
2
D E B U G G E R S A N D

D E B U G G E R D E S I G N

Debuggers are the apple of the hacker’s eye. Debuggers
enable you to perform runtime tracing of a process,
or dynamic analysis. The ability to perform dynamic
analysis is absolutely essential when it comes to exploit
development, fuzzer assistance, and malware inspection. It is crucial that you
understand what debuggers are and what makes them tick. Debuggers provide
a whole host of features and functionality that are useful when assessing soft-
ware for defects. Most come with the ability to run, pause, or step a process;
set breakpoints; manipulate registers and memory; and catch exceptions that
occur inside the target process.

But before we move forward, let’s discuss the difference between a
white-box debugger and a black-box debugger. Most development platforms,
or IDEs, contain a built-in debugger that enables developers to trace through
their source code with a high degree of control. This is called white-box
debugging. While these debuggers are useful during development, a reverse
engineer, or bug hunter, rarely has the source code available and must employ
black-box debuggers for tracing target applications. A black-box debugger

Gray Hat Python
(C) 2009 by Justin Seitz

14 Chapter 2

assumes that the software under inspection is completely opaque to the
hacker, and the only information available is in a disassembled format.
While this method of finding errors is more challenging and time consuming,
a well-trained reverse engineer is able to understand the software system at a
very high level. Sometimes the folks breaking the software can gain a deeper
understanding than the developers who built it!

It is important to differentiate two subclasses of black-box debuggers: user
mode and kernel mode. User mode (commonly referred to as ring 3) is a pro-
cessor mode under which your user applications run. User-mode applications
run with the least amount of privilege. When you launch calc.exe to do some
math, you are spawning a user-mode process; if you were to trace this applica-
tion, you would be doing user-mode debugging. Kernel mode (ring 0) is the
highest level of privilege. This is where the core of the operating system runs,
along with drivers and other low-level components. When you sniff packets
with Wireshark, you are interacting with a driver that works in kernel mode.
If you wanted to halt the driver and examine its state at any point, you would
use a kernel-mode debugger.

There is a short list of user-mode debuggers commonly used by reverse
engineers and hackers: WinDbg, from Microsoft, and OllyDbg, a free debugger
from Oleh Yuschuk. When debugging on Linux, you’d use the standard GNU
Debugger (gdb) . All three of these debuggers are quite powerful, and each
offers a strength that others don’t provide.

In recent years, however, there have been substantial advances in intelligent
debugging, especially for the Windows platform. An intelligent debugger is
scriptable, supports extended features such as call hooking, and generally
has more advanced features specifically for bug hunting and reverse engineer-
ing. The two emerging leaders in this field are PyDbg by Pedram Amini and
Immunity Debugger from Immunity, Inc.

PyDbg is a pure Python debugging implementation that allows the
hacker full and automated control over a process, entirely in Python.
Immunity Debugger is an amazing graphical debugger that looks and feels
like OllyDbg but has numerous enhancements as well as the most powerful
Python debugging library available today. Both of these debuggers get a
thorough treatment in later chapters of this book. But for now, let’s dive
into some general debugging theory.

In this chapter, we will focus on user-mode applications on the x86 plat-
form. We will begin by examining some very basic CPU architecture, coverage
of the stack, and the anatomy of a user-mode debugger. The goal is for you
to be able create your own debugger for any operating system, so it is critical
that you understand the low-level theory first.

2.1 General-Purpose CPU Registers

A register is a small amount of storage on the CPU and is the fastest method
for a CPU to access data. In the x86 instruction set, a CPU uses eight general-
purpose registers: EAX, EDX, ECX, ESI, EDI, EBP, ESP, and EBX. More
registers are available to the CPU, but we will cover them only in specific

Gray Hat Python
(C) 2009 by Justin Seitz

Debugge rs and Debugge r Des ign 15

circumstances where they are required. Each of the eight general-purpose
registers is designed for a specific use, and each performs a function that
enables the CPU to efficiently process instructions. It is important to under-
stand what these registers are used for, as this knowledge will help to lay the
groundwork for understanding how to design a debugger. Let’s walk through
each of the registers and its function. We will finish up by using a simple
reverse engineering exercise to illustrate their uses.

