
148 Chapter 4

Silent Failure
Here’s another makefile snippet that works some of the time:

clean:
 @-rm *.o &> /dev/null

The @ means that the command isn’t echoed. The - means that any
error returned is ignored and all output is redirected with &> to /dev/null,
making it invisible. Because no -f is on the rm command, any failure (from
say, permissions problems) will go totally unnoticed.

Usman’s law strikes again.

Recursive Clean
Many makefiles are recursive, and make clean must be recursive too, so you
see the following pattern:

SUBDIRS = library executable

.PHONY: clean
clean:
 for dir in $(SUBDIRS); do \
 $(MAKE) -C $$dir clean; \
 done

The problem with this is that it means make clean has to work correctly
in every directory in SUBDIR, leading to more opportunity for error.

Usman’s law strikes again.

Pitfalls and Benefits of GNU make Parallelization
Many build processes run for hours, so build managers commonly type make
and go home for the night. GNU make’s solution to this problem is parallel
execution: a simple command line option that causes GNU make to run jobs
in parallel using the dependency information in the makefile to run them in
the correct order.

In practice, however, GNU make parallel execution is severely limited by
the fact that almost all makefiles are written with the assumption that their
rules will run in series. Rarely do makefile authors think in parallel when writ-
ing their makefiles. That leads to hidden traps that either cause the build
to fail with a fatal error or, worse, build “successfully” but result in incorrect
binaries when GNU make is run in parallel mode.

This section looks at GNU make’s parallel pitfalls and how to work around
them to get maximum parallelism.

The GNU Make Book
© 2015 John Graham-Cumming

Pitfalls and Problems 149

Using -j (or -jobs)
To start GNU make in parallel mode, you can specify either the -j or --jobs
option on the command line. The argument to the option is the maximum
number of processes that GNU make will run in parallel.

For example, typing make --jobs=4 allows GNU make to run up to four
subprocesses in parallel, which would give a theoretical maximum speedup
of 4×. However, the theoretical time is severely limited by restrictions in the
makefile. To calculate the maximum actual speedup, you use Amdahl’s law
(which is covered in “Amdahl’s Law and the Limits of Parallelization” on
page 154).

One simple but annoying problem found in parallel GNU make is that
because the jobs are no longer run serially (and the order depends on the
timing of jobs), the output from GNU make will be sorted randomly depend-
ing on the actual order of job execution.

Fortunately, that problem has been addressed in GNU make 4.0 with the
--output-sync option described in Chapter 1.

Consider the example in Listing 4-9:

.PHONY: all
all: t5 t4 t1
 @echo Making $@

t1: t3 t2
 touch $@

t2:
 cp t3 $@

t3:
 touch $@

t4:
 touch $@

t5:
 touch $@

Listing 4-9: A simple makefile to illustrate parallel making

It builds five targets: t1, t2, t3, t4, and t5. All are simply touched except
for t2, which is copied from t3.

Running Listing 4-9 through standard GNU make without a parallel
option gives the output:

$ make
touch t5
touch t4
touch t3
cp t3 t2
touch t1
Making all

The GNU Make Book
© 2015 John Graham-Cumming

150 Chapter 4

The order of execution will be the same each time because GNU make
will follow the prerequisites depth first and from left to right. Note that
the left-to-right execution (in the all rule for example, t5 is built before t4,
which is built before t1) is part of the POSIX make standard.

Now if make is run in parallel mode, it’s clear that t5, t4, and t1 can be
run at the same time because there are no dependencies between them.
Similarly, t3 and t2 do not depend on each other, so they can be run in
parallel.

The output of a parallel run of Listing 4-9 might be:

$ make --jobs=16
touch t4
touch t5
touch t3
cp t3 t2
touch t1
Making all

Or even:

$ make --jobs=16
touch t3
cp t3 t2
touch t4
touch t1
touch t5
Making all

This makes any process that examines log files to check for build prob-
lems (such as diffing log files) difficult. Unfortunately, there’s no easy solu-
tion for this in GNU make without the --output-sync option, so you’ll just have
to live with it unless you upgrade to GNU make 4.0.

Missing Dependencies
The example in Listing 4-9 has an additional problem. The author fell into
the classic left-to-right trap when writing the makefile, so when it’s run in
parallel, it’s possible for the following to happen:

$ make --jobs=16
touch t5
touch t4
cp t3 t2
cp: cannot stat `t3': No such file or directory
make: *** [t2] Error 1

The reason is that when run in parallel, the rule to build t2 can occur
before the rule to build t3, and t2 needs t3 to have already been built. This
didn’t happen in the serial case because of the left-to-right assumption: the
rule to build t1 is t1: t3 t2, which implies that t3 will be built before t2.

The GNU Make Book
© 2015 John Graham-Cumming

Pitfalls and Problems 151

But no actual dependency exists in the makefile that states that t3 must
be built before t2. The fix is simple: just add t2: t3 to the makefile.

This is a simple example of the real problem of missing or implicit
(left-to-right) dependencies that plagues makefiles when run in parallel.
If a makefile breaks when run in parallel, it’s worth looking for missing
dependencies straightaway because they are very common.

