2
 SIMPLE
 REGRESSION ANALYSIS

THE REGRESSION EQUATION

STEP 1
DRAW A SCATTER PLOT OF THE INDEPENDENT VARIABLE VERSUS THE DEPENDENT VARIABLE. IF THE DOTS LINE UP, THE VARIABLES MAY BE CORRELATED.

x

STEP 2

STEP 3
CALCULATE THE CORRELATION COEFFICIENT (R) AND ASSESS OUR POPULATION AND ASSUMPTIONS.

x
STEP 4

STEP 5

STEP 6

STEP 1: DRAW A SCATTER PLOT OF THE INDEPENDENT VARIABLE VERSUS THE DEPENDENT VARIABLE. IF THE DOTS LINE UP, THE VARIABLES MAY BE CORRELATED.

WHEN WE PLOT EACH DAY'S HIGH TEMPERATURE AGAINST ICED TEA ORDERS, THEY SEEM TO LINE UP.

AND WE KNOW FROM EARLIER THAT THE VALUE OF R IS 0.9069, WHICH IS PRETTY HIGH .

DO YOU REALLY LEARN ANYTHING FROM ALL THOSE DOTS? WHY NOT JUST CALCULATE R?

PLOTS...ARE... IMPORTANT!

STEP 2: CALCULATE THE REGRESSION EQUATION.

Step Find

- The sum of squares of $x, S_{x x}:^{(x-\bar{x})^{2}}$
- The sum of squares of $y, S_{y y}:^{(y-\bar{y})^{2}}$
- The sum of products of x and $y, S_{x y}:(x-\bar{x})(y-\bar{y})$

Note: The bar over a variable (like $\overline{\boldsymbol{r}}$) is a notation that means average. We can call this variable x-bar.

	$\begin{gathered} \text { High temp. } \\ \text { in }{ }^{\circ} \mathrm{C} \\ x \end{gathered}$	Iced tea orders y	$\boldsymbol{x}-\overline{\boldsymbol{x}}$	$\boldsymbol{y}-\overline{\boldsymbol{y}}$	$(x-\bar{x})^{2}$	$(\boldsymbol{y}-\bar{y})^{2}$	$(\boldsymbol{x}-\overline{\boldsymbol{x}})(\boldsymbol{y}-\overline{\boldsymbol{y}})$
22nd (Mon.)	29	77	-0.1	4.4	0.0	19.6	-0.6
23rd (Tues.)	28	62	-1.1	-10.6	1.3	111.8	12.1
24th (Wed.)	34	93	4.9	20.4	23.6	417.3	99.2
25th (Thurs.)	31	84	1.9	11.4	3.4	130.6	21.2
26th (Fri.)	25	59	-4.1	-13.6	17.2	184.2	56.2
27th (Sat.)	29	64	-0.1	-8.6	0.0	73.5	1.2
28th (Sun.)	32	80	2.9	7.4	8.2	55.2	21.2
29th (Mon.)	31	75	1.9	2.4	3.4	5.9	4.5
30th (Tues.)	24	58	-5.1	-14.6	26.4	212.3	74.9
31st (Wed.)	33	91	3.9	18.4	14.9	339.6	71.1
1st (Thurs.)	25	51	-4.1	-21.6	17.2	465.3	89.4
2nd (Fri.)	31	73	1.9	0.4	3.4	0.2	0.8
3rd (Sat.)	26	65	-3.1	-7.6	9.9	57.8	23.8
4th (Sun.)	30	84	0.9	11.4	0.7	130.6	9.8
Sum	408	1016	0	0	129.7	2203.4	484.9
Average	29.1	72.6					
	$\frac{\downarrow}{\boldsymbol{\gamma}}$	$\frac{\downarrow}{\mathbf{U}}$			$\begin{gathered} \downarrow \\ \mathbf{S}_{x x} \end{gathered}$	$\begin{gathered} \downarrow \\ \mathbf{S}_{y y} \end{gathered}$	$\begin{gathered} \downarrow \\ \mathbf{S}_{x y} \end{gathered}$

Step2 Find the residual sum of squares, S_{e}.

- y is the observed value.
- \hat{y} is the the estimated value based on our regression equation.
- $\boldsymbol{y}-\hat{\boldsymbol{u}}$ is called the residual and is written as e.

Note: The caret in \hat{u} is affectionately called a hat, so we call this parameter estimate y-hat.

