
5
T H E G A R A G E S E N T R Y

P A R K I N G A S S I S T A N T

This project is a reliable electronic device

to gauge the distance you need to pull

your car into your garage. If you park in

a garage, you’re probably familiar with the

problem: how far do you pull your car into the garage

to make sure there’s room in front for whatever is

there and enough space behind so the garage door
will close? Some people suspend a tennis ball on a string from the ceiling
and stop at the point when the ball meets the windshield. That works fine,
but the ball is a pain to set up and adjust, and it often gets in the way if you
want to use the garage for something other than parking the car.

Arduino offers a better solution. This Garage Sentry project is the elec-
tronic version of the classic tennis-ball-on-a-string device, only better. The
Garage Sentry accurately detects when your car reaches exactly the right
position in the garage and sets off an alarm that blinks so you know when
to hit the brakes.

132 Chapter 5

In addition, at the end of the chapter, I’ll show you how to modify the
basic Garage Sentry into a deluxe version that alerts you when you’re get-
ting close to the perfect stopping point.

Required Tools

This project doesn’t require many tools or materials, but you will need the
following tools for both the standard and deluxe versions:

A drill with a 3/8-inch or 1/2-inch chuck (powered by battery or with
110/220V from the wall)

Drill bits for potentiometer (9/32 inches), power input (1/4 inches),
and LED (3/8 inches)

Soldering iron and solder

Tapered reamer

Screwdrivers (See the Introduction for screwdrivers you should have
on hand.)

Pliers (I recommend needle nose.)

28- or 30-gauge hookup wire

(Optional) Wire-wrap tool and wire

(Optional) 1/4-inch tap

Parts List

You’ll need the following parts to build the basic Garage Sentry:

One Arduino Nano

One HC-SR04 ultrasonic sensor (Try eBay, Adafruit, Sparkfun, and
so on.)

INSPIR AT ION BE HIND T HE G A R AGE SE N T RY

This project evolved out of playing with an ultrasonic transceiver module, a

device that emits sound waves and then detects them after they travel to an

object, reflect off that object, and travel back to the module. The output of the

module allows a microcontroller to measure the time it takes to travel to and

from the object and, knowing the speed of sound, determine the distance. To

test the ultrasonic transceiver’s sensitivity and limits, I used the battery-operated

breadboard version in my garage, which had enough space to move objects

around for different distances. It turns out cars are great reflectors for ultrasonic

energy. From this experimentation, I was inspired to turn my test apparatus into

a Garage Sentry.

The Garage Sentry Parking Assistant 133

Two high-intensity LEDs (>12,000 MCD; available from eBay and other
online stores)

Two 1/4 W (or more), 270-ohm resistors (to limit current to the LEDs)

One 1/8 W, 20-ohm potentiometer

Two NPN-signal transistors rated for a collector current of at least 1.5 A
(I used ZTX-649 transistors, which you can find at Mouser, Digikey, and
Newark.)

One enclosure (I recommend a blue Hammond 1591 ATBU, clear 1591
ATCL, or something similar.)

(Optional) One 0.80-inch aluminum strip for mounting bracket

(Optional) Two 1/4-inch × 20-inch × 3/4-inch bolts with nuts

One section (approximately 1 inch × 1 inch) perforated board (can
include copper-foil rings on one side)

One 3.5 mm jack for power

Two 2-56 × 3/8-inch screws and nuts

Two additional 2-56 nuts to use as spacer

One 9V, 100 mA plug-in wall adapter power supply (Anything from
7.5V to 12V DC at 100 mA or upward should work well.)

One length double-sided foam tape

One LM78L05 (TO-92 package) regulator (for the breadboard
build only)

Because the basic version doesn’t require a lot of additional compo-
nents, I suggest building the circuit on a standard perforated circuit board
instead of a shield. To power your circuit, you can use a 9V, 100 mA wall
adapter plugged into a 3.5 mm jack (see Figure 5-1). You shouldn’t need an
on/off switch.

Figure 5-1: I used a Magnavox AC adapter, but any similar power supply with a DC out-
put from 7.5V to 12V should work. These are readily available online and cost from under
$1.00 to about $3.00.

134 Chapter 5

Be sure to use two bright LEDs that are clearly visible, even when a car’s
headlights are on. Bright LEDs range from 10,000 MCD (milli candela)
to more than 200,000 MCD. The brighter, the better; just remember that
brighter LEDs require more power, so the current-limiting resistor will
need a higher power rating for the brighter lamps. The 270 W current-
limiting resistors result in a current drain of about 30–40 mA each with the
12,000 MCD LEDs I used at 5V. (Remember that power equals volts times
amps, or P = VI, so at 40 mA and 5V, you’d have 0.20 W.) It’s best to use a
1/2 W or greater resistor even though you can easily get by with a smaller
value—as I did with 1/4 W—because the LEDs are on only intermittently.

