How Al Works (Sample Chapter) © 8/11/23 by Ronald T. Kneusel

WHY NOW? A HISTORY OF Al

Rowan Atkinson’s comic masterpiece Mr.

Bean opens in the dead of night on a de-
serted London street. A spotlight appears,

the title character falls from the sky, and a choir

sings in Latin, “ecce homo qui est faba”—behold the
man who is a bean. Mr. Bean picks himself up, brushes
off his suit, and runs awkwardly into the darkness. He
is something otherworldly, a thing that literally fell from
the sky, defying comprehension.

Given the parade of Al wonder after wonder in recent years, we might
be excused for thinking that Al, like Mr. Bean, fell from the sky, fully formed
and beyond our comprehension. However, none of this is true; indeed, I'd
argue that Al is still in its infancy.

So why are we hearing about AI now? I'll answer that question with a
brief (and biased) history of Al, followed by a discussion of the advances in
computing that acted as the catalyst for the Al revolution. This chapter pro-
vides context for the models we’ll explore throughout the remainder of the
book.

koo

How Al Works (Sample Chapter) © 8/11/23 by Ronald T. Kneusel

Since its inception, Al has been divided into two main camps: symbolic
Al and connectionism. Symbolic Al attempts to model intelligence by ma-
nipulating symbols and logical statements or associations. Connectionism,
however, attempts to model intelligence by building networks of simpler
components. The human mind embodies both approaches. We use symbols
as elements of thought and language, and our minds are constructed from
unbelievably complex networks of neurons, each neuron a simple processor.
In computer programming terms, the symbolic approach to Al is top-down,
while connectionism is bottom-up. Top-down design starts with high-level
tasks, then breaks those tasks into smaller and smaller pieces. A bottom-up
design begins with smaller pieces and combines them together.

Proponents of symbolic Al believe that intelligence can be achieved in
the abstract, without a substrate resembling a brain. Connectionists follow
the evolutionary development of brains and argue that there needs to be
some foundation, like a massive collection of highly interconnected neurons,
from which intelligence (however defined) can emerge.

While the debate between symbolic Al and connectionism was long-
lived, with the advent of deep learning it’s safe to say that the connection-
ists have won the day—though perhaps not the war. Recent years have seen a
smattering of papers blending the two approaches. I suspect symbolic Al has
a cameo or two left in it, if not ultimately starring in a supporting role.

My introduction to Al in the late 1980s was entirely symbolic. Connec-
tionism was mentioned as another approach, but neural networks were
thought inferior and likely to be marginally useful, at best.

A complete history of artificial intelligence is beyond our scope. Such
a magnum opus awaits a motivated and capable historian. Instead, I'll fo-
cus on the development of machine learning while (very unfairly!) ignoring
the mountain of effort expended over the decades by those in the symbolic
camp. Know, however, that for most of AI’s history, people mostly spoke
of symbolic Al, not connectionism. For a fairer presentation, I recommend
Michael Wooldridge’s book A Brief History of Artificial Intelligence (Flatiron
Books, 2021), or Pamela McCorduck’s deeply personal account in This Could
Be Important: My Life and Times with the Artificial Intelligentsia (Lulu Press,
2019).

With my apparent connectionist bias in mind, let’s take a stroll through
the history of machine learning.

Pre-1900

The dream of intelligent machines dates back to antiquity. Ancient Greeks
related the myth of Talos, a giant robot meant to guard the Phoenician princess,
Europa. Throughout the Middle Ages and Renaissance, many automatons—
machines that moved and appeared lifelike—were developed. However, I
suspect none were believed to be intelligent or capable of thought. Some

were even hoaxes, like the infamous Mechanical Turk that wowed the world

by playing, and beating, many skilled chess players. In the end, it was discov-
ered that a person hiding within the machine could control the “automaton”

by manipulating a mechanical arm to move free-standing chess pieces on the

26 Chapter2

How Al Works (Sample Chapter) © 8/11/23 by Ronald T. Kneusel

board while viewing the board configuration from beneath. Still, the me-
chanical part of the machine was rather impressive for the late 18th century.

Apart from automatons, there were also early attempts to understand
thought as a mechanical process and efforts to produce a logical system
capable of capturing thought. In the 17th century, Gottfried Leibniz de-
scribed such a concept abstractly as an “alphabet of thought.” In the 1750s,
Julien Offray de La Mettrie published L'Homme Machine (Man as Machine),
arguing that thought is a mechanical process.

The idea that human thought might emerge from the physical entity
of the brain rather than the spiritual soul marked the beginning of a new
chapter on the road to Al If our minds are biological machines, why can’t
there be another kind of machine that thinks?

In the 19th century, George Boole attempted to create a calculus of
thought, resulting in what we know now as Boolean algebra. Computers
depend on Boolean algebra, to the point that it represents their very im-
plementation as collections of digital logic gates. Boole was partially suc-
cessful, but he didn’t achieve his stated goal: “to investigate the fundamental
laws of those operations of the mind by which reasoning is performed; to
give expression to them in the symbolic language of a Calculus” (The Laws
of Thought, 1854). That Boole was willing to try represented another step
toward the notion that AI might be possible.