	$\begin{gathered} \text { High } \\ \text { temp. } \\ \text { in }{ }^{\circ} \mathrm{C} \\ x \end{gathered}$	Actual iced tea orders y	Predicted iced tea orders $\hat{y}=a x+b$	$\begin{gathered} \text { Residuals }(e) \\ y-\hat{y} \end{gathered}$	Squared residuals $(\boldsymbol{y}-\hat{\boldsymbol{y}})^{2}$
22nd (Mon.)	29	77	$a \times 29+b$	$77-(a \times 29+b)$	$[77-(a \times 29+b)]^{2}$
23rd (Tues.)	28	62	$a \times 28+b$	$62-(a \times 28+b)$	$[62-(a \times 28+b)]^{2}$
24th (Wed.)	34	93	$a \times 34+b$	$93-(a \times 34+b)$	$[93-(a \times 34+b)]^{2}$
25th (Thurs.)	31	84	$a \times 31+b$	$84-(a \times 31+b)$	$[84-(a \times 31+b)]^{2}$
26th (Fri.)	25	59	$a \times 25+b$	$59-(a \times 25+b)$	$[59-(a \times 25+b)]^{2}$
27th (Sat.)	29	64	$a \times 29+b$	$64-(a \times 29+b)$	$[64-(a \times 29+b)]^{2}$
28th (Sun.)	32	80	$a \times 32+b$	$80-(a \times 32+b)$	$[80-(a \times 32+b)]^{2}$
29th (Mon.)	31	75	$a \times 31+b$	$75-(a \times 31+b)$	$[75-(a \times 31+b)]^{2}$
30th (Tues.)	24	58	$a \times 24+b$	$58-(a \times 24+b)$	$[58-(a \times 24+b)]^{2}$
31st (Wed.)	33	91	$a \times 33+b$	$91-(a \times 33+b)$	$[91-(a \times 33+b)]^{2}$
1st (Thurs.)	25	51	$a \times 25+b$	$51-(a \times 25+b)$	$[51-(a \times 25+b)]^{2}$
2nd (Fri.)	31	73	$a \times 31+b$	$73-(a \times 31+b)$	$[73-(a \times 31+b)]^{2}$
3rd (Sat.)	26	65	$a \times 26+b$	$65-(a \times 26+b)$	$[65-(a \times 26+b)]^{2}$
4th (Sun.)	30	84	$a \times 30+b$	$84-(a \times 30+b)$	$[84-(a \times 30+b)]^{2}$
Sum	408	1016	$408 a+14 b$	1016-(408a + 14b)	S_{e}
Average	29.1	72.6	$\begin{gathered} 29.1 a+b \\ =\bar{x} a+b \end{gathered}$	$\begin{aligned} & 72.6-(29.1 a+b) \\ & =\bar{y}-(\bar{x} a+b) \end{aligned}$	$=\frac{S_{e}}{14}$
	$\frac{\downarrow}{r}$	$\frac{\downarrow}{\boldsymbol{u}}$	$S_{e}=[77-(a \times 29+b)]^{2}+\cdots+[84-(a \times 30+b)]^{2}$		

THE SUM OF THE RESIDUALS SQUARED IS CALLED THE RESIDUAL SUM OF SQUARES. IT IS WRITTEN AS S_{e} OR RSS.

Differentiate S_{e} with respect to a and b, and set it equal to 0 .
When differentiating $y=(a x+b)^{n-1} \quad$ with respect to x, the result is $\frac{d y}{d x}=n(a x+b)^{n-1} \times a$.

- Differentiate with respect to a.

$$
\begin{equation*}
\frac{d S_{e}}{d a}=2[77-(29 a+b)] \times(-29)+\cdots+2[84-(30 a+b)] \times(-30)=0 \tag{1}
\end{equation*}
$$

- Differentiate with respect to b.

$$
\begin{equation*}
\frac{d S_{e}}{d b}=2[77-(29 a+b)] \times(-1)+\cdots+2[84-(30 a+b)] \times(-1)=0 \tag{2}
\end{equation*}
$$

Rearrange 1 and 2 from the previous step.