The EAX register, also called the accumulator register, is used for perform-
ing calculations as well as storing return values from function calls. Many
optimized instructions in the x86 instruction set are designed to move data
into and out of the EAX register and perform calculations on that data.
Most basic operations like add, subtract, and compare are optimized to use
the EAX register. As well, more specialized operations like multiplication or
division can occur only within the EAX register.

As previously noted, return values from function calls are stored in EAX.
This is important to remember, so that you can easily determine if a function
call has failed or succeeded based on the value stored in EAX. In addition,
you can determine the actual value of what the function is returning.

The EDX register is the data register. This register is basically an extension
of the EAX register, and it assists in storing extra data for more complex
calculations like multiplication and division. It can also be used for general-
purpose storage, but it is most commonly used in conjunction with calcula-
tions performed with the EAX register.

The ECX register, also called the count register, is used for looping
operations. The repeated operations could be storing a string or counting
numbers. An important point to understand is that ECX counts downward,
not upward. Take the following snippet in Python, for example:

counter = 0

while counter < 10:

 print "Loop number: %d" % counter

 counter += 1

If you were to translate this code to assembly, ECX would equal 10 on the
first loop, 9 on the second loop, and so on. This is a bit confusing, as it is the
reverse of what is shown in Python, but just remember that it’s always a down-
ward count, and you’ll be fine.

In x86 assembly, loops that process data rely on the ESI and EDI registers
for efficient data manipulation. The ESI register is the source index for the data
operation and holds the location of the input data stream. The EDI register
points to the location where the result of a data operation is stored, or the
destination index. An easy way to remember this is that ESI is used for reading
and EDI is used for writing. Using the source and destination index registers
for data operation greatly improves the performance of the running program.

The ESP and EBP registers are the stack pointer and the base pointer,
respectively. These registers are used for managing function calls and stack
operations. When a function is called, the arguments to the function are

Gray Hat Python
(C) 2009 by Justin Seitz

16 Chapter 2

pushed onto the stack and are followed by the return address. The ESP register
points to the very top of the stack, and so it will point to the return address.
The EBP register is used to point to the bottom of the call stack. In some
circumstances a compiler may use optimizations to remove the EBP register
as a stack frame pointer; in these cases the EBP register is freed up to be used
like any other general-purpose register.

The EBX register is the only register that was not designed for anything
specific. It can be used for extra storage.

One extra register that should be mentioned is the EIP register. This
register points to the current instruction that is being executed. As the CPU
moves through the binary executing code, EIP is updated to reflect the
location where the execution is occurring.

A debugger must be able to easily read and modify the contents of these
registers. Each operating system provides an interface for the debugger to
interact with the CPU and retrieve or modify these values. We’ll cover the
individual interfaces in the operating system–specific chapters.

2.2 The Stack

The stack is a very important structure to understand when developing a
debugger. The stack stores information about how a function is called, the
parameters it takes, and how it should return after it is finished executing.
The stack is a First In, Last Out (FILO) structure, where arguments are pushed
onto the stack for a function call and popped off the stack when the function
is finished. The ESP register is used to track the very top of the stack frame,
and the EBP register is used to track the bottom of the stack frame. The stack
grows from high memory addresses to low memory addresses. Let’s use our
previously covered function my_socks() as a simplified example of how the
stack works.

Function Call in C

int my_socks(color_one, color_two, color_three);

Function Call in x86 Assembly

push color_three

push color_two

push color_one

call my_socks

To see what the stack frame would look like, refer to Figure 2-1.

Gray Hat Python
(C) 2009 by Justin Seitz

Debugge rs and Debugge r Des ign 17

Figure 2-1: Stack frame for the my_socks() function call

As you can see, this is a straightforward data structure and is the basis for
all function calls inside a binary. When the my_socks() function returns, it pops
off all the values on the stack and jumps to the return address to continue
executing in the parent function that called it. The other consideration is
the notion of local variables. Local variables are slices of memory that are valid
only for the function that is executing. To expand our my_socks() function a
bit, let’s assume that the first thing it does is set up a character array into which
to copy the parameter color_one. The code would look like this:

int my_socks(color_one, color_two, color_three)

{

 char stinky_sock_color_one[10];

 ...