Optional Parts

In addition to the components for the basic Garage Sentry, you’ll need the
following extra components if you want to build the deluxe version:

Two high-intensity green LEDs

Two high-intensity amber LEDs

Two additional 270-ohm resistors (1/4 W)

Two additional transistors (ZTX-649)

One enclosure Hammond 1591 BTCL (to replace the 1591 ATCL)

One PCB (shield)

Downloads

Sketches: GarageSentry.ino and GarageSentryDel.ino

Drilling template: Transducer.pdf

Drawing: Handle.pdf

Shield file for Deluxe Garage Sentry: GarageSentreDel.pcb

Basics of Calculating Distance

This project measures the time it takes for a sound to originate, bounce off
an object, and be received back at the point of origin, and it uses that time
to calculate the distance between the object and the sensor.

The basic distance calculation is not much different from determining
the distance of a storm by counting the seconds between a lightning flash
and a thunderclap. Each second represents a distance of 1,125 feet, or about
0.2 miles. Given that sound travels at 1,125 feet per second in air at sea level,
if there’s a five-second delay between a lightning flash and the thunderclap,
you can determine that the storm is roughly a mile away. In the case of the
Garage Sentry, once you know how long it takes for the sound to make a

The Garage Sentry Parking Assistant 135

round trip and know the speed of sound, you can calculate the distance
according to the time-speed-distance formula:

Distance = Speed × Time

How the Garage Sentry Works

This project takes advantage of ultrasonic sound, which, unlike thunder, is
above the hearing range of most individuals. If your hearing is good, you
can detect sound ranging from about 30 Hz to close to 20 kHz, although
hearing attenuates quickly above 10 kHz or 15 kHz.

N O T E For reference, middle C on the piano is 261.6 Hz. Young children (and most dogs)
can often hear high frequencies, but hearing, especially in the upper registers, deterio-
rates quickly with age.

The ultrasonic transceiver module used in this project sends out pulses
at a frequency of about 25 kHz and listens for an echo with a microphone.
If there is something for the signal to bounce off, the system receives the
return echo and tells the microcontroller a signal has been received and
to calculate the distance. For the Garage Sentry, the unit is placed in the
front of the garage, and the signal is sent out to bounce off the front—or
rear if you are backing in—of your vehicle. To calculate your car’s distance
from the ultrasonic transceiver, the Arduino measures the time it takes
for the signal’s round trip from the transceiver to the target and back. For
example, if the Arduino measures a time of 10 milliseconds (0.010 sec-
onds), you might calculate the distance as:

Distance = × =1125 0 010 11 25
ft

s
 s ft. .

Ah, but not so fast. Remember the signal is traveling to the car and
then back to the microphone. To get the correct distance to the vehicle,
we will have to divide by two. If the controller measures 10 ms, then the dis-
tance to your car would be:

Distance ft=

×

=

1 125 0 010

2
5 625

, .

.

ft

s
s

The HC-SR04 ultrasonic module sends out a signal at the instruction of
the Arduino (see Figure 5-2). Then, the sketch instructs the transmitter to
shut down, and the microphone listens for an echo.

If there is an object for the signal to bounce off, the microphone picks
up the reflected signal. The Arduino marks the exact time the signal is sent
out and the time it is received and then calculates the delay.

The HC-SR04 module is more than a speaker and microphone, though.
The module includes transducers—a loudspeaker and mic—and a lot of

136 Chapter 5

electronics, including at least three integrated circuits, a crystal, and sev-
eral passive components. These components simplify its interface to the
Arduino: the 25 kHz tone is actually generated by the module and turned
on and off with the microcontroller. Some of the components also enhance
the receiver’s, or the microphone’s, sensitivity, which gives it a better range.

Figure 5-2: The ultrasonic sensor module. The back of the module
(bottom) has connection terminals at the bottom.

The range of the HC-SR04 ultrasonic transducer is approximately
10 to 12 feet. The returning signal is always a lot weaker than the transmit-
ted signal because some of the sound wave’s energy dissipates in the air
(see the dotted lines in Figure 5-3).

The arithmetic to calculate the distance between the sender and the
object is not difficult. You take the number of microseconds it takes for the
signal to return, divide by the 73.746 microseconds it takes sound to travel
an inch, and then divide by two because the signal is going out and coming
back. The full arithmetic for this appears later in “Determining Distance”
on page 143.

The sketch provides a response in inches or centimeters depending on
your preference. We’ll use inches for setting up the distance for the alarm,
but converting to centimeters simply requires a remapping of the analog
input and setting the numbers a bit differently. The sketch also does the
basic arithmetic for determining the centimeter measurement for you.

The Garage Sentry Parking Assistant 137

With the high-level overview out of the way, let’s dig in to how you’ll
wire the Garage Sentry.

distance r

reflected wave

original wave

sender/
receiver

object

Figure 5-3: In this project, sound is transmitted from a sender, bounces off an object,
and is received.

The Schematic

Figure 5-4 shows the schematic for the Garage Sentry.

Figure 5-4: Schematic diagram of the Garage Sentry

138 Chapter 5

R1 and R2 are the 270 W resistors for the LEDs and should be 1/4 W or
larger. If a higher wattage resistor is not available, you could place several
resistors in parallel to gain the required wattage. First, find the right resis-
tor value with the formula:

1 1 1 1 1

1 2 3
R R R R Rntotal

= + + +…+

You can also use an automatic calculator, such as the one at http://
www.1728.org/resistrs.htm, which is a lot easier than doing the math yourself.

To avoid extra calculations, select resistors of the same value. This way,
the same amount of current flows through each one. For example, two
1/8 W resistors in parallel will give you a 1/4 W value.