Rearrange (1).

$$
\begin{array}{lc}
2[77-(29 a+b)] \times(-29)+\cdots+2[84-(30 a+b)] \times(-30)=0 & \\
{[77-(29 a+b)] \times(-29)+\cdots+[84-(30 a+b)] \times(-30)=0} & \text { DIVIDE BOTH SIDES BY } 2 . \\
29[(29 a+b)-77]+\cdots+30[(30 a+b)-84]=0 & \\
(29 \times 29 a+29 \times b-29 \times 77)+\cdots+(30 \times 30 a+30 \times b-30 \times 84)=0 & \text { MULTIPLY BY }-1 . \\
\left(29^{2}+\cdots+30^{2}\right) a+(29+\cdots+30) b-(29 \times 77+\cdots+30 \times 84)=0 & \text { MULTIPLY. } \\
& \text { SEPARATE OUT } \\
& \text { a AND b. }
\end{array}
$$

(3)

Rearrange 2.

$$
\begin{aligned}
& 2[77-(29 a+b)] \times(-1)+\cdots+2[84-(30 a+b)] \times(-1)=0 \\
& {[77-(29 a+b)] \times(-1)+\cdots+[84-(30 a+b)] \times(-1)=0 \quad \text { DIVIDE BOTH SIDES BY } 2 .} \\
& {[(29 a+b)-77]+\cdots+[(30 a+b)-84]=0} \\
& (29+\cdots+30) a+\underbrace{b+\cdots+b}_{14}-(77+\cdots+84)=0 \\
& (29+\cdots+30) a+14 b-(77+\cdots+84)=0 \\
& 14 b=(77+\cdots+84)-(29+\cdots+30) a \\
& b=\frac{77+\cdots+84}{14}-\frac{29+\cdots+30}{14} a \quad \text { SUBTRACT 14b FROM BOTH SIDES } \\
& \text { (4) } b=\bar{y}-\bar{x} a \\
& \text { ISOLATE } b \text { ON THE LEFT SIDE OF THE EQUATION. } \\
& 5 \\
& \text { THE COMPONENTS IN } 9 \text { ARE THE } \\
& \text { AVERAGES OF } y \text { AND } x \text {. }
\end{aligned}
$$

Step5

Plug the value of b found in © into line © (3 and © are the results from Step 4).
$\left(29^{2}+\cdots+30^{2}\right) a+(29+\cdots+30)\left(\frac{77+\cdots+84}{14}-\frac{29+\cdots+30}{14} a\right)-(29 \times 77+\cdots+30 \times 84)=0$
$\left(29^{2}+\cdots+30^{2}\right) a+\frac{(29+\cdots+30)(77+\cdots+84)}{14}-\frac{(29+\cdots+30)^{2}}{14} a-(29 \times 77+\cdots+30 \times 84)=0$
$\left[\left(29^{2}+\cdots+30^{2}\right)-\frac{(29+\cdots+30)^{2}}{14}\right] a+\frac{(29+\cdots+30)(77+\cdots+84)}{14}-(29 \times 77+\cdots+30 \times 84)=0$
$\left[\left(29^{2}+\cdots+30^{2}\right)-\frac{(29+\cdots+30)^{2}}{14}\right] a=(29 \times 77+\cdots+30 \times 84)-\frac{(29+\cdots+30)(77+\cdots+84)}{14}$

NOW a IS THE ONLY VARIABLE.

COMBINE THE a TERMS.

TRANSPOSE.

Rearrange the left side of the equation.

$$
\begin{aligned}
& \left(29^{2}+\cdots+30^{2}\right)-\frac{(29+\cdots+30)^{2}}{14} \\
= & \left(29^{2}+\cdots+30^{2}\right)-2 \times \frac{(29+\cdots+30)^{2}}{14}+\frac{(29+\cdots+30)^{2}}{14} \text { WE ADD AND SUBTRACT } \frac{(29+\cdots+30)^{2}}{14} \\
= & \left(29^{2}+\cdots+30^{2}\right)-2 \times(29+\cdots+30) \times \frac{29+\cdots+30}{14}+\left(\frac{29+\cdots+30}{14}\right)^{2} \times 14 \quad \text { THE LAST TERM IS } \\
= & \left(29^{2}+\cdots+30^{2}\right)-2 \times(29+\cdots+30) \times \bar{x}+(\bar{x})^{2} \times 14 \\
= & \left(29^{2}+\cdots+30^{2}\right)-2 \times(29+\cdots+30) \times \bar{x}+\underbrace{(\bar{x})^{2}+\cdots+(\bar{x})^{2}}_{14} \\
= & {\left[29^{2}-2 \times 29 \times \bar{x}+(\bar{x})^{2}\right]+\cdots+\left[30^{2}-2 \times 30 \times \bar{x}+(\bar{x})^{2}\right] } \\
= & (29-\bar{x})^{2}+\cdots+(30-\bar{x})^{2} \\
= & S_{x x}
\end{aligned}
$$

Rearrange the right side of the equation.