}

The variable stinky_sock_color_one would be allocated on the stack so
that it can be used within the current stack frame. Once this allocation has
occurred, the stack frame will look like the image in Figure 2-2.

Figure 2-2: The stack frame after the local variable stinky_sock_color_one
has been allocated

Return address

color_one

color_two

color_three

Base of stack frame

ESP register

EBP register

Stack growth direction

Return address

color_one

color_two

color_three

Base of stack frame

ESP register

EBP register

Stack growth direction

stinky_sock_color_one

Gray Hat Python
(C) 2009 by Justin Seitz

18 Chapter 2

Now you can see how local variables are allocated on the stack and how
the stack pointer gets incremented to continue to point to the top of the
stack. The ability to capture the stack frame inside a debugger is very useful
for tracing functions, capturing the stack state on a crash, and tracking down
stack-based overflows.

2.3 Debug Events

Debuggers run as an endless loop that waits for a debugging event to occur.
When a debugging event occurs, the loop breaks, and a corresponding event
handler is called.

When an event handler is called, the debugger halts and awaits direction
on how to continue. Some of the common events that a debugger must trap
are these:

� Breakpoint hits

� Memory violations (also called access violations or segmentation faults)

� Exceptions generated by the debugged program

Each operating system has a different method for dispatching these
events to a debugger, which will be covered in the operating system–specific
chapters. In some operating systems, other events can be trapped as well,
such as thread and process creation or the loading of a dynamic library at
runtime. We will cover these special events where applicable.

An advantage of a scripted debugger is the ability to build custom event
handlers to automate certain debugging tasks. For example, a buffer overflow
is a common cause for memory violations and is of great interest to a hacker.
During a regular debugging session, if there is a buffer overflow and a memory
violation occurs, you must interact with the debugger and manually capture
the information you are interested in. With a scripted debugger, you are able
to build a handler that automatically gathers all of the relevant information
without having to interact with it. The ability to create these customized
handlers not only saves time, but it also enables a far wider degree of control
over the debugged process.

2.4 Breakpoints

The ability to halt a process that is being debugged is achieved by setting
breakpoints. By halting the process, you are able to inspect variables, stack
arguments, and memory locations without the process changing any of their
values before you can record them. Breakpoints are most definitely the most
common feature that you will use when debugging a process, and we will
cover them extensively. There are three primary breakpoint types: soft break-
points, hardware breakpoints, and memory breakpoints. They each have very
similar behavior, but they are implemented in very different ways.

Gray Hat Python
(C) 2009 by Justin Seitz

Debugge rs and Debugge r Des ign 19

2.4.1 Soft Breakpoints

Soft breakpoints are used specifically to halt the CPU when executing instruct-
ions and are by far the most common type of breakpoints that you will use
when debugging applications. A soft breakpoint is a single-byte instruction
that stops execution of the debugged process and passes control to the
debugger’s breakpoint exception handler. In order to understand how this
works, you have to know the difference between an instruction and an opcode
in x86 assembly.

An assembly instruction is a high-level representation of a command for
the CPU to execute. An example is

MOV EAX, EBX

This instruction tells the CPU to move the value stored in the register
EBX into the register EAX. Pretty simple, eh? However, the CPU does not
know how to interpret that instruction; it needs it to be converted into some-
thing called an opcode. An operation code, or opcode, is a machine language
command that the CPU executes. To illustrate, let’s convert the previous
instruction into its native opcode:

8BC3

As you can see, this obfuscates what’s really going on behind the scenes,
but it’s the language that the CPU speaks. Think of assembly instructions as
the DNS of CPUs. Instructions make it really easy to remember commands
that are being executed (hostnames) instead of having to memorize all of the
individual opcodes (IP addresses). You will rarely need to use opcodes in
your day-to-day debugging, but they are important to understand for the
purpose of soft breakpoints.