What these early attempts were lacking was an actual calculating ma-
chine. People could dream of artificial minds or beings (like the creature
from Mary Shelley’s Frankenstein) and, assuming their existence, discuss the
repercussions. But until there was a machine capable of plausibly mimicking
(implementing?) thought, all else was speculation.

It was Englishman Charles Babbage who, in the mid-19th century, first
conceived of an implementable general-purpose calculating machine: the
Analytical Engine. The Engine was never built in its entirety, but it con-
tained all the essential components of a modern computer and would, in
theory, be capable of the same operations. While it’s unclear if Babbage ap-
preciated the potential versatility of his machine, his friend, Ada Lovelace,
did. She wrote about the machine as a widely applicable, general-purpose
device. Still, she did not believe the Engine was capable of thought, as this
quote from her Sketch of the Analytical Engine (1843) demonstrates:

The Analytical Engine has no pretensions whatever to originate
anything. It can do whatever we know how to order it to perform.
It can follow analysis; but it has no power of anticipating any an-
alytical relations or truths. Its province is to assist us to making
available what we are already acquainted with.

This quote may be the first to refer to the possibility of artificial intelli-
gence involving a device potentially capable of achieving it. The phrase “do
whatever we know how to order it to perform” implies programming. In-
deed, Lovelace wrote a program for the Analytical Engine. Because of this,
many people consider her to be the first computer programmer. The fact
that her program had a bug in it proves to me that she was; nothing is more

Why Now? A History of Al 27

28

Chapter 2

How Al Works (Sample Chapter) © 8/11/23 by Ronald T. Kneusel

emblematic of programming than bugs, as my 40-plus years of programming
experience have demonstrated distressingly often.

1900 to 1950

In 1936, a 24-year-old Englishman named Alan Turing, still a student at the
time, wrote a paper that has since become the cornerstone of computer sci-
ence. In this paper, Turing introduced a generic conceptual machine, what
we now call a Turing machine, and demonstrated that it could calculate any-
thing representable by an algorithm. He also explained that there are things
that cannot be implemented by algorithms and that are, therefore, uncom-
putable. Since all modern programming languages are equivalent to a Tur-
ing machine, modern computers can implement any algorithm and com-
pute anything computable. However, this says nothing about how long the
computation might take or the memory required.

If a computer can compute anything that can be implemented as an al-
gorithm, then a computer can perform any mental operation a human can
perform. At last, here was the engine that might enable true artificial intel-
ligence. Turing’s 1950 paper “Computing Machinery and Intelligence” was
an early recognition that digital computers might eventually lead to intelli-
gent machines. In this paper Turing described his “imitation game,” known
now as the Turing test, by which humans might come to believe that a ma-
chine is intelligent. Many claims of Al systems that pass the Turing test have
appeared, especially in recent years. One of these is OpenAI’s ChatGPT.
However, few would be inclined to believe that ChatGPT is truly intelligent—
in other words, I suspect that this test fails to capture what humans generally
understand this term to mean, and a new test will likely be created at some
point.

In 1943, Warren McCulloch and Walter Pitts wrote “A Logical Calculus
of Ideas Immanent in Nervous Activity,” which deserves an award for one
of the most opaque yet intriguing paper titles ever. The paper represents
“nervous nets” (collections of neurons) as logical statements in mathematics.
The logical statements are difficult to parse (at least for me), but the authors’
description of “nets without circles” bears a strong resemblance to the neu-
ral networks we’ll explore in Chapter 4—indeed, one could argue that Mc-
Culloch and Pitts’s groundbreaking paper led to what we now recognize as a
neural network. Frankly, neural networks are far easier to parse and under-
stand, which is good news for us.

The progression from fantastical stories about artificially intelligent ma-
chines and beings to a serious investigation of whether mathematics can
capture thought and reasoning, combined with the realization that digital
computers are capable of computing anything that can be described by an
algorithm, set the stage for the advent of artificial intelligence as a legitimate
research enterprise.

How Al Works (Sample Chapter) © 8/11/23 by Ronald T. Kneusel

1950 to 1970

The 1956 Dartmouth Summer Research Project on Artificial Intelligence
workshop is generally regarded as the birthplace of Al, and where the phrase
“artificial intelligence” was first used consistently. The Dartmouth work-
shop had fewer than 50 participants, but the list included several well-known
names in the worlds of computer science and mathematics: Ray Solomonoff,
John McCarthy, Marvin Minsky, Claude Shannon, John Nash, and Warren
McCulloch, among others. At the time, computer science was a subfield of
mathematics. The workshop was a brainstorming session that set the stage
for early Al research.

In 1957, Frank Rosenblatt of Cornell University created the Mark I Per-
ceptron, widely recognized as the first application of neural networks. The
Perceptron was remarkable in many respects, including that it was designed
for image recognition, the same application where deep learning first proved
itself in 2012.

Figure 2-1 shows the conceptual organization as given in the Perceptron
Operators’ Manual. The Perceptron used a 20 x 20-pixel digitized television
image as input, which was then passed through a “random” set of connec-
tions to a set of association units that led to response units. This configu-
ration is similar to some approaches to deep learning on images in use to-
day, and resembles a type of neural network known as an extreme learning
machine.