$(29 \times 77+\cdots+30 \times 84)-\frac{(29+\cdots+30)(77+\cdots+84)}{14}$

$$
=(29 \times 77+\cdots+30 \times 84)-\frac{29+\cdots+30}{14} \times \frac{77+\cdots+84}{14} \times 14
$$

$$
=(29 \times 77+\cdots+30 \times 84)-\bar{x} \times \bar{y} \times 14
$$

$$
=(29 \times 77+\cdots+30 \times 84)-\overline{\boldsymbol{x}} \times \overline{\boldsymbol{y}} \times 14-\overline{\boldsymbol{x}} \times \overline{\boldsymbol{y}} \times 14+\overline{\boldsymbol{x}} \times \overline{\boldsymbol{y}} \times 14 \quad \text { WE ADD AND SUBTRACT } \overline{\boldsymbol{x}} \times \overline{\boldsymbol{y}} \times 14
$$

$$
=(29 \times 77+\cdots+30 \times 84)-\frac{29+\cdots+30}{14} \times \bar{y} \times 14-\bar{x} \times \frac{77+\cdots+84}{14} \times 14+\bar{x} \times \bar{y} \times 14
$$

$$
=(29 \times 77+\cdots+30 \times 84)-(29+\cdots+30) \bar{y}-\bar{x}(77+\cdots+84)+\bar{x} \times \bar{y} \times 14
$$

$$
=(29 \times 77+\cdots+30 \times 84)-(29+\cdots+30) \bar{y}-(77+\cdots+84) \bar{x}+\underbrace{\bar{x} \times \bar{y}+\cdots+\bar{x} \times \bar{y}}_{14}
$$

$$
=(29-\bar{x})(77-\bar{y})+\cdots+(30-\bar{x})(84-\bar{y})
$$

$$
=\mathbf{S}_{x y}
$$

$\mathbf{S}_{x x} \boldsymbol{a}=\mathbf{S}_{x y}$
$6 \quad a=\frac{S_{x y}}{S_{x x}}$ ISOLATE a ON THE LEFT SIDE OF THE EQUATION.

Step6 Calculate the regression equation.

From 6 in Step 5, $a=\frac{S_{x y}}{S_{x x}}$. From Θ in Step 4, $b=\bar{y}-\bar{x} a$.
If we plug in the values we calculated in Step 1,

$$
\left\{\begin{array}{l}
a=\frac{S_{x x}}{S_{x y}}=\frac{484.9}{129.7}=3.7 \\
b=\bar{y}-\bar{x} a=72.6-29.1 \times 3.7=-36.4
\end{array}\right.
$$

then the regression equation is

$$
y=3.7 x-36.4
$$

It's that simple!
Note: The values shown are rounded for the sake of printing, but the result (36.4) was calculated using the full, unrounded values.

$$
\begin{aligned}
R^{2} & =(0.9069)^{2} \\
& =0.8225
\end{aligned}
$$

IT'S . 8225.

...FROM THE POPULATION OF ALL DAYS WITH A HIGH TEMPERATURE OF $31^{\circ} \mathrm{C}$. WE USE SAMPLE DATA WHEN IT'S UNLIKELY WE'LL BE ABLE TO GET THE INFORMATION WE NEED FROM EVERY SINGLE MEMBER OF THE POPULATION.

ASSUMPTIONS OF NORMALITY

ALTERNATIVE HYPOTHESIS

THE NUMBER OF ORDERS OF ICED TEA ON DAYS WITH TEMPERATURE $x^{\circ} \mathrm{C}$ FOLLOWS A NORMAL DISTRIBUTION WITH MEAN $A x+B$ AND STANDARD DEVIATION σ (SIGMA).

STEP 4: CONDUCT THE ANALYSIS OF VARIANCE.