If you do use resistors of different values, you will have to calculate the
current flowing through each and the total dissipation.

This schematic also leaves you with room to customize your alarm.
While this version of the project uses LEDs to create a visual alarm, with a
slight modification, you can easily create an audible alarm as well. Simply
replace either the red or blue LED with an audible device, such as a
Sonotone Sonalert, and the alarm will sound. To replace an LED, you
would need to connect the Sonalert across that LED’s connections; just
make sure to get the polarity correct. Alternatively, you could keep both
LEDs and add an audible device for a third warning.

N O T E In this project, the Nano takes advantage of its on-board voltage regulator, which is
why there’s no external regulator in the schematic.

The Breadboard

The entire Garage Sentry fits on a small breadboard, so you can set it up,
program it, power it with a battery, and walk around to test it out. As you
play with it, I’m sure other applications of ultrasonic technology will come
to mind. The breadboard I assembled appears in Figure 5-5.

In Figure 5-5, the breadboard is powered by a 9V battery. Usually, you
could wire the battery directly to the VIN of the Nano and use the Nano’s
built-in voltage regulator. But you’ll power the Nano with a USB cable when
you program and test it for the first time, so on the breadboard, you’ll set
up the positive and negative rails for 5V for both the Nano and the ultra-
sonic module. To avoid risking damage to the Nano or the module and
avoid overcomplicating the build, I included a single-chip external voltage
regulator (LM78L05) so the entire breadboard runs on 5V. Take a look at
Figure 5-6 to see how it’s wired up.

The Garage Sentry Parking Assistant 139

Figure 5-5: Here’s the breadboard wired up. I used a 9V battery so I could experiment in
different environments. Both LEDs look illuminated because of the length of the exposure
of the camera.

Figure 5-6: This is how the LM78L05 TO-92 regulator is wired up on the breadboard.
Bypass/filter capacitors are not required.

Here’s a blow-by-blow list of the steps to wire the breadboard:

1. First, put the ultrasonic module at the lower end of the breadboard fac-
ing out, and plug the Nano in to the breadboard, leaving four rows of
connections above it.

2. Make sure the positive and negative (red and blue) strips on the left
and right are connected properly—red to red, blue to blue. If you con-
nect red to blue, it will cause a major problem.

3. Connect the red strip to the 5V power supply (pin 27 of the Nano,
labeled 5V). This is necessary if you are operating from the USB
connector.

140 Chapter 5

4. Connect pin 4 of the Nano (labeled GND) to the breadboard’s negative
rail (blue strip).

5. Connect VCC of the HC-SR04 transducer to the positive rail.

6. Connect GND of the HC-SR04 transducer to the negative rail.

7. Connect TRIG of the HC-SR04 transducer to pin 15 (D12) of the Nano.

8. Connect ECHO of the HC-SR04 transducer to pin 14 (D11) of the Nano.

9. Insert two ZTX-649 transistors into the breadboard. Select an area
where all three pins of each transistor can have their own row.

10. Connect pin 12 (D9) of the Nano to the base of transistor Q1.

11. Connect pin 13 (D10) of the Nano to the base of transistor Q2.

12. Connect the collectors of both transistors to the positive rail (red strip).

13. Connect the emitter of transistor Q1 to one end of a 270-ohm resistor.

14. Connect the other end of the 270-ohm resistor connected to the emit-
ter of transistor Q1 to a blank row on the breadboard.

15. Connect the emitter of transistor Q2 to one end of another 270-ohm
resistor. Connect the other end of the 270-ohm resistor connected to
the emitter of transistor Q2 to another blank row on the breadboard.

16. Connect the + (long end) of LED (D1) to the 270-ohm resistor and the
other end to ground (blue strip).

17. Connect the + (long end) of LED (D2) to the second 270-ohm resistor
and the other end to ground (blue strip).

18. Connect one end of the 20 kW potentiometer to
the positive rail (red stripe).

19. Connect the opposite end of the potentiometer
to the negative rail (blue stripe).

20. Connect the wiper (center) of the potentiom-
eter to analog pin A0 (26) of the Nano.

You should be good to go! If you use the AC
connection, simply connect it to the VCC connec-
tion of the Nano.

To add a battery connection, include the 78L05
with its center pin to ground (negative rail), the
input to the positive side of the battery, and the out-
put to the positive rail (see Figure 5-7). Connect the
negative terminal of the battery to the negative rail.

The Sketch

Once the breadboard is complete, the sketch can be loaded onto the
Nano. Download the GarageSentry.ino file from http://www.nostarch.com/
arduinoplayground/. To load the file onto the Nano, follow the instructions

78L
05

inout

gnd

Figure 5-7: Pinout of
the 78L05 voltage
regulator

The Garage Sentry Parking Assistant 141

outlined in Chapter 0 on page XX. Remember to select the correct board
type. Once it’s loaded, the unit is ready for experimentation.

The sketch for the Garage Sentry serves several functions. It tells the
ultrasonic sensor to generate a wave and detects how long it takes the echo
to return. It then calculates the distance based on that time and, if neces-
sary, alerts you to stop by turning on the LEDs. Here’s the sketch in full; I’ll
walk you through it next.