SENSORY ASSOCIATION RESPONSE
UNITS UNITS UNITS
S-UNITS A-UNITS R-UNITS
() RETINAL () ()
UNITS ! R
RETNA CIRCUITS o 0
|
] 0 Ry
o—] 00
0— 00 0
o—1 o . |
0——] 0,0’ 9, R3
00— 9 () [e] 0
—H () o I
0 . 0
0— 090,09 o 0 Rq
o 0,205 1
- 000
Cr 0,98 .: o R5
0%t 0
0y !
o, Re
o'-oﬂ 3 0
o R
ol?

0
0
| | o
NETWORK OF
RO o onS "MANY-TO-ONE" CONNECTIONS.
I RANOCHSgICONNECTION FEED-BACK LOOPS NOT SHOWN

Figure 2-1: The organization of the Mark | Perceptron

If the Perceptron was on the right track, why was it all but forgotten for
decades? One reason was Rosenblatt’s penchant for hype. Ata 1958 confer-
ence organized by the US Navy (a sponsor of the Perceptron project), Rosen-
blatt’s comments were so hyperbolic that the New York Times reported:

Why Now? A History of Al 29

30

Chapter 2

How Al Works (Sample Chapter) © 8/11/23 by Ronald T. Kneusel

The Navy revealed the embryo of an electronic computer today
that it expects will be able to walk, talk, see, write, reproduce itself
and be conscious of its existence. Later perceptrons will be able to
recognize people and call out their names and instantly translate
speech in one language to speech and writing in another language,
it was predicted.

The comments ruffled many feathers at the time, though as modern Al
systems do allow machines to walk, talk, see, write, recognize people, and
translate speech and writing between languages, perhaps we should be more
forgiving toward Rosenblatt. He was only some 60 years early.

A few years later, in 1963, Leonard Uhr and Charles Vossler described
a program that, like the Perceptron, interpreted a 20 x 20-pixel image repre-
sented as a matrix of Os and 1s. Unlike the Perceptron, this program could
generate the patterns and combinations of image features necessary to learn
its inputs. Uhr and Vossler’s program was similar to the convolutional neu-
ral networks that appeared over 30 years later and are the subject of Chapter 5.

The first of what I call the “classical” machine learning models appeared
in 1967, courtesy of Thomas Cover and Peter Hart. Known as nearest neigh-
bors, it is the simplest of all machine learning models, almost embarrassingly
so. To label an unknown input, it simply finds the known input most like it
and uses that input’s label as the output. When using more than one nearby
known input, the method is called k-nearest neighbors, where k is a small num-
ber, like 3 or 5. Hart went on to write the first edition of Pattern Classifica-
tion, along with Richard Duda and David Stork, in 1973; this seminal work
introduced many computer scientists and software engineers to machine
learning, including me.

The success of the Perceptron came to a screeching halt in 1969 when
Marvin Minsky and Seymour Papert published their book, Perceptrons, which
demonstrated that single and two-layer perceptron networks weren’t able to
model interesting tasks. We’ll cover what “single” and “two-layer” mean in
time. Perceptrons, coupled with the 1973 release of “Artificial Intelligence:

A General Survey” by James Lighthill, universally known as “the Lighthill
report,” ushered in what is now referred to as the first Al winter; funding for
Al research dried up in short order.

Minsky and Papert’s criticisms of the perceptron model were legitimate;
however, many people missed their observation that such limitations were
not applicable to more complex perceptron models. Regardless, the damage
was done, and connectionism virtually vanished until the early 1980s.

Note the “virtually.” In 1979, Kunihiko Fukushima released a paper that
was translated to English in 1980 as “Neocognitron: A Self-Organizing Neu-
ral Network Model for a Mechanism of Pattern Recognition Unaffected by
Shift in Position.” The name “Neocognitron” didn’t catch on, and this was
perhaps one of the last uses of the “-tron” suffix that had been so popular in
computer science for the previous three decades. While Uhr and Vossler’s
1963 program bore some similarities to a convolutional neural network, the
Neocognitron is, to many people, the original. The success of convolutional
neural networks led directly to the current Al revolution.

How Al Works (Sample Chapter) © 8/11/23 by Ronald T. Kneusel

1980 to 1990

In the early 1980s, AI went commercial with the advent of computers specifi-
cally designed to run the Lisp programming language, then the lingua franca
of Al (today, it’s Python). Along with Lisp machines came the rise of expert
systems—software designed to capture the knowledge of an expert in a narrow
domain. The commercialization of Al brought the first AI winter to an end.

The concept behind expert systems is, admittedly, seductive. To build
an expert system that, for example, diagnoses a particular kind of cancer,
you first interview experts to extract their knowledge and arrange it in a
knowledge base. A knowledge base represents knowledge as a combination
of rules and facts. Then, you combine the knowledge base with an inference
engine, which uses the knowledge base to decide when and how to execute
rules based on stored facts or input to the system by a user. Rules fire based
on facts, which may lead to placing new facts in the knowledge base that
cause additional rules to fire, and so on. A classic example of an expert sys-
tem is CLIPS, which NASA developed in 1985 and released into the public
domain in 1996.