THE STEPS OF ANOVA

Step 1	Define the population.	The population is "days with a high temperature of x degrees."
Step 2	Set up a null hypothesis and an alternative hypothesis.	Null hypothesis is $A=0$. Alternative hypothesis is $A \neq 0$.
Step 3	Select which hypothesis test to conduct.	We'll use analysis of one-way variance.
Step 4	Choose the significance level.	We'll use a significance level of . 05 .
Step 5	Calculate the test statistic from the sample data.	The test statistic is:
		$\overline{\left(\frac{1}{S_{x x}}\right)} \div \overline{\text { number of individuals }-2}$
		Plug in the values from our sample regression equation:
		$\frac{3.7^{2}}{\left(\frac{1}{129.7}\right)} \div \frac{391.1}{14-2}=55.6$
		The test statistic will follow an F distribution with first degree of freedom 1 and second degree of freedom 12 (number of individuals minus 2), if the null hypothesis is true.
Step 6	Determine whether the p-value for the test statistic obtained in Step 5 is smaller than the significance level.	At significance level .05 , with d_{1} being 1 and d_{2} being 12 , the critical value is $\mathbf{4 . 7 4 7 2}$. Our test statistic is 55.6 .
Step 7	Decide whether you can reject the null hypothesis.	Since our test statistic is greater than the critical value, we reject the null hypothesis.

THE F STATISTIC LETS US TEST THE SLOPE OF THE LINE BY LOOKING AT VARIANCE. IF THE VARIATION AROUND THE LINE IS MUCH SMALLER THAN THE TOTAL VARIANCE OF Y, THAT'S EVIDENCE THAT THE LINE ACCOUNTS FOR Y'S VARIATION, AND THE STATISTIC WILL BE LARGE. IF THE RATIO IS SMALL, THE LINE DOESN'T ACCOUNT FOR MUCH VARIATION IN Y, AND PROBABLY ISN'T USEFUL!

STEP 5: CALCULATE THE CONFIDENCE INTERVALS.

HERE'S HOW TO CALCULATE A 95\% CONFIDENCE INTERVAL FOR ICED TEA ORDERS ON DAYS WITH A HIGH OF $31^{\circ} \mathrm{C}$.

This is the confidence interval.

Distance from the estimated mean is

$$
\begin{aligned}
& \sqrt{F(1, n-2 ; .05) \times\left(\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{S_{x x}}\right) \times \frac{S_{e}}{n-2}} \\
= & \sqrt{F(1,14-2 ; .05) \times\left(\frac{1}{14}+\frac{(31-29.1)^{2}}{129.7}\right) \times \frac{391.1}{14-2}} \\
= & 3.9
\end{aligned}
$$

where n is the number of data points in our sample and F is a ratio of two chi-squared distributions, as described on page 57.

TO CALCULATE A 99\% CONFIDENCE INTERVAL, JUST CHANGE

$$
F(1,14-2 ; .05)=4.7
$$

TO

$$
F(1,14-2 ; .01)=9.3
$$

(REFER TO PAGE 58 FOR AN EXPLANATION OF $F(1, n-2 ; .05)=4.7$, AND SO ON.)

* THE VALUE 79.5 WAS CALCULATED USING UNROUNDED NUMBERS.

SO WE ARE 95\% SURE that, IF WE LOOK AT THE POPULATION OF DAYS WITH A HIGH OF $31^{\circ} \mathrm{C}$, THE MEAN NUMBER OF ICED TEA ORDERS IS BETWEEN 76 AND 83.

STEP 6: MAKE A PREDICTION!

* THIS CALCULATION WAS PERFORMED USING ROUNDED FIGURES. IF YOU'RE DOING THE CALCULATION WITH THE FULL, UNROUNDED FIGURES, YOU SHOULD GET 64.6.

BUT WILL THERE BE EXACTLY 64 ORDERS?

HOW CAN WE POSSIBLY KNOW FOR SURE?

HERE'S HOW WE CALCULATE A 95\% PREDICTION INTERVAL FOR TOMORROW'S ICED TEA SALES.

This is the prediction interval.

$64.6-13.1=51.5$

$$
\begin{align*}
& 27 \times a+b \tag{*}\\
= & 27 \times 3.7-36.4 \\
= & 64.6
\end{align*}
$$

Distance from the estimated value is

$$
\begin{aligned}
& \sqrt{F(1, n-2 ; .05) \times\left(1+\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{S_{x x}}\right) \times \frac{S_{e}}{n-2}} \\
= & \sqrt{F(1,14-2 ; .05) \times\left(1+\frac{1}{14}+\frac{(27-29.1)^{2}}{129.7}\right) \times \frac{391.1}{14-2}} \\
= & 13.1
\end{aligned}
$$

THE ESTIMATED NUMBER OF TEA ORDERS WE CALCULATED EARLIER (ON PAGE 95) WAS ROUNDED,

BUT WE'VE USED THE NUMBER OF TEA ORDERS ESTIMATED USING UNROUNDED NUMBERS, 64.6, HERE.