/* Garage Sentry 3b
*/

int ledPin = 10;
int ledPin1 = 9;
int count;
int analogPin = A0;
int val;
int y;

void setup() {

 Serial.begin(9600);
 pinMode(ledPin, OUTPUT);
 pinMode(ledPin1, OUTPUT);
 pinMode(analogPin, INPUT);
}
void loop() {
 val = analogRead (analogPin);
 long duration, inches, cm;
 //Give a short LOW pulse beforehand to ensure a clean HIGH pulse:

 pinMode(12, OUTPUT); //Attach pin 12 to Trig
 digitalWrite(12, LOW);
 delayMicroseconds(2);
 digitalWrite(12, HIGH);
 delayMicroseconds(5);
 digitalWrite(12, LOW);

 pinMode(11, INPUT); //Pin 11 to receive Echo
 duration = pulseIn(11, HIGH);

 //Convert the time into a distance
 inches = microsecondsToInches(duration);
 cm = microsecondsToCentimeters(duration);
 val = map (val, 0, 1023, 0, 100);
 if(inches == 0)
 digitalWrite(ledPin, LOW);

 if(count == 0 && inches > 0 && inches < val) {
 for(y = 0; y < 200; y++)
 {
 digitalWrite(ledPin, HIGH);
 digitalWrite(ledPin1, LOW);
 delay(100);
 digitalWrite(ledPin, LOW);

142 Chapter 5

 digitalWrite(ledPin1, HIGH);
 delay(100);
 }
 count = count + 1;
 }

 digitalWrite(ledPin1, LOW);
 if(inches > 10) {
 //delay(1000);
 count = 0;
 }
 Serial.print(inches);
 Serial.print(" inches ");
 Serial.print(count);
 Serial.print(" count ");
 Serial.println();
 Serial.print(" Val ");
 Serial.println (val);
 delay(100);
}
long microsecondsToInches(long microseconds)
{
 return microseconds / 74 / 2;
}
long microsecondsToCentimeters(long microseconds)
{
 return microseconds / 29 / 2;

First, we define several variables, establish parameters, and load libraries
(if any). In this case, define LED1pin and LED2pin, which will serve as the alarm.
Other definitions (int) include cm and count (a variable that will be used inter-
nally), analogPin (as A0), val (to hold the limit information), and y (used in
the loop).

Inside the setup() Function
Next is the setup() function. Here, you set up Arduino features that you
might want to use; this sketch includes the serial monitor, which you prob-
ably will not need in the final product but is often useful in debugging
code, particularly if you want to change the code. This sketch sets the rate
of the monitor at 9600 baud, which is standard in many applications. It also
defines the mode of the pins you’ll use as either input or output. You could
set the pinMode values at almost any point in the code, including before or
inside the setup; they’re also often defined within the main loop, particu-
larly if the definitions are expected to change.

Inside the loop() Function
The loop() function is where everything really happens. The loop continu-
ally executes unless it’s delayed or halted by a command. So even when it
appears that nothing is happening, the controller is continually cycling

The Garage Sentry Parking Assistant 143

through the code. In this application, one of the first tasks the controller
performs in the loop is to set the variable val to store the input from the
potentiometer connected to the analog pin (analogPin).

In order to initiate the ultrasonic module’s transmit/receive function,
the sketch first calls for a low signal to be sent to the transmitter (Trig) to
purge the module to assure that the following high signal will be clean. You
can see this in the lines starting at .

Next, there’s a delay to let things settle before the sketch writes a high
to the transmit pin, which orders the transmitter to transmit an ultrasonic
signal. This is followed by another delay, and then the sketch drives digital
pin 12 low to turn off the transmitter and activates the receiver by calling
the pulseIn() method.

Determining Distance
If there’s no echo—that is, if inches == 0 or inches approaches infinity—
the controller continues to run the code until it reaches the end and
then starts again at the beginning. If it detects an echo, the number of
microseconds between turning the transmitter on and receiving signal
(duration) is then converted to both inches and centimeters. This gives
us a measurement of how far the transceiver is from the object. Note that
throughout this explanation, I will refer to inches, but you could follow
along in centimeters, too.

The microsecondsToInches and microsecondsToCentimeters commands convert
the time measurement to inches and centimeters, respectively, according
to the arithmetic discussed in “How the Garage Sentry Works” on page 135.
The data type long is used, as opposed to int, because it provides 4 bytes
of data storage instead of just 2, and the number of microseconds could
exceed the 2-byte limit of 32,767 bits. So far, so good.

In a regular formula, the distance arithmetic looks like this:

 inches
time s

inch

centimeters
time s

centi

= ÷

= ÷

2

74

2

29

µ

µ

mmeters

In either case, we first divide by 2 because the signal travels from the
transducer to the target and back, as previously discussed. In the inches
function, we then divide the halved number of microseconds by 74, and
in the centimeters function, we divide by 29. (It takes 74 µs for the signal
to travel 1 inch, and 29 µs for it to travel 1 cm; I arrived at those numbers
by following the arithmetic in “Time-to-Distance Conversion Factors” on
page 144.)