In an expert system, there’s no connectionist network or collection of
units from which one might (hopefully) cause intelligent behavior to emerge,
making it a good example of symbolic Al Instead, the knowledge base is an
essentially rigid collection of rules, like “if the engine temperature is above
this threshold, then this other thing is the likely cause,” and facts, like “the
engine temperature is below the threshold.” Knowledge engineers are the
links between the experts and the expert system. Building a knowledge
base from the experts’ answers to the questions posed by the knowledge
engineers is complex, and the resulting knowledge base is hard to modify
over time. However, the difficulty in designing expert systems doesn’t mean
they’re useless; they still exist, mainly under the guise of “business rule man-
agement systems,” but currently have minimal impact on modern Al

The hype surrounding expert systems, combined with early successes,
drove renewed interest in Al in the early 1980s. But when it became clear
that expert systems were too brittle to have a general use, the bottom fell out
of the industry, and AI's second winter hit in the middle of the decade.

During the 1980s, connectionists occupied the background, but they
were not sitting still. In 1982, John Hopfield demonstrated what are now
known as Hopfield networks. A Hopfield network is a type of neural network
that stores information in a distributed way within the weights of the net-
work, and then extracts that information at a later time. Hopfield networks
aren’t widely used in modern deep learning, but they proved an important
demonstration of the utility of the connectionist approach.

In 1986, David Rumelhart, Geoffrey Hinton, and Ronald Williams re-
leased their paper “Learning Representations by Back-propagating Errors,”
which outlined the backpropagation algorithm for training neural networks.
Training a neural network involves adjusting the weights between the neu-
rons so that the network operates as desired. The backpropagation algo-
rithm was the key to making this process efficient by calculating how adjust-
ing a particular weight affects the network’s overall performance. With this

Why Now? A History of Al 31

32

Chapter 2

How Al Works (Sample Chapter) © 8/11/23 by Ronald T. Kneusel

information, it becomes possible to iteratively train the network by apply-
ing known training data, then using the network’s errors when classifying to
adjust the weights to force the network to perform better on the next itera-
tion (I'll discuss neural network training in more depth in Chapter 4). With
backpropagation, neural networks could go well beyond the limited perfor-
mance of Rosenblatt’s Perceptron. However, even with backpropagation,
neural networks in the 1980s were little more than toys. While there’s con-
tention about who invented backpropagation and when, the 1986 paper is
generally understood to be the presentation that influenced neural network
researchers the most.

1990 to 2000

The second Al winter extended into the 1990s, but research continued in
both the symbolic and connectionist camps. Corinna Cortes and Vladimir
Vapnik introduced the machine learning community to support vector ma-
chines (SVMs) in 1995. In a sense, SVMs represent the high-water mark of
classical machine learning. The success of SVMs in the 1990s through the
early 2000s held neural networks at bay. Neural networks require large datasets
and significant computational power; SVMs, on the other hand, are often
less demanding of resources. Neural networks gain their power from the
network’s ability to represent a function, a mapping from inputs to the de-
sired outputs, while SVMs use clever mathematics to simplify difficult classi-
fication problems.

The success of SVMs was noted in the academic community as well as
the broader world of software engineering, where applications involving ma-
chine learning were increasing. The general public was largely unaware of
these advances, though intelligent machines continued appearing frequently
in science fiction.

This AI winter ended in 1997 with the victory of IBM’s Deep Blue su-
percomputer against then-world chess champion Gary Kasparov. At the
time, few people thought a machine could ever beat the best human chess
player. Interestingly, a decade earlier, one of my professors had predicted
that an AI would accomplish this feat before the year 2000. Was this profes-
sor clairvoyant? Not really. Deep Blue combined fast custom hardware with
sophisticated software and applied known Al search algorithms (in particu-
lar, the Minimax algorithm). Combined with heuristics and a healthy dose
of custom knowledge from other chess grandmasters, Deep Blue was able to
out-evaluate its human opponent by searching more possible moves than any
human could ever hope to contemplate. Regardless, at its core, Deep Blue
implemented what Al experts knew could beat a human if the machine had
enough resources at its disposal. Deep Blue’s victory was inevitable because
researchers expected computers to eventually become fast enough to over-
come a human’s abilities. What was needed was known; all that remained
was to put the pieces together.

1998 saw the publication of “Gradient-Based Learning Applied to Doc-
ument Recognition,” a paper by Yann LeCun, Léon Bottou, Yoshua Bengio,
and Patrick Haffner that escaped public notice but was a watershed moment

How Al Works (Sample Chapter) © 8/11/23 by Ronald T. Kneusel

for Al and the world. While Fukushima’s Neocognitron bore strong similar-
ities to the convolutional neural networks that initiated the modern Al revo-
lution, this paper introduced them directly, as well as the (in)famous MNIST
dataset we used in Chapter 1. The advent of convolutional neural networks
(CNNs) in 1998 begs the question: why did it take another 14 years before
the world took notice? We’ll return to this question later in the chapter.

2000 to 2012

Leo Breiman introduced random forests in 2001 by forming the existing pieces
of what would become the random forest algorithm into a coherent whole,
much like Darwin did with evolution in the 19th century. Random forests
are the last of the classical machine learning algorithms we’ll contemplate in
Chapter 3. If “random forests” remind you of the decision trees in Chapter 1,
there’s a reason: a random forest is a forest of decision trees.

Stacked denoising autoencoders are one type of intermediate model,
and they were my introduction to deep learning in 2010. An autoencoder is
a neural network that passes its input through a middle layer before gener-
ating output. It aims to reproduce its input from the encoded form of the
input in the middle layer.