The Hidden Temporary File Problem
Another way GNU make can break when running in parallel is if multiple rules
use the same temporary file. Consider the example makefile in Listing 4-10:

TMP_FILE := /tmp/scratch_file

.PHONY: all
all: t

t: t1 t2
 cat t1 t2 > $@

t1:
 echo Output from $@ > $(TMP_FILE)
 cat $(TMP_FILE) > $@

t2:
 echo Output from $@ > $(TMP_FILE)
 cat $(TMP_FILE) > $@

Listing 4-10: A hidden temporary file that breaks parallel builds

Run without a parallel option, GNU make produces the following output:

$ make
echo Output from t1 > /tmp/scratch_file
cat /tmp/scratch_file > t1
echo Output from t2 > /tmp/scratch_file
cat /tmp/scratch_file > t2
cat t1 t2 > t

and the t file contains:

Output from t1
Output from t2

But run in parallel, Listing 4-10 gives the following output:

$ make --jobs=2
echo Output from t1 > /tmp/scratch_file
echo Output from t2 > /tmp/scratch_file
cat /tmp/scratch_file > t1
cat /tmp/scratch_file > t2
cat t1 t2 > t

The GNU Make Book
© 2015 John Graham-Cumming

152 Chapter 4

Now t contains:

Output from t2
Output from t2

This occurs because no dependency exists between t1 and t2 (because
neither requires the output of the other), so they can run in parallel. In the
output, you can see that they are running in parallel but that the output
from the two rules is interleaved. Because the two echo statements ran first,
t2 overwrote the output of t1, so the temporary file (shared by both rules)
had the wrong value when it was finally cated to t1, resulting in the wrong
value for t.

This example may seem contrived, but the same thing happens in real
makefiles when run in parallel, resulting in either broken builds or the wrong
binary being built. The yacc program for example, produces temporary files
called y.tab.c and y.tab.h. If more than one yacc is run in the same directory
at the same time, the wrong files could be used by the wrong process.

A simple solution for the makefile in Listing 4-10 is to change the defi-
nition of TMP_FILE to TMP_FILE = /tmp/scratch_file.$@, so its name will depend
on the target being built. Now a parallel run would look like this:

$ make --jobs=2
echo Output from t1 > /tmp/scratch_file.t1
echo Output from t2 > /tmp/scratch_file.t2
cat /tmp/scratch_file.t1 > t1
cat /tmp/scratch_file.t2 > t2
cat t1 t2 > t

A related problem occurs when multiple jobs in the makefile write to a
shared file. Even if they never read the file (for example, they might write to
a log file), locking the file for write access can cause competing jobs to stall,
reducing the overall performance of the parallel build.

Consider the example makefile in Listing 4-11 that uses the lockfile
command to lock a file and simulate write locking. Although the file is
locked, each job waits for a number of seconds:

LOCK_FILE := lock.me

.PHONY: all
all: t1 t2
 @echo done.

t1:
 @lockfile $(LOCK_FILE)
 @sleep 10
 @rm -f $(LOCK_FILE)
 @echo Finished $@

The GNU Make Book
© 2015 John Graham-Cumming

Pitfalls and Problems 153

t2:
 @lockfile $(LOCK_FILE)
 @sleep 20
 @rm -f $(LOCK_FILE)
 @echo Finished $@

Listing 4-11: Locking on shared files can lock a parallel build and make it run serially.

Running Listing 4-11 in a serial build takes about 30 seconds:

$ time make
Finished t1
Finished t2
done.
make 0.01s user 0.01s system 0% cpu 30.034 total

But it isn’t any faster in parallel, even though t1 and t2 should be able
to run in parallel:

$ time make -j4
Finished t1
Finished t2
done.
make -j4 0.01s user 0.02s system 0% cpu 36.812 total

It’s actually slower because of the way lockfile detects lock availability.
As you can imagine, write locking a file could cause similar delays in other-
wise parallel-friendly makefiles.

Related to the file locking problem is a danger concerning archive (ar)
files. If multiple ar processes were to run simultaneously on the same archive
file, the archive could be corrupted. Locking around archive updates is nec-
essary in a parallel build; otherwise, you’ll need to prevent your dependencies
from running multiple ar commands on the same file at the same time.

One way to prevent parallelism problems is to specify .NOTPARALLEL in a
makefile. If this is seen, the entire make execution will be run in series and
the -j or --jobs command line option will be ignored. .NOTPARALLEL is a very
blunt tool because it affects an entire invocation of GNU make, but it could
be handy in a recursive make situation with, for example, a third-party make-
file that is not parallel safe.

The Right Way to Do Recursive make
GNU make is smart enough to share parallelism across sub-makes if a make-
file using $(MAKE) is careful about how it calls sub-makes. GNU make has a
message passing mechanism that works across most platforms (Windows
support was added in GNU make 4.0) and enables sub-makes to use all the
available jobs specified through -j or --jobs by passing tokens across pipes
between the make processes.

The GNU Make Book
© 2015 John Graham-Cumming

	9781593276492 164
	9781593276492 165
	9781593276492 166
	9781593276492 167
	9781593276492 168
	9781593276492 169

