7;
 $now[3] -= 9;
 $now[4] -= 14;
 print scalar localtime mktime @now
'

This one-liner modifies the first, fourth, and fifth elements of the
@now list. The first element is seconds, the fourth is days, and the fifth is
months. The mktime command generates the UNIX time from this new
structure, and localtime, which is evaluated in the scalar context, prints
the date 14 months, 9 days, and 7 seconds ago.

4.21	 Calculate the factorial

perl -MMath::BigInt -le 'print Math::BigInt->new(5)->bfac()'

This one-liner uses the bfac() function from the Math::BigInt mod-
ule in the Perl core. (In other words, you don’t need to install it.) The
Math::BigInt->new(5) construction creates a new Math::BigInt object with

 Perl One-Liners
© 2013 by Peteris Krumins

42 Chapter 4

a value of 5, after which the bfac() method is called on the newly created
object to calculate the factorial of 5. Change 5 to any number you wish to
find its factorial.

Another way to calculate a factorial is to multiply the numbers from 1
to n together:

perl -le '$f = 1; $f *= $_ for 1..5; print $f'

Here, I set $f to 1 and then loop from 1 to 5 and multiply $f by each
value. The result is 120 (1*2*3*4*5), the factorial of 5.

4.22	 Calculate the greatest common divisor

perl -MMath::BigInt=bgcd -le 'print bgcd(@list_of_numbers)'

Math::BigInt has several other useful math functions including bgcd,
which calculates the greatest common divisor (gcd) of a list of numbers. For
example, to find the greatest common divisor of (20, 60, 30), execute the
one-liner like this:

perl -MMath::BigInt=bgcd -le 'print bgcd(20,60,30)'

To calculate the gcd from a file or user’s input, use the -a command-
line argument and pass the @F array to the bgcd function:

perl -MMath::BigInt=bgcd -anle 'print bgcd(@F)'

(I explained the -a argument and the @F array in one-liner 4.2 on
page 30.)

You could also use Euclid’s algorithm to find the gcd of $n and $m.
This one-liner does just that and stores the result in $m:

perl -le '
 $n = 20; $m = 35;
 ($m,$n) = ($n,$m%$n) while $n;
 print $m
'

Euclid’s algorithm is one of the oldest algorithms for finding the gcd.

 Perl One-Liners
© 2013 by Peteris Krumins

Calculations 43

4.23	 Calculate the least common multiple
The least common multiple (lcm) function, blcm, is included in Math::BigInt.
Use this one-liner to find the least common multiple of (35, 20, 8):

perl -MMath::BigInt=blcm -le 'print blcm(35,20,8)'

To find the lcm from a file with numbers, use the -a command-line
switch and the @F array:

perl -MMath::BigInt=blcm -anle 'print blcm(@F)'

If you know a bit of number theory, you may recall that there is a con-
nection between the gcd and the lcm. Given two numbers $n and $m, you
know that their lcm is $n*$m/gcd($n,$m). This one-liner, therefore, follows:

perl -le '
 $a = $n = 20;
 $b = $m = 35;
 ($m,$n) = ($n,$m%$n) while $n;
 print $a*$b/$m
'

4.24	 Generate 10 random numbers between 5 and 15
(excluding 15)

perl -le 'print join ",", map { int(rand(15-5))+5 } 1..10'

This one-liner prints 10 random numbers between 5 and 15. It
may look complicated, but it’s actually simple. int(rand(15-5)) is just
int(rand(10)), which returns a random integer from 0 to 9. Adding 5
to it makes it return a random integer from 5 to 14. The range 1..10
makes it draw 10 random integers.

You can also write this one-liner more verbosely:

perl -le '
 $n=10;
 $min=5;
 $max=15;
 $, = " ";
 print map { int(rand($max-$min))+$min } 1..$n;
'

 Perl One-Liners
© 2013 by Peteris Krumins

44 Chapter 4

Here, all variables are more explicit. To modify this one-liner, change
the variables $n, $min, and $max. The $n variable represents how many ran-
dom numbers to generate, and $min-$max is the range of numbers for use
in that generation.

The $, variable is set to a space because it’s the output field separator
for print and it’s undef by default. If you didn’t set $, to a space, the num-
bers would be printed concatenated. (See one-liner 4.4 on page 32 for
a discussion of $,.)

4.25	 Generate all permutations of a list

perl -MAlgorithm::Permute -le '
 $l = [1,2,3,4,5];
 $p = Algorithm::Permute->new($l);
 print "@r" while @r = $p->next
'

This one-liner uses the object-oriented interface of the module
Algorithm::Permute to find all permutations of a list, that is, all ways to
rearrange items. The constructor of Algorithm::Permute takes an array
reference of elements to permute. In this particular one-liner, the ele-
ments are the numbers 1, 2, 3, 4, 5.

The next method returns the next permutation. Calling it repeatedly
iterates over all permutations, and each permutation is put in the @r array
and then printed. (Beware: The output list gets large really quickly. There
are n! (n factorial) permutations for a list of n elements.)