An autoencoder may seem like a silly thing to fiddle with, but while
learning to reproduce its input, the middle layer typically learns something
interesting about the inputs that captures their essence without focusing on
fine, trivial details. For example, if the inputs are the MNIST digits, then the
middle layer of an autoencoder learns about digits as opposed to letters.

A denoising autoencoder is similar, but we discard a random fraction of
the input values before pushing the input through the middle layer. The
autoencoder must still learn to reproduce the entire input, but now it has a
more challenging task because the input is incomplete. This process helps
the autoencoder’s middle layer discover a better encoding of the input.

Finally, a stacked denoising autoencoder is a stack of denoising autoen-
coders, wherein the output of the middle layer of one becomes the input
of the next. When arranged this way, the stack learns a new representation
of the input, which often helps a classifier appended to the top of the stack
to discriminate between classes. For example, in my work at the time, the
inputs were small pieces of an image that may have contained a target of in-
terest. Two or three layers of trained stacked denoising autoencoders were
used to transform the inputs into a list of numbers that would hopefully rep-
resent the input’s essence while ignoring the image’s minutiae. The outputs
were then used with a support vector machine to decide if the input was a
target.

2012 to 2021

Deep learning caught the world’s attention in 2012 when AlexNet, a particu-
lar convolutional neural network architecture, won the ImageNet challenge
with an overall error of just over 15 percent, far lower than any competitor.
The ImageNet challenge asks models to identify the main subject of color

Why Now? A History of Al 33

34

Chapter 2

How Al Works (Sample Chapter) © 8/11/23 by Ronald T. Kneusel

images, whether a dog, a cat, a lawnmower, and so on. In reality, “dog” isn’t
a sufficient answer. The ImageNet dataset contains 1,000 classes of objects,
including some 120 different dog breeds. So, a correct answer would be “it’s
a Border Collie” or “it’s a Belgian Malinois.”

Random guessing means randomly assigning a class label to each image.
In that case, we would expect an overall success rate of 1in 1,000, or an er-
ror rate of 99.9 percent. AlexNet’s error of 15 percent was truly impressive—
and that was in 2012. By 2017, convolutional neural networks had reduced
the error to about 3 percent, below the approximate 5 percent achievable
by the few humans brave enough to do the challenge manually. Can you dis-
criminate between 120 different dog breeds? I certainly can’t.

AlexNet opened the floodgates. The new models broke all previous
records and began to accomplish what no one had really expected from
them: tasks like reimagining images in the style of another image or paint-
ing, generating a text description of the contents of an image along with the
activity shown, or playing video games as well as or better than a human,
among others.

The field was proliferating so quickly that it became nearly impossi-
ble to keep up with each day’s deluge of new papers. The only way to stay
current was to attend multiple conferences per year and review the new
work appearing on websites such as arXiv (https;//www.arxiv.org), where re-
search in many fields is first published. This led to the creation of sites like
https://www.arxiv-sanity-lite.com, which ranks machine learning papers ac-
cording to reader interest in the hope that the “best” might become easier
to find.

In 2014, another breakthrough appeared on the scene, courtesy of re-
searcher Ian Goodfellow’s insight during an evening’s conversation with
friends. The result was the birth of generative adversarial networks (GANs),
which Yann LeCun called at the time the most significant breakthrough
in neural networks in 20 to 30 years (overheard at NeurIPS 2016). GANS,
which we’ll discuss in Chapter 6, opened a new area of research that lets
models “create” output that’s related to but different from the data on which
it was trained. GANs led to the current explosion of generative Al, including
systems like ChatGPT and Stable Diffusion.

Reinforcement learning is one of the three main branches of machine
learning, the other two being the supervised learning we’ve been discussing
and unsupervised learning, which attempts to train models without labeled
datasets. In reinforcement learning, an agent (a model) is taught via a re-
ward function how to accomplish a task. The application to robotics is obvi-
ous.

Google’s DeepMind group introduced a deep reinforcement learning-
based system in 2013 that could successfully learn to play Atari 2600 video
games as well as or better than human experts (who counts as an expert in a
then-35-year-old game system, I'm not sure). The most impressive part of the
system, to me, was that the model’s input was precisely the human’s input:
an image of the screen, nothing more. This meant the system had to learn to

https://www.arxiv.org
https://www.arxiv-sanity-lite.com

How Al Works (Sample Chapter) © 8/11/23 by Ronald T. Kneusel

parse the input image and, from that, how to respond by moving the joystick
to win the game (virtually—they used emulators).

The gap between beating humans at primitive video games and beating
humans at abstract strategy games like Go was, historically, deemed insur-
mountable. I was explicitly taught in the late 1980s that the Minimax algo-
rithm used by systems like Deep Blue to win at chess did not apply to a game
like Go; therefore, no machine would ever beat the best human Go players.
My professors were wrong, though they had every reason at the time to be-
lieve their statement.

In 2016, Google’s AlphaGo system beat Go champion Lee Sedol in a
five-game match, winning four to one. The world took notice, further en-
hancing the growing realization that a paradigm shift had occurred. By
this time, machine learning was already a commercial success. However,
AlphaGo’s victory was utterly impressive for machine learning researchers
and practitioners.