HERE WE USED THE F DISTRIBUTION TO FIND THE PREDICTION INTERVAL AND POPULATION REGRESSION. TYPICALLY, STATISTICIANS USE THE T DISTRIBUTION TO GET THE SAME RESULTS.

* THIS CALCULATION WAS PERFORMED USING THE ROUNDED NUMBERS SHOWN HERE. THE FULL, UNROUNDED CALCULATION RESULTS IN 77.6.

SO WE'RE 95\% CONFIDENT THAT THE NUMBER OF ICED TEA ORDERS WILL BE BETWEEN 52 AND 78 WHEN THE HIGH TEMPERATURE FOR THAT DAY IS $27^{\circ} \mathrm{C}$.

WHICH STEPS ARE NECESSARY?

Remember the regression analysis procedure introduced on page 68 ?

1. Draw a scatter plot of the independent variable versus the dependent variable. If the dots line up, the variables may be correlated.
2. Calculate the regression equation.
3. Calculate the correlation coefficient (R) and assess our population and assumptions.
4. Conduct the analysis of variance.
5. Calculate the confidence intervals.
6. Make a prediction!

In this chapter, we walked through each of the six steps, but it isn't always necessary to do every step. Recall the example of Miu's age and height on page 25.

- Fact: There is only one Miu in this world.
- Fact: Miu's height when she was 10 years old was 137.5 cm .

Given these two facts, it makes no sense to say that "Miu's height when she was 10 years old follows a normal distribution with mean $A x+B$ and standard deviation σ." In other words, it's nonsense to analyze the population of Miu's heights at 10 years old. She was just one height, and we know what her height was.

In regression analysis, we either analyze the entire population or, much more commonly, analyze a sample of the larger population. When you analyze a sample, you should perform all the steps. However, since Steps 4 and 5 assess how well the sample represents the population, you can skip them if you're using data from an entire population instead of just a sample.

NOTE We use the term statistic to describe a measurement of a characteristic from a sample, like a sample mean, and parameter to describe a measurement that comes from a population, like a population mean or coefficient.

STANDARDIZED RESIDUAL

Remember that a residual is the difference between the measured value and the value estimated with the regression equation. The standardized residual is the residual divided by its estimated standard deviation. We use the standardized residual to assess whether a particular measurement deviates significantly from
the trend. For example, say a group of thirsty joggers stopped by Norns on the 4th, meaning that though iced tea orders were expected to be about 76 based on that day's high temperature, customers actually placed 84 orders for iced tea. Such an event would result in a large standardized residual.

Standardized residuals are calculated by dividing each residual by an estimate of its standard deviation, which is calculated using the residual sum of squares. The calculation is a little complicated, and most statistics software does it automatically, so we won't go into the details of the calculation here.

Table 2-1 shows the standardized residual for the Norns data used in this chapter.