If the instruction we covered previously was at address 0x44332211, a
common representation would look like this:

0x44332211: 8BC3 MOV EAX, EBX

This shows the address, the opcode, and the high-level assembly instruc-
tion. In order to set a soft breakpoint at this address and halt the CPU, we
have to swap out a single byte from the 2-byte 8BC3 opcode. This single byte
represents the interrupt 3 (INT 3) instruction, which tells the CPU to halt.
The INT 3 instruction is converted into the single-byte opcode 0xCC. Here is
our previous example, before and after setting a breakpoint.

Opcode Before Breakpoint Is Set

0x44332211: 8BC3 MOV EAX, EBX

Gray Hat Python
(C) 2009 by Justin Seitz

20 Chapter 2

Modified Opcode After Breakpoint Is Set

0x44332211: CCC3 MOV EAX, EBX

You can see that we have swapped out the 8B byte and replaced it with
a CC byte. When the CPU comes skipping along and hits that byte, it halts,
firing an INT3 event. Debuggers have the built-in ability to handle this event,
but since you will be designing your own debugger, it’s good to understand
how the debugger does it. When the debugger is told to set a breakpoint at a
desired address, it reads the first opcode byte at the requested address and
stores it. Then the debugger writes the CC byte to that address. When a break-
point, or INT3, event is triggered by the CPU interpreting the CC opcode, the
debugger catches it. The debugger then checks to see if the instruction pointer
(EIP register) is pointing to an address on which it had set a breakpoint
previously. If the address is found in the debugger’s internal breakpoint list,
it writes back the stored byte to that address so that the opcode can execute
properly after the process is resumed. Figure 2-3 describes this process in
detail.

Figure 2-3: The process of setting a soft breakpoint

As you can see, the debugger must do quite a dance in order to handle
soft breakpoints. There are two types of soft breakpoints that can be set:
one-shot breakpoints and persistent breakpoints. A one-shot soft breakpoint
means that once the breakpoint is hit, it gets removed from the internal
breakpoint list; it’s good for only one hit. A persistent breakpoint gets restored
after the CPU has executed the original opcode, and so the entry in the
breakpoint list is maintained.

� Debugger is instructed to set a
breakpoint on 0x44332211;
it reads in and stores the first byte.

� Overwrite the first byte with the
0xCC (INT 3) opcode.

� When the CPU hits the breakpoint,
the internal lookup occurs, and the
byte is flipped back.

Breakpoint List

Address Byte

0x44332211 8B

...
0x44332211: 8BC3 MOV EAX, EBX
...

8B

8B

CC

CPU (EIP)

8B

Gray Hat Python
(C) 2009 by Justin Seitz

Debugge rs and Debugge r Des ign 21

Soft breakpoints have one caveat, however: when you change a byte of
the executable in memory, you change the running software’s cyclic redundancy
check (CRC) checksum. A CRC is a type of function that is used to determine
if data has been altered in any way, and it can be applied to files, memory,
text, network packets, or anything you would like to monitor for data altera-
tion. A CRC will take a range of values—in this case the running process’s
memory—and hash the contents. It then compares the hashed value against
a known CRC checksum to determine whether there have been changes to
the data. If the checksum is different from the checksum that is stored for
validation, the CRC check fails. This is important to note, as quite often
malware will test its running code in memory for any CRC changes and will
kill itself if a failure is detected. This is a very effective technique to slow
reverse engineering and prevent the use of soft breakpoints, thus limiting
dynamic analysis of its behavior. In order to work around these specific
scenarios, you can use hardware breakpoints.

2.4.2 Hardware Breakpoints

Hardware breakpoints are useful when a small number of breakpoints are
desired and the debugged software itself cannot be modified. This style of
breakpoint is set at the CPU level, in special registers called debug registers. A
typical CPU has eight debug registers (registers DR0 through DR7), which
are used to set and manage hardware breakpoints. Debug registers DR0
through DR3 are reserved for the addresses of the breakpoints. This means
you can use only up to four hardware breakpoints at a time. Registers DR4
and DR5 are reserved, and DR6 is used as the status register, which determines
the type of debugging event triggered by the breakpoint once it is hit. Debug
register DR7 is essentially the on/off switch for the hardware breakpoints
and also stores the different breakpoint conditions. By setting specific flags
in the DR7 register, you can create breakpoints for the following conditions:

� Break when an instruction is executed at a particular address.