144 Chapter 5

Triggering the Alarm
The sketch is not done yet. Now we have to look at the number of inches (or
centimeters) measured and compare it to the predetermined value—val,
in this case—to see whether the alarm should be activated. To establish the
variable val as a numeric value, take a potentiometer (R2) straddling the
power supply on either end and tie the wiper to pin A0 (see Figure 5-4).
Because A0 is the input to a 10-bit analog-to-digital converter, it converts
that voltage (between 0V and 5V) to a numeric digital value between 0 and
1,023. Reading that value with an analogRead command results in a value
between 0 and 1,023 depending on the position of the potentiometer.

That value is then used to establish the trigger point for the alarm. But
allowing all 1,024 values would essentially allow the distance to be set from
0 to 1,023 inches. Because the control rotates only 270 degrees, to adjust
between, say, 40 and 42 inches would represent a very minuscule rotation—
beyond the granularity of most potentiometers.

To scale this for the potentiometer, the sketch maps the value so the
entire rotation of the potentiometer represents a distance of only about
100 inches with the following line of code:

val = map (val, 0, 1023, 0, 100);

T IME-TO -DIS TA NCE CON V E RSION FAC TORS

You could simply trust my math and copy the time-to-distance conversion code,

but you can apply this arithmetic to any project using a similar ultrasonic mod-

ule or other sensor, so I encourage you to work through the math yourself.

As I describe in “How the Garage Sentry Works” on page 135, the

speed of sound is roughly 1,125 feet per second. Multiply that by 12 inches

per foot to get 13,500 inches per second.

To get the number of seconds per inch, you simply divide this value by

13,500 inches:

1

13 500
0 000074

 second

inches

seconds

inch,
.

It takes about 74 microseconds, or 0.000074 seconds, for sound to travel

an inch. To determine the distance in centimeters, go through the same exercise,

but use 343 meters per second for the speed of sound, multiply it by 100 centi-

meters per meter, and take the reciprocal.

The Garage Sentry Parking Assistant 145

Mapping the potentiometer value changes the maximum distance from
1,023 inches down to 100 inches while leaving the minimum distance of
0 inches unchanged. You can map any set of values so the Garage Sentry’s
target distance can be from X to Y, with full rotation of the potentiometer,
so when you set up your Garage Sentry, you may want to test it and this
range until it’s right for your garage.

A conditional control structure sets the limit for the alarm. This struc-
ture makes sure that the LED is turned off when the measured distance is
0, regardless of whether the sketch is using inches or centimeters. First, the
value inches is compared to val in the following expression:

count == 0 && inches > 0 && inches < val

If this statement is true, the alarm is set off and the for loop at is acti-
vated (see page 141), which alternately blinks the LEDs 200 times before
timing out and turning the LEDs off.

The for loop just counts from 0 to 200, but that can be easily changed.
After each count, it turns on an LED, delays briefly and turns off the same
LED, delays slightly and turns on a second LED, delays slightly and turns
off the LED, and then goes to the next count. At the end of the 200 count,
the system turns off the LEDs and the program continues to the next line
where it is reset. That is, the program starts again at the beginning.

Construction

The trickiest part of the Garage Sentry is mounting the ultrasonic module
on the box. Because the module can send out sound waves only in a straight
line, you need to be able to adjust its direction so that the ultrasonic sensor
can hit its target and receive the echo. But the module includes only two
mounting holes, diagonally opposed from each other, so there’s no easy way
to fasten it to a flexible mounting. We’ll tackle that first.

Drilling Holes for the Electronics
To solve this problem, I mounted the transceiver directly to the box and
just aimed the box as required. To mount the module, drill 5/8-inch holes
in the mounting box and use standoffs to hold the board securely. See
the template in Figure 5-8 for drilling measurements. A PDF of the tem-
plate is available in this book’s online resources at http://www.nostarch.com/
arduinoplayground/, in case you want to print it and lay it over your box as a
guide. The box I recommend is made of polycarbonate plastic and is less
likely to crack than styrene or acrylic; however, it tends to catch the drill,
so be careful.

146 Chapter 5

Figure 5-8: Template for drilling transducer holes

There are several ways to drill the 5/8-inch holes. If you are good
at drilling, you could simply use a 5/8-inch drill bit and bore the holes
directly. But I discovered that the holes can be bored safely and easily by
first drilling a hole about 1/4 to 3/8 inches in diameter and then enlarging
it with a tapered reamer, available from Amazon for under $15. The larger
reamer in the Amazon set will ream a hole up to 7/8 inches in diameter,
and it is handy to have around for other projects. Use a 1/8-inch drill to
drill the holes for the standoffs, as shown in the drawing, which you can
use as a template.

If you ream out the hole, make sure to ream from both sides. Enlarge
the hole to a size that holds the transducer elements tightly—but not too
tightly. While this is not the most precise way to bore a hole and would
probably be frowned upon by professional machinists, it works well
enough here.

W A R N I N G Regardless of the size of the hole, do not hold your work piece with your hand when
drilling. Always clamp it securely. If the drill binds, the work will want to spin or
climb up the drill. Drill at a slow speed and go gently.