Another way to print all permutations is with the permute subroutine:

perl -MAlgorithm::Permute -le '
 @l = (1,2,3,4,5);
 Algorithm::Permute::permute { print "@l" } @l
'

Here’s what you get if you change @l to just three elements (1, 2, 3)
and run it:

1 2 3
1 3 2
3 1 2
2 1 3
2 3 1
3 2 1

 Perl One-Liners
© 2013 by Peteris Krumins

Calculations 45

4.26	 Generate the powerset

perl -MList::PowerSet=powerset -le '
 @l = (1,2,3,4,5);
 print "@$_" for @{powerset(@l)}
'

This one-liner uses the List::PowerSet module from CPAN. The module
exports the powerset function, which takes a list of elements and returns a
reference to an array containing references to subset arrays. You can install
this module by running cpan List::PowerSet at the command line.

In the for loop, you call the powerset function and pass it the list of
elements of @l. Next, you dereference the return value of powerset, which
is a reference to an array of subsets, and then dereference each individual
subset @$_ and print it.

The powerset is the set of all subsets. For a set of n elements, there are
exactly 2n subsets in the powerset. Here’s an example of the powerset of
(1, 2, 3):

1 2 3
2 3
1 3
3
1 2
2
1

4.27	 Convert an IP address to an unsigned integer

perl -le '
 $i=3;
 $u += ($_<<8*$i--) for "127.0.0.1" =~ /(\d+)/g;
 print $u
'

This one-liner converts the IP address 127.0.0.1 into an unsigned inte-
ger by first doing a global match of (\d+) on the IP address. Performing a
for loop over a global match iterates over all the matches, which are the
four parts of the IP address: 127, 0, 0, 1.

 Perl One-Liners
© 2013 by Peteris Krumins

46 Chapter 4

Next, the matches are summed in the $u variable. The first bit is
shifted 8 × 3 = 24 places, the second is shifted 8 × 2 = 16 places, and the
third is shifted 8 places. The last is simply added to $u. The resulting
integer happens to be 2130706433 (a very geeky number).

Here are some more one-liners:

perl -le '
 $ip="127.0.0.1";
 $ip =~ s/(\d+)\.?/sprintf("%02x", $1)/ge;
 print hex($ip)
'

This one-liner utilizes the fact that 127.0.0.1 can be easily converted
to hex. Here, the $ip is matched against (\d+), and each IP part is trans-
formed into a hex number with sprintf("%02x", $1) inside the s operator.
The /e flag of the s operator makes it evaluate the substitution part as
a Perl expression. As a result, 127.0.0.1 is transformed into 7f000001 and
then interpreted as a hexadecimal number by Perl’s hex operator, which
converts it to a decimal number.

You can also use unpack:

perl -le 'print unpack("N", 127.0.0.1)'

This one-liner is probably as short as possible. It uses vstring literals
(version strings) to express the IP address. A vstring forms a string lit-
eral composed of characters with the specified ordinal values. The newly
formed string literal is unpacked into a number from a string in network
byte order (big-endian order) and then printed.

If you have a string with an IP (rather than a vstring), you first have
to convert it to byte form with the function inet_aton:

perl -MSocket -le 'print unpack("N", inet_aton("127.0.0.1"))'

Here, inet_aton converts the string 127.0.0.1 to the byte form (equiva-
lent to the pure vstring 127.0.0.1) and then unpack unpacks it, as in the
previous one-liner.

 Perl One-Liners
© 2013 by Peteris Krumins

Calculations 47

4.28	 Convert an unsigned integer to an IP address

perl -MSocket -le 'print inet_ntoa(pack("N", 2130706433))'

Here, the integer 2130706433 is packed into a number in big-endian
byte order and then passed to the inet_ntoa function that converts a
number back to an IP address. (Notice that inet_ntoa is the opposite
of inet_aton.)

You can do the same thing like this:

perl -le '
 $ip = 2130706433;
 print join ".", map { (($ip>>8*($_))&0xFF) } reverse 0..3
'

Here, the $ip is shifted 24 bits to the right and then bitwise ANDed
with 0xFF to produce the first part of the IP, which is 127. Next, it’s shifted
16 bits and bitwise ANDed with 0xFF, producing 0, and then shifted 8 bits
and bitwise ANDed with 0xFF, producing another 0. Finally, the whole
number is bitwise ANDed with 0xFF, producing 1.

The result from map { ... } is a list (127, 0, 0, 1). That list is now
joined by a dot "." to produce the IP address 127.0.0.1.

You can replace join with the special variable $,, which acts as a value
separator for the print statement:

perl -le '
 $ip = 2130706433;
 $, = ".";
 print map { (($ip>>8*($_))&0xFF) } reverse 0..3
'

Because reverse 0..3 is the same as 3,2,1,0, you could also write:

perl -le '
 $ip = 2130706433;
 $, = ".";
 print map { (($ip>>8*($_))&0xFF) } 3,2,1,0
'

 Perl One-Liners
© 2013 by Peteris Krumins

 Perl One-Liners
© 2013 by Peteris Krumins