� Break when data is written to an address.

� Break on reads or writes to an address but not execution.

This is very useful, as you have the ability to set up to four very specific
conditional breakpoints without modifying the running process. Figure 2-4
shows how the fields in DR7 are related to the hardware breakpoint behavior,
length, and address.

Bits 0–7 are essentially the on/off switches for activating breakpoints.
The L and G fields in bits 0–7 stand for local and global scope. I depict both
bits as being set. However, setting either one will work, and in my experience
I have not had any issues doing so during user-mode debugging. Bits 8–15 in
DR7 are not used for the normal debugging purposes that we will be exer-
cising. Refer to the Intel x86 manual for further explanation of those bits.
Bits 16–31 determine the type and length of the breakpoint that is being set
for the related debug register.

Gray Hat Python
(C) 2009 by Justin Seitz

22 Chapter 2

Figure 2-4: You can see how the flags set in the DR7 register dictate what type of break-
point is used.

Unlike soft breakpoints, which use the INT3 event, hardware breakpoints
use interrupt 1 (INT1). The INT1 event is for hardware breakpoints and single-
step events. Single-step simply means going one-by-one through instructions,
allowing you to very closely inspect critical sections of code while monitoring
data changes.

Hardware breakpoints are handled in much the same way as soft break-
points, but the mechanism occurs at a lower level. Before the CPU attempts
to execute an instruction, it first checks to see whether the address is currently
enabled for a hardware breakpoint. It also checks to see whether any of the
instruction operators access memory that is flagged for a hardware breakpoint.
If the address is stored in debug registers DR0–DR3 and the read, write, or

Layout of DR7 Register

00000000011100001 1 1 1 0 0 0 0

DR7 with Additional 2-byte Read/Write Breakpoint at 0x55667788

0x55667788

D
R
1

00000000000000001 1 0 0 0 0 0 0

DR7 with 1-byte Execution Breakpoint Set at 0x44332211

D
R
0

Bits

DR
3

Len

30 31

DR
3

Type

28 29

DR
2

Len

26 27

DR
2

Type

24 25

DR
1

Len

22 23

DR
1

Type

20 21

DR
0

Len

18 19

DR
0

Type

16 178 − 15

D
R
0

0

L
D
R
1

2

L
D
R
2

4

L
D
R
3

6

L
D
R
0

1

G
D
R
1

3

G
D
R
2

5

G
D
R
3

7

G

0x44332211

Breakpoint Flags

00 – Break on execution 00 – 1 byte

01 – Break on data writes 01 – 2 bytes (WORD)

11 – Break on reads or writes but not execution 11 – 4 bytes (DWORD)

Breakpoint Length Flags

Gray Hat Python
(C) 2009 by Justin Seitz

Debugge rs and Debugge r Des ign 23

execute conditions are met, an INT1 is fired and the CPU halts. If the address
is not currently stored in the debug registers, the CPU executes the instruction
and carries on to the next instruction, where it performs the check again, and
so on.

Hardware breakpoints are extremely useful, but they do come with
some limitations. Aside from the fact that you can set only four individual
breakpoints at a time, you can also only set a breakpoint on a maximum of
four bytes of data. This can be limiting if you want to track access to a large
section of memory. In order to work around this limitation, you can have
the debugger use memory breakpoints.

2.4.3 Memory Breakpoints

Memory breakpoints aren’t really breakpoints at all. When a debugger is setting
a memory breakpoint, it is changing the permissions on a region, or page, of
memory. A memory page is the smallest portion of memory that an operating
system handles. When a memory page is allocated, it has specific access
permissions set, which dictate how that memory can be accessed. Some
examples of memory page permissions are these:

Page execution This enables execution but throws an access violation if
the process attempts to read or write to the page.

Page read This enables the process only to read from the page; any
writes or execution attempts cause an access violation.

Page write This allows the process to write into the page.

Guard page Any access to a guard page results in a one-time exception,
and then the page returns to its original status.