Next, drill the holes for the potentiometer, power jack, and two LEDs.
Select a drill size based on the particular power jack and potentiometer you
have. I used a 9/32-inch drill for the potentiometer, a 1/4-inch drill for the
3.5 mm jack, and a bit of approximately 25/64 inches for the LEDs. The size
of the 10 mm LEDs tends to vary a bit from manufacturer to manufacturer,
so I would recommend that you select a smaller drill bit, say 3/8 inches, and
ream until the LED fits tightly. Because the LED is tapered, ream from the
rear of the box so that the LED will fit better.

� ✁ ✂

The Garage Sentry Parking Assistant 147

The location of both the potentiometer and power jack is not impor-
tant, but make sure that neither crowds the transducer or Nano. You want
them to be on the bottom of the enclosure so that they are accessible after
the box is mounted (see Figure 5-12).

Mounting Options
Before you stuff the Arduino, ultrasonic sensor, and perforated board circuit
into your enclosure, figure out how you want to mount the Garage Sentry.
There are several ways to mount the box onto whatever surface you need.

Velcro Strips

If you have a good flat surface to mount the assembly to, you could simply
affix the box with adhesive Velcro (see Figure 5-9). Two sentries have been
in place in my garage that way for several months, with no sign of slippage
or deterioration.

Figure 5-9: Adhesive Velcro mounting strips used to mount the Garage
Sentry enclosure

A U-Bracket That Can Be Aimed

If you don’t have a good surface and need to aim the module at an angle,
mounting it on a U bracket that lets the sensors swing up and down or left
and right will work. In this section, I’ll describe how to build the U bracket
mount shown in Figure 5-10.

148 Chapter 5

1.75 in

1/4" hole Bend here Center mounting hole

1/4" Nut1/4" Bolt

U clamp

1.75" for 2" x 4" enclosure

or 2.0

1.50 in
or 1.75

Same on
Other Side

2.0" for 2.2" x 4.4" enclosure

0.75"

Figure 5-10: This drawing illustrates the size and shape of the optional U bracket handle
and how it connects to the enclosure. Where you see two measurements for a single
dimension, the smaller applies to the Standard Garage Sentry, while the larger applies
to the deluxe version.

To make the U bracket for the 1591 ATCL 2 × 4-inch box, take a strip
of 3/4-inch × 0.080-inch ×5 1/2-inch long aluminum (available at Ace
Hardware, Home Depot, or Lowe’s), and drill 1/4-inch holes 5/16 inches
from the ends of the aluminum strip. Drill corresponding holes with a No. 7
or 15/64 drill in the side of the enclosure centered on the ends, and thread
the holes with a 1/4-inch-20 tap. Bend the aluminum strip 1.5 inches from
each end for the standard version and 2 inches for the deluxe version (see
Figure 5-10). Using a vise is the easiest way to bend the metal, but if that’s
not convenient, you can sandwich it between a bench and piece of metal,
clamp it down, and bend it by hand (see Figure 5-10).

For the U bracket for the 1591 BTCL 2.2 × 4.4-inch box, use a 6 3/8-inch
long strip of the same material, and drill the 1/4-inch holes 1/2 inches from
the ends. Then, bend the aluminum at right angles at 3/4 inches from either
end for the standard version and 1 inch from each end for the deluxe version.

To fasten the U bracket to either enclosure, you can start by drilling
a hole in the center of each end of the enclosure. It’s simplest to drill a
No. 7—15/64 is close enough—hole at either end of the box. The easiest
way to center the holes is to draw a line along each diagonal on both ends.
Where the lines intersect is the center. Thread the holes with a 1/4-inch-
20 tap, and you’ll be able to fasten the box to the U bracket directly. The
threads in the thin ABS plastic will not be very strong, so be careful not to
overtighten the bolts.

When you’re finished attaching the bracket to your enclosure, it should
look like Figure 5-11.

The Garage Sentry Parking Assistant 149

Figure 5-11: The enclosure for the Garage Sentry can be
mounted with the bracket so it can be tilted or rotated to
point the transducers in the correct direction.

Soldering the Transistors and Current-Limiting Resistors
After testing your circuit on a breadboard and deciding how to mount the
Garage Sentry, solder the driver transistors and current-limiting resistors to a
small section of perforated phenolic or FR-4 predrilled board. Use the sche-
matic in Figure 5-4 or the instructions in “The Breadboard” on page 138 as
a guide to wiring and soldering the components in the perforated board.

Make the connections in the schematic, but otherwise, there is no right
or wrong way to assemble the perf board. I do recommend using perforated
board with copper pads for each hole to simplify soldering. Solder all the
hookup wires for the power, potentiometer, Nano, ultrasonic module, and
LEDs before attempting to mount the board on the inside of the box.

When you’re done soldering, mount the perforated board anywhere in
the box where you can find room. I used double-sided foam adhesive, and it
worked well. Mount the Nano, LEDs, and ultrasonic module next.

Wiring the Pieces Together
Finally, use 30-gauge hookup wire to connect the Nano, ultrasonic sen-
sor, perforated board circuit, and LEDs according to the schematic in
Figure 5-4. Optionally, you can use wire-wrap wire and a wire-wrap tool
to wire up the sections, but it is not necessary and can be expensive if you
don’t already have the tool and wire.

150 Chapter 5

Wiring the components and fitting them in the box may be a little
messy, but it saves building a shield. Figure 5-12 shows the box as it was
being assembled.