TABLE 2-1: CALCULATING THE STANDARDIZED RESIDUAL

	```High temperature x```	Measured number of orders of iced tea $y$	Estimated number of orders of iced tea $\hat{y}=3.7 x-36.4$	$\begin{aligned} & \text { Residual } \\ & \boldsymbol{y}-\hat{\boldsymbol{y}} \end{aligned}$	Standardized residual
22nd (Mon.)	29	77	72.0	5.0	0.9
23rd (Tues.)	28	62	68.3	-6.3	-1.2
24th (Wed.)	34	93	90.7	2.3	0.5
25th (Thurs.)	31	84	79.5	4.5	0.8
26th (Fri.)	25	59	57.1	1.9	0.4
27th (Sat.)	29	64	72.0	-8.0	-1.5
28th (Sun.)	32	80	83.3	-3.3	-0.6
29th (Mon.)	31	75	79.5	-4.5	-0.8
30th (Tues.)	24	58	53.3	4.7	1.0
31st (Wed.)	33	91	87.0	4.0	0.8
1st (Thurs.)	25	51	57.1	-6.1	-1.2
2nd (Fri.)	31	73	79.5	-6.5	-1.2
3rd (Sat.)	26	65	60.8	4.2	0.8
4th (Sun.)	30	84	75.8	8.2	1.5

As you can see, the standardized residual on the 4 th is 1.5 . If iced tea orders had been 76, as expected, the standardized residual would have been 0 .

Sometimes a measured value can deviate so much from the trend that it adversely affects the analysis. If the standardized residual is greater than 3 or less than -3 , the measurement is considered an outlier. There are a number of ways to handle outliers, including removing them, changing them to a set value, or just keeping them in the analysis as is. To determine which approach is most appropriate, investigate the underlying cause of the outliers.

## INTERPOLATION AND EXTRAPOLATION

If you look at the $x$ values (high temperature) on page 64 , you can see that the highest value is $34^{\circ} \mathrm{C}$ and the lowest value is $24^{\circ} \mathrm{C}$. Using regression analysis, you can interpolate the number of iced tea orders on days with a high temperature between $24^{\circ} \mathrm{C}$ and $34^{\circ} \mathrm{C}$ and extrapolate the number of iced tea orders on days with a high below $24^{\circ} \mathrm{C}$ or above $34^{\circ} \mathrm{C}$. In other words, extrapolation is the estimation of values that fall outside the range of your observed data.

Since we've only observed the trend between $24^{\circ} \mathrm{C}$ and $34^{\circ} \mathrm{C}$, we don't know whether iced tea sales follow the same trend when the weather is extremely cold or extremely hot. Extrapolation is therefore less reliable than interpolation, and some statisticians avoid it entirely.

For everyday use, it's fine to extrapolate-as long as you're aware that your result isn't completely trustworthy. However, avoid using extrapolation in academic research or to estimate a value that's far beyond the scope of the measured data.

## AUTOCORRELATION

The independent variable used in this chapter was high temperature; this is used to predict iced tea sales. In most places, it's unlikely that the high temperature will be $20^{\circ} \mathrm{C}$ one day and then shoot up to $30^{\circ} \mathrm{C}$ the next day. Normally, the temperature rises or drops gradually over a period of several days, so if the two variables are related, the number of iced tea orders should rise or drop gradually as well. Our assumption, however, has been that the deviation (error) values are random. Therefore, our predicted values do not change from day to day as smoothly as they might in real life.

When analyzing variables that may be affected by the passage of time, it's a good idea to check for autocorrelation. Autocorrelation occurs when the error is correlated over time, and it can indicate that you need to use a different type of regression model.

There's an index to describe autocorrelation-the DurbinWatson statistic, which is calculated as follows:

$$
d=\frac{\sum_{t=2}^{T}\left(e_{t}-e_{t-1}\right)^{2}}{\sum_{t=1}^{T} e_{t}^{2}}
$$

The equation can be read as "the sum of the square of each residual minus the previous residual, divided by the sum of each residual squared." You can calculate the value of the Durbin-Watson statistic for the example in this chapter:

$$
\frac{(-6.3-5.0)^{2}+(2.3-(-6.3))^{2}+\cdots+(8.2-4.2)^{2}}{5.0^{2}+(-6.3)^{2}+\cdots+8.2^{2}}=1.8
$$

The exact critical value of the Durbin-Watson test differs for each analysis, and you can use a table to find it, but generally we use 1 as a cutoff: a result less than 1 may indicate the presence of autocorrelation. This result is close to 2 , so we can conclude that there is no autocorrelation in our example.

## NONLINEAR REGRESSION

On page 66, Risa said:


THE GOAL OF REGRESSION ANALYSIS IS TO OBTAIN THE REGRESSION EQUATION IN THE FORM OF $y=a x+b$.