Most of the general public didn’t notice that AlphaGo, trained on thou-
sands of human-played Go games, was replaced in 2017 by AlphaGo Zero, a
system trained entirely from scratch by playing against itself, with no human
input given. In short order, AlphaGo Zero mastered Go, even beating the
original AlphaGo system (scoring a perfect 100 wins and no losses).

However, in 2022, the current state-of-the-art Go system, KataGo, was re-
peatedly and easily defeated by a system trained not to win but to reveal the
brittleness inherent in modern Al systems. The moves the adversarial system
used were outside the range encountered by KataGo when it was trained.
This is a real-world example of how models are good at interpolating but
bad at extrapolating. When the adversarial system was trained not to be bet-
ter at Go but to exploit and “frustrate” the Al, it was able to win better than
three out of four games. I point the reader to the Star Trek: The Next Genera-
tion episode “Peak Performance,” where Data the android “wins” a difficult
strategy game against a master not by attempting to win but by attempting to
match and frustrate.

Deep learning’s penchant for beating humans at video games contin-
ues. In place of primitive games like Atari, deep reinforcement learning sys-
tems are now achieving grandmaster-level performance at far more difficult
games. In 2019, DeepMind’s AlphaStar system outperformed 99.8 percent
of human players in StarCraft 11, a strategy game requiring the development
of units and a plan of battle.

The 1975 Asilomar Conference on Recombinant DNA was an impor-
tant milestone in recognizing biotechnology’s growth and potential ethical
issues. The conference positively impacted future research, and that year
its organizers published a summary paper outlining an ethical approach to
biotechnology. The potential hazards of a field that was then primarily in its
infancy were recognized early, and action was taken to ensure ethical issues
were paramount when contemplating future research.

The 2017 Asilomar Conference on Beneficial Al intentionally mirrored
the earlier conference to raise awareness of the potential hazards associated
with Al It is now common to encounter conference sessions with titles like

Why Now? A History of Al 35

36

Chapter 2

How Al Works (Sample Chapter) © 8/11/23 by Ronald T. Kneusel

“Al for Good.” The 2017 Asilomar conference resulted in the development
of a set of principles to guide the growth and application of artificial intel-
ligence. Similarly, as of 2023, the US government—specifically, the White
House Office of Science and Technology Policy—has developed a “Blueprint
for an Al Bill of Rights” meant to protect the American public from the
harmful effects of Al indiscriminately applied. Indeed, White House offi-
cials have taken pains to address the AI community directly to encourage
proper consideration in developing even more powerful Al systems. All

of this is a good sign, but history teaches that human law often lags behind
technological development, so the ultimate effectiveness of these necessary
attempts at framing the field remains to be seen.

2021 to Now

The COVID-19 pandemic of 2020 brought most of the world to a standstill.
However, the AI community was only minimally impacted by the pandemic,
likely because remote collaboration and conferences work rather well in
this field. In addition, we can access powerful computers over the internet,
so physical proximity doesn’t limit research as it might in other disciplines
where access to the hardware is necessary.

Beginning in 2021 and continuing as I write, an explosion of new mod-
els have appeared, each more impressive than the last. Most can accept text
input written by humans to produce text, images, or even video output. Of-
ten, the input marries text and example imagery to guide the system. Cur-
rent popular (and concerning) systems include DALL-E 2, Stable Diffusion,
Midjourney, and ChatGPT, among others. Most large tech companies have
also demonstrated cutting-edge techniques that generate video, audio, and
even 3D models. The current buzz generated by these systems is reminis-
cent of the excitement in 2012 when deep learning proved its worth with
AlexNet. It’s another paradigm shift; but to be clear, none of these systems
are conscious. I'm not alone in this opinion. Even ChatGPT agrees with me.
I asked it: “Are you a conscious being?” Here’s its reply, verbatim:

As a machine learning model, I am not a conscious being. I am a
computer program that has been trained to generate text based
on input from a user. I do not have the ability to think, reason, or
experience consciousness in the same way that humans do. I am
designed to provide information and assist users, but I do not have
any independent thought or consciousness.

I think Ada Lovelace would be satisfied with this answer, though she
might be puzzled about how an unthinking machine could generate it. Note,
however, that ChatGPT didn’t claim not to think, only that it doesn’t think
like humans do. We’ll explore image synthesis in Chapter 6 and large lan-
guage models like ChatGPT in Chapter 7. Perhaps then we’ll find a resolu-
tion to her (assumed) confusion.

Heokeokok

How Al Works (Sample Chapter) © 8/11/23 by Ronald T. Kneusel

So, why now? The short answer is the fall of symbolic Al and the rise of
technological innovations highly favorable to the connectionist approach.

Symbolic Al and connectionism emerged together, with symbolic Al
dominating for decades and forcing connectionism into the background.
But after two Al winters that left symbolic Al barely breathing, connection-
ism, assisted by key technological innovations, has risen to fill the void.

I think of the relationship between symbolic Al and connectionism as
akin to that between non-avian dinosaurs and mammals. Dinosaurs and
mammals emerged at roughly the same time, geologically speaking, but
large, terrestrial dinosaurs dominated the world for about 160 million years,
forcing mammals to eke out an existence in the shadows. When the asteroid
hit 66 million years ago, the large dinosaurs were wiped out, allowing the
mammals to evolve and take over.