Figure 5-12: The Standard Garage Sentry uses wire wrap for the final connections.

The Deluxe Garage Sentry

That’s it! Or is it?
I have been using the standard model in my garage for several months;

it does what it’s supposed to do and does it well. But it seems like some-
thing’s missing. The alarm goes off when you reach the desired spot in the
garage, but why not have it give you a little warning before you get there so
you can slow down as you approach the stopping point?

The idea is to have the system warn you at some pre-established dis-
tance from the stopping point so you don’t have to stop suddenly. It isn’t
much extra effort to add two more LEDs to go off at different distances.
Figure 5-13 shows the Deluxe Garage Sentry.

Now, let’s discuss how to assemble the Deluxe Garage Sentry.

Arduino Nano

Ultrasonic module

Perforated
circuit board

Distance target control3.5 mm
Power jack

The Garage Sentry Parking Assistant 151

Red and Blue LEDsGreen LEDs Amber LEDs

Sockets for Nano

Figure 5-13: The Deluxe Garage Sentry sets off three stages of alarms.

The Deluxe Schematic
Hand-wiring everything in the standard version is tedious. So for the
deluxe version, I developed a shield (PCB) that holds the LEDs, potenti-
ometer, Nano, transistors, and current-limiting resistors (see Figure 5-13).
Adding the LEDs and extra transistors required some changes in the cir-
cuitry. Figure 5-14 shows the revised schematic.

Figure 5-14: The deluxe schematic has additional LEDs, driver transistors, and current-
limiting resistors on the right-hand side.

152 Chapter 5

Note that this circuit drives the transistors as emitter followers. As
such, the base shows a high resistance, and therefore no resistor is required
between the Arduino and the resistors Q1 through Q4. If you were driving
using a common emitter, however, you would need a resistor, as current
would flow through the base-emitter junction, short out the driver, and
burn out the transistor.

N O T E To improve the Garage Sentry further, you could also conceivably double or otherwise
increase the range using special transducers and electronics, but in this application,
the 10-foot operating range is more than enough.

A Bigger Box
Both the green and amber LEDs operate as pairs, so only a single driver
transistor is required for each pair. But with all this new circuitry, the deluxe
board does not easily fit in the same enclosure as the standard version.

You’ll need to find a larger box for the deluxe version, which provides
you with some other benefits. With a larger, clear polycarbonate enclo-
sure, like Hammond 1591 BTCL, the LEDs can stay inside the box and
still be visible so you won’t have to drill holes to mate with the LEDs in the
PC board. You’ll have to drill only four holes: the two large holes for the
ultrasonic sensor, a hole for the power jack, and one for the potentiometer.
These holes make it possible to mount the ultrasonic sensor on top of the
Nano board with double-sided foam tape, which is in turn mounted to the
shield (see Figure 5-15). In other words, you create a sandwich with the
Nano in the middle, the shield on the bottom, and the ultrasonic module
on the top. This design eliminates the need for the mounting screws used
in the first version.

Figure 5-15: Compared to the Standard Garage Sentry, there is virtually
no hand wiring in the deluxe version. The driver transistors and current-
limiting resistors for the LEDs are located under the Nano board.

The Garage Sentry Parking Assistant 153

Simply use the same template you used in the standard version, and
drill (and/or ream) the two 5/8-inch holes for the two ultrasonic elements.
The shield itself can be fastened to the bottom of the box with small flat-
head screws and nuts or with more double-sided foam tape. When you affix
the potentiometer to the box, it should hold the board in place, as its leads
are soldered to the shield. Figure 5-15 shows the deluxe version; note how
much neater it is than the standard version from Figure 5-12.

Before drilling the hole for the potentiometer, carefully measure the
height of the potentiometer hole and drill the hole slightly oversized so
that the shaft and screw can be inserted at an angle into the box. You’ll also
note in Figure 5-15 that the corners of the printed circuit board have been
clipped off so as not to get in the way of the studs used for the top screws of
the enclosure.

I suggest mounting the power connection on the same surface of the
box as the potentiometer—that is, the bottom. Here, the power connection
and potentiometer will be accessible after mounting, leaving the top free
to fit snugly against a shelf. The unit can just as easily be mounted upside
down with the adjustment and power jack on the top.

The Shield
Figure 5-16 shows the shield for the Deluxe Garage Sentry. If you want
to build this shield, download this book’s resource files, look for the file
GarageSentryDel.pcb, follow the etching instructions in “Making Your Own
PCBs” on page XX, and solder your components to the board. You can also
take the file and send it out to one of the service bureaus to have the board
made for you.

Figure 5-16: This is the shield for the Deluxe Garage Sentry, which simplifies the individual
wires that had to be soldered to complete the earlier version.

154 Chapter 5

The potentiometer is soldered directly to the shield, though you’ll still
have to solder wires to the power jack and to the ultrasonic module. As you
can see in Figure 5-16, the connections for the ultrasonic sensor are located
on the left-hand side.

The green LEDs are on the outermost edges, the amber LEDs are next,
and the flashing red and blue LEDs are in the middle. The connections
for the potentiometer are on the lower right-hand side, next to the first two
connections, which are ground and VIN (from left to right). The potenti-
ometer helps hold the shield in place in the enclosure.