This equation is linear, but regression equations don't have to be linear. For example, these equations may also be used as regression equations:

$$
\begin{aligned}
y & =\frac{a}{x}+b \\
y & =a \sqrt{x}+b \\
y & =a x^{2}+b x+c \\
y & =a \times \log x+b
\end{aligned}
$$

The regression equation for Miu's age and height introduced on page 26 is actually in the form of $y=\frac{a}{x}+b$ rather than $y=a x+b$.

Of course, this raises the question of which type of equation you should choose when performing regression analysis on your own data. Below are some steps that can help you decide.

1. Draw a scatter plot of the data points, with the dependent variable values on the $x$-axis and the independent variable values on the y-axis. Examine the relationship between the variables suggested by the spread of the dots: Are they in roughly a straight line? Do they fall along a curve? If the latter, what is the shape of the curve?
2. Try the regression equation suggested by the shape in the variables plotted in Step 1. Plot the residuals (or standardized residuals) on the y-axis and the independent variable on the x -axis. The residuals should appear to be random, so if there is an obvious pattern in the residuals, like a curved shape, this suggests that the regression equation doesn't match the shape of the relationship.
3. If the residuals plot from Step 2 shows a pattern in the residuals, try a different regression equation and repeat Step 2. Try the shapes of several regression equations and pick one that appears to most closely match the data. It's usually best to pick the simplest equation that fits the data well.

## TRANSFORMING NONLINEAR EQUATIONS INTO LINEAR EQUATIONS

There's another way to deal with nonlinear equations: simply turn them into linear equations. For an example, look at the equation for Miu's age and height (from page 26):

$$
y=-\frac{326.6}{x}+173.3
$$

You can turn this into a linear equation. Remember:

$$
\text { If } \frac{1}{x}=X, \text { then } \frac{1}{X}=x
$$

So we'll define a new variable $X$, set it equal to $\frac{1}{x}$, and use $X$ in the normal $y=a X+b$ regression equation. As shown on page 76, the value of $a$ and $b$ in the regression equation $y=a X+b$ can be calculated as follows:

$$
\left\{\begin{array}{l}
\boldsymbol{a}=\frac{\mathbf{S}_{X y}}{\mathbf{S}_{X x}} \\
\boldsymbol{b}=\bar{y}-\bar{X} \boldsymbol{a}
\end{array}\right.
$$

TALBE 2-2: CALCULATING THE REGRESSION EQUATION

	$\begin{gathered} \text { Age } \\ \boldsymbol{x} \end{gathered}$	$\begin{gathered} \frac{1}{\text { age }} \\ \frac{1}{x}=X \end{gathered}$	Height   $y$	$(\boldsymbol{X}-\overline{\boldsymbol{X}})$	$\boldsymbol{y}-\bar{y}$	$(\boldsymbol{X}-\overline{\boldsymbol{X}})^{2}$	$(y-\bar{y})^{2}$	$(\boldsymbol{x}-\overline{\boldsymbol{X}})(\boldsymbol{y}-\overline{\boldsymbol{y}})$
	4	0.2500	100.1	0.1428	-38.1625	0.0204	1456.3764	-5.4515
	5	0.2000	107.2	0.0928	-31.0625	0.0086	964.8789	-2.8841
	6	0.1667	114.1	0.0595	-24.1625	0.0035	583.8264	-1.4381
	7	0.1429	121.7	0.0357	-16.5625	0.0013	274.3164	-0.5914
	8	0.1250	126.8	0.0178	-11.4625	0.0003	131.3889	-0.2046
	9	0.1111	130.9	0.0040	-7.3625	0.0000	54.2064	-0.0292
	10	0.1000	137.5	-0.0072	-0.7625	0.0001	0.5814	-0.0055
	11	0.0909	143.2	-0.0162	4.9375	0.0003	24.3789	-0.0802
	12	0.0833	149.4	-0.0238	11.1375	0.0006	124.0439	-0.2653
	13	0.0769	151.6	-0.0302	13.3375	0.0009	177.889	-0.4032
	14	0.0714	154.0	-0.0357	15.7375	0.0013	247.6689	-0.5622
	15	0.0667	154.6	-0.0405	16.3375	0.0016	266.9139	-0.6614
	16	0.0625	155.0	-0.0447	16.7375	0.0020	280.1439	-0.7473
	17	0.0588	155.1	-0.0483	16.8375	0.0023	283.5014	-0.8137
	18	0.0556	155.3	-0.0516	17.0375	0.0027	290.2764	-0.8790
	19	0.0526	155.7	-0.0545	17.4375	0.0030	304.0664	-0.9507
Sum	184	1.7144	2212.2	0.0000	0.0000	0.0489	5464.4575	-15.9563
Average	11.5	0.1072	138.3					

According to the table:

$$
\left\{\begin{array}{l}
a=\frac{S_{X y}}{S_{X X}}=\frac{-15.9563}{0.0489}=-326.6^{*} \\
b=\bar{y}-\bar{X} a=138.2625-0.1072 \times(-326.6)=173.3
\end{array}\right.
$$

So the regression equation is this:


[^0]which is the same as this:
\[

$$
\begin{aligned}
& y=-\frac{326.6}{x}+173.3 \\
& \uparrow \quad \uparrow \\
& \text { height age }
\end{aligned}
$$
\]

We've transformed our original, nonlinear equation into a linear one!


[^0]:    * If your result is slightly different from 326.6, the difference might be due to rounding. If so, it should be very small.