Of course, analogies ultimately break down. The dinosaurs didn’t die
out completely—we now call them birds—and they didn’t go extinct because
they were somehow inferior. In fact, the dinosaurs are one of Earth’s great-
est success stories. Non-avian dinosaurs died because of plain old bad luck.
It was, almost literally, a disaster that did them in (“disaster” from the Italian
disastro, meaning “ill star”).

Might symbolic Al re-emerge? It’s likely in some form, but in cooper-
ation with connectionism. Symbolic Al promised that intelligent behavior
was possible in the abstract, and it didn’t deliver. Connectionism claims that
intelligent behavior can emerge from a collection of simpler units. Deep
learning’s successes support this view, to say nothing of the billions of living
brains currently on the planet. But, as ChatGPT pointed out, existing con-
nectionist models “do not think, reason, or experience consciousness in the
same way that humans do.” Modern neural networks are not minds; they
are representation-learning data processors. I'll clarify what that means in
Chapter 5.

Though our species, Homo sapiens, relies critically on symbolic thought,
itisn’t a requirement for intelligence. In his book Understanding Human
Evolution (Cambridge University Press, 2022), anthropologist Ian Tattersall
claims it was unlikely that Neanderthals used symbolic thought as we do,
nor did they have language as we do, but that they were nonetheless intelli-
gent. Indeed, the Neanderthals were sufficiently human for our ancestors
to “make love, not war” with them more than once—the DNA of people of
non-African ancestry testifies to this fact.

I expect a synergy between connectionism and symbolic Al in the near
future. For example, because a system like ChatGPT is, in the end, only pre-
dicting the next output token (word or part of a word), it can’t know when
it’s saying something wrong. An associated symbolic system could detect
faulty reasoning in the response and correct it. How such a system might be
implemented, I don’t know.

SEEE
Hints of what might emerge from connectionism were evident by the

early 1960s. So, was it only symbolic Al bias that delayed the revolution for

Why Now? A History of Al 37

38

Chapter 2

How Al Works (Sample Chapter) © 8/11/23 by Ronald T. Kneusel

so many decades? No. Connectionism stalled because of speed, algorithm,
and data issues. Let’s examine each in turn.

Speed

To understand why speed stalled the growth of connectionism, we need to
understand how computers work. Taking great liberties allows us to think of
computers as memory, which holds data (numbers) and a processing unit,
typically known as the central processing unit (CPU). A microprocessor—like
the one in your desktop computer, smartphone, voice-controlled assistant,
car, microwave, and virtually everything else you use that isn’t a toaster (oh,
and in many toasters, too)—is a CPU. Think of a CPU as a traditional com-
puter: data comes into the CPU from memory or input devices like a key-
board or mouse, gets processed, then is sent out of the CPU to memory or
an output device like a monitor or hard drive.

Graphics processing units (GPUs), on the other hand, were developed
for displays, primarily for the video game industry, to enable fast graphics.
GPUs can perform the same operation, such as “multiply by 2,” on hundreds
or thousands of memory locations (read pixels) simultaneously. If a CPU
wants to multiply a thousand memory locations by 2, it must multiply the
first, second, third, and so on sequentially. As it happens, the primary op-
eration needed to train and implement a neural network is ideally suited to
what a GPU can do. GPU makers, like NVIDIA, realized this early and began
developing GPUs for deep learning. Think of a GPU as a supercomputer on
a card that fits in your PC.

In 1945, the Electronic Numerical Integrator and Computer (ENIAC)
was state-of-the-art. ENIAC’s speed was estimated to be around 0.00289 mil-
lion instructions per second (MIPS). In other words, ENIAC could perform
just under 3,000 instructions in one second. In 1980, a stock 6502 8-bit mi-
croprocessor like the ones in most then-popular personal computers ran at
about 0.43 MIPS, or some 500,000 instructions per second. In 2023, the al-
ready somewhat outdated Intel i7-4790 CPU in the computer I'm using to
write this book runs at about 130,000 MIPS, making my PC some 300,000
times faster than the 6502 from 1980 and about 45 million times faster than
ENIAC.

However, NVIDIA’s A100 GPU, when used for deep learning, is capable
of 312 teraflops (TFLOPS), or 312,000,000 MIPS: 730 million times faster
than the 6502 and an unbelievable 110 billion times faster than ENIAC. The
increase in computational power over the timespan of machine learning
boggles the mind. Moreover, training a large neural network on an enor-
mous dataset often requires dozens to hundreds of such GPUs.

Conclusion: Computers were, until the advent of fast GPUs, too slow to
train neural networks with the capacity needed to build something like Chat-
GPT.

How Al Works (Sample Chapter) © 8/11/23 by Ronald T. Kneusel

Algorithm

As you’ll learn in Chapter 4, we construct neural networks from basic units
that perform a simple task: collect input values, multiply each by a weight
value, sum, add a bias value, and pass the result to an activation function to
create an output value. In other words, many input numbers become one
output number. The collective behavior emerging from thousands to mil-
lions of such units leading to billions of weight values lets deep learning sys-
tems do what they do.