This version uses high-power LEDs that draw a fair amount of current.
Because the sentry uses the 5V voltage regulator on the Nano, the transis-
tors driving the LEDs are wired directly to the 9V input voltage, allowing
the unit to function without a separate voltage regulator. The LEDs are
configured with the driver transistors as emitter followers, so the voltage
to the LEDs will “follow” the voltage on the base of the transistor—that is,
5V—and not present LEDs with 9V.

There are several jumpers required on this shield, including the jumper
for the power, which connects to the collectors of the transistors and con-
nects the raw input to the (VIN) Nano. There are also jumpers to connect
the ground to the LEDs.

I mounted the transistors and current-limiting resistors under the Nano
to save some space. Also, note that the connections for the ultrasonic mod-
ule in the standard version call for a right-angle female header, but doing
that in the deluxe version means the length of the male part gets in the way
of the LEDs, so I simply soldered the connections to the PC board and to
the ultrasonic module to keep the wires out of the way.

The Sketch for the Deluxe Garage Sentry
Before you build the Deluxe Garage Sentry, download GarageSentryDel.ino
from this book’s resource files at http://www.nostarch.com/arduinoplayground/,
and upload it onto your Arduino Nano according to the instructions pro-
vided in Chapter 0 on page XX. The sketch is basically the same as the
Standard Garage Sentry sketch, but it’s updated to include the new LEDs.

/* Deluxe Garage Sentry: goes with the shield PCB
*/

int ledPin = 8;
int ledPin1 = 7;
int ledPin2 = 10;
int ledPin3 = 9;
int count;
int analogPin = A0;
int val;
int y;

The Garage Sentry Parking Assistant 155

void setup() {
 // initialize serial communication:
 Serial.begin(9600);
 pinMode(ledPin, OUTPUT);
 pinMode(ledPin1, OUTPUT);
 pinMode(ledPin2,OUTPUT);
 pinMode(ledPin3,OUTPUT);
 pinMode(analogPin, INPUT);
}

void loop() {
 val = analogRead(analogPin);

 long duration, inches, cm;

 pinMode(12, OUTPUT);
 digitalWrite(12, LOW);
 delayMicroseconds(2);
 digitalWrite(12, HIGH);
 delayMicroseconds(5);
 digitalWrite(12, LOW);

 pinMode(11, INPUT); //attached to Echo
 duration = pulseIn(11, HIGH);

 // convert the time into a distance
 inches = microsecondsToInches(duration);
 cm = microsecondsToCentimeters(duration);

 val = map(val, 0, 1023, 0, 100);
 //map the value of the potentiometer to 0 to 100

 if(inches == 0)
 digitalWrite(ledPin, LOW);

 if(count == 0 && inches > 0 && inches < val + 15)
 digitalWrite(ledPin2, HIGH);
 else digitalWrite(ledPin2, LOW);

 if(count == 0 && inches > 0 && inches < val + 7.5)
 digitalWrite(ledPin3, HIGH);
 else digitalWrite(ledPin3, LOW);

 if(count == 0 && inches > 0 && inches < val) {
 for(y = 0; y < 200; y++) //repeating blink sequence {
 digitalWrite(ledPin, HIGH);
 digitalWrite(ledPin1, LOW);
 delay(100);
 digitalWrite(ledPin, LOW);
 digitalWrite(ledPin1, HIGH);
 delay(100);
 }

156 Chapter 5

 count = count + 1; //turn off instruction
 }
 digitalWrite(ledPin1, LOW);

 if(inches > 10) { //reset if inches > 10
 delay(1000);
 count = 0;
 }

 Serial.print(inches);
 Serial.print(" inches ");
 Serial.print(count);
 Serial.print(" count ");
 Serial.println();
 Serial.print(" val ");
 Serial.println(val);
 delay(100);
}

long microsecondsToInches(long microseconds) {
 return microseconds / 74 / 2;
}

long microsecondsToCentimeters(long microseconds) {
 return microseconds / 29 / 2;
}

The most notable difference between the deluxe sketch and the stan-
dard sketch is that in the two if-else statements at and , the green
and amber LEDs are activated at different distances, based on the stop-
ping point. For example, if the stopping point is set to 36 inches, or Val in
the sketch, then the green LED turns on at VAL + 15, or 52 inches, and the
amber LED turns on at VAL + 7.5, or 43.5 inches. This way the green LEDs
will turn on when the car is 15 inches from the final stopping point, and
the amber LEDs will turn on when the car is 7.5 inches from the stopping
point. These numbers were selected arbitrarily, and you can change them.

The red and blue LEDs start flashing when the car has reached the
stopping point. You can see how the LEDs are flashed at .

Figure 5-17 shows the completed Deluxe Garage Sentry mounted on my
garage workbench with the car in place.

The Garage Sentry Parking Assistant 157

Figure 5-17: Completed Deluxe Garage Sentry mounted on my garage workbench with
the car in place

The completed sentry unit works flawlessly. Depending on your particu-
lar garage and where you place the unit, you might want to adjust the sketch
to make the green and amber lights turn on at different distances. The unit
pictured has been working perfectly for almost six months now, and I don’t
know how I’d be able to pull my car in the garage without it.

Mounted and functioning
Deluxe Garage Sentry