The structure of a neural network is one thing; conditioning the neu-
ral network to the desired task is another. Think of the network’s structure,
known as its architecture, as anatomy. In anatomy, we’re interested in what
constitutes the body: this is the heart, that’s the liver, and so on. Training a
network is more like physiology: how does one part work with another? The
anatomy (architecture) was there, but the physiology (training process) was
incompletely understood. That changed over the decades, courtesy of key
algorithmic innovations: backpropagation, network initialization, activation
functions, dropout and normalization, and advanced gradient descent algo-
rithms. It’s not essential to understand the terms in detail, only to know that
improvements in what these terms represent—along with the already men-
tioned improvements in processing speed, combined with improved datasets
(discussion coming up)—were primary enablers of the deep learning revolu-
tion.

While it was long known that the right weight and bias values would
adapt a network to the desired task, what was missing for decades was an ef-
ficient way to find those values. The 1980s’ introduction of the backpropaga-
tion algorithm, combined with stochastic gradient descent, began to change
this.

Training iteratively locates the final set of weight and bias values ac-
cording to the model’s errors on the training data. Iterative processes re-
peat from an initial state, some initial set of weights and biases. However,
what should those initial weights and biases be? For a long time, it was as-
sumed that these initial weights and biases didn’t matter much; just select
small numbers at random over some range. This approach often worked,
but many times it didn’t, causing the network not to learn well, if at all. A
more principled approach to initializing networks was required.

Modern networks are still initialized randomly, but the random values
depend on the network’s architecture and the type of activation function
used. Paying attention to these details allowed networks to learn better. Ini-
tialization matters.

We arrange neural networks in layers, where the output of one layer be-
comes the input of the next. The activation function assigned to each node
in the network determines the node’s output value. Historically, the activa-
tion function was either a sigmoid or a hyperbolic tangent, both of which
produce an S-shaped curve when graphed. These functions are, in most
cases, inappropriate, and were eventually replaced by a function with a long
name that belies its simplicity: the rectified linear unit (ReLU). A ReLU asks a
simple question: is the input less than zero? If so, the output is zero; other-

Why Now? A History of Al 39

40

Chapter 2

How Al Works (Sample Chapter) © 8/11/23 by Ronald T. Kneusel

wise, the output is the input value. Not only are ReLU activation functions
better than the older functions, but computers can ask and answer that ques-
tion virtually instantaneously. Switching to ReLUs was, therefore, a double
win: improved network performance and speed.

Dropout and batch normalization are advanced training approaches
that are somewhat difficult to describe at the level we care to know about
them. Introduced in 2012, dropout randomly sets parts of the output of a
layer of nodes to zero when training. The effect is like training thousands of
models simultaneously, each independent but also linked. Dropout, when
appropriate, has a dramatic impact on network learning. As a prominent
computer scientist told me at the time, “If we had had dropout in the 1980s,
this would be a different world now.”

Batch normalization adjusts the data moving between layers as it flows
through the network. Inputs appear on one side of the network and flow
through layers to get to the output. Schematically, this is usually presented
as a left-to-right motion. Normalization is inserted between the layers to
change the values to keep them within a meaningful range. Batch normal-
ization was the first learnable normalization technique, meaning it learned
what it should do as the network learned. An entire suite of normalization
approaches evolved from batch normalization.

The last critical algorithmic innovation enabling the deep learning revo-
lution involves gradient descent, which works with backpropagation to facili-
tate learning the weights and biases. The idea behind gradient descent is far
older than machine learning, but the versions developed in the last decade
or so have contributed much to deep learning’s success. We’ll learn more
about this subject in Chapter 4.

Conclusion: The first approaches to training neural networks were primitive
and unable to take advantage of their true potential. Algorithmic innova-
tions changed that.

Data

Neural networks require lots of training data. When people ask me how
much data is necessary to train a particular model for a specific task, my
answer is always the same: all of it. Models learn from data; the more, the
better because more data means an improved representation of what the
model will encounter when used.

Before the World Wide Web, collecting, labeling, and processing datasets
of the magnitude necessary to train a deep neural network proved difficult.
This changed in the late 1990s and the early 2000s with the tremendous
growth of the web and the explosion of data it represented.

For example, Statista (https;//www.statista.com) claims that in 2022, 500
hours of new video were uploaded to YouTube every minute. It’s also esti-
mated that approximately 16 million people were using the web in Decem-
ber 1995, representing 0.4 percent of the world’s population. By July 2022,
that number had grown to nearly 5.5 billion, or 69 percent. Social media
use, e-commerce, and simply moving from place to place while carrying a

https://www.statista.com

How Al Works (Sample Chapter) © 8/11/23 by Ronald T. Kneusel

smartphone are enough to generate staggering amounts of data—all of which
is captured and used for Al. Social media is free because we, and the data we
generate, are the product.

A phrase I often hear in my work is “we used to be data-starved, but now
we’re drowning in data.” Without large datasets and enough labels to go
with them, deep learning cannot learn. But on the other hand, with large
datasets, awe-inspiring things can happen.

Conclusion: In machine learning, data is everything.
ok

The main takeaways from this chapter are:

* The symbolic Al versus connectionist feud appeared early and led to
decades of symbolic AI dominance.

* Connectionism suffered for a long time because of speed, algo-
rithm, and data issues.

* With the deep learning revolution of 2012, the connectionists have
won, for now.

* The direct causes of the deep learning revolution were faster com-
puters, the advent of graphics processing units, improved algorithms,
and huge datasets.

With this historical background complete enough for our purposes, let’s
return to machine learning, starting with the classical algorithms.

Why Now? A History of Al q