Most operating systems allow you to combine these permissions.
For example, you may have a page in memory where you can read and write,
while another page may allow you to read and execute. Each operating
system also has intrinsic functions that allow you to query the current memory
permissions in place for a particular page and modify them if so desired.
Refer to Figure 2-5 to see how data access works with the various memory
page permissions set.

The page permission we are interested in is the guard page. This type
of page is quite useful for such things as separating the heap from the stack
or ensuring that a portion of memory doesn’t grow beyond an expected
boundary. It is also quite useful for halting a process when it hits a particular
section of memory. For example, if we are reverse engineering a networked
server application, we could set a memory breakpoint on the region of
memory where the payload of a packet is stored after it’s received. This
would enable us to determine when and how the application uses received
packet contents, as any accesses to that memory page would halt the CPU,
throwing a guard page debugging exception. We could then inspect the
instruction that accessed the buffer in memory and determine what it is

Gray Hat Python
(C) 2009 by Justin Seitz

24 Chapter 2

doing with the contents. This breakpoint technique also works around the
data alteration problems that soft breakpoints have, as we aren’t changing
any of the running code.

Figure 2-5: The behavior of the various memory page permissions

Now that we have covered some of the basic aspects of how a debugger
works and how it interacts with the operating system, it’s time to begin coding
our first lightweight debugger in Python. We will begin by creating a simple
debugger in Windows where the knowledge you have gained in both ctypes
and debugging internals will be put to good use. Get those coding fingers
warmed up.

Read, Write, or Execution
flags on a memory page
allow data to be moved in
and out or executed on.

Any type of data access
on a guard page will
result in an exception
being raised. The original
data operation will fail.

010101010110101001010101010010110101010101001
R W

010101010110101001010101010010110101010101001
R W

GUARD PAGE EXCEPTION

Read
Write

Execute

Guard
Page

Gray Hat Python
(C) 2009 by Justin Seitz

4
P Y D B G — A P U R E P Y T H O N

W I N D O W S D E B U G G E R

If you’ve made it this far, then you should have a good
understanding of how to use Python to construct a
user-mode debugger for Windows. We’ll now move on
to learning how to harness the power of PyDbg, an
open source Python debugger for Windows. PyDbg was released by Pedram
Amini at Recon 2006 in Montreal, Quebec, as a core component in the
PaiMei1 reverse engineering framework. PyDbg has been used in quite a few
tools, including the popular proxy fuzzer Taof and a Windows driver fuzzer
that I built called ioctlizer. We will start with extending breakpoint handlers
and then move into more advanced topics such as handling application
crashes and taking process snapshots. Some of the tools we’ll build in this
chapter can be used later on to support some of the fuzzers we are going to
develop. Let’s get on with it.

1 The PaiMei source tree, documentation, and development roadmap can be found at http://
code.google.com/p/paimei/.

Gray Hat Python
(C) 2009 by Justin Seitz

58 Chapter 4

4.1 Extending Breakpoint Handlers

In the previous chapter we covered the basics of using event handlers to
handle specific debugging events. With PyDbg it is quite easy to extend this
basic functionality by implementing user-defined callback functions. With a
user-defined callback, we can implement custom logic when the debugger
receives a debugging event. The custom code can do a variety of things
such as read certain memory offsets, set further breakpoints, or manipulate
memory. Once the custom code has run, we return control to the debugger
and allow it to resume the debuggee.

The PyDbg function to set soft breakpoints has the following prototype:

bp_set(address, description="",restore=True,handler=None)

The address parameter is the address where the soft breakpoint should
be set; the description parameter is optional and can be used to uniquely
name each breakpoint. The restore parameter determines whether the
breakpoint should automatically be reset after it’s handled, and the handler
parameter specifies which function to call when this breakpoint is encoun-
tered. Breakpoint callback functions take only one parameter, which is an
instance of the pydbg() class. All context, thread, and process information will
already be populated in this class when it is passed to the callback function.

Using our printf_loop.py script, let’s implement a user-defined callback
function. For this exercise, we will read the value of the counter that is used
in the printf loop and replace it with a random number between 1 and 100.
One neat thing to remember is that we are actually observing, recording,
and manipulating live events inside the target process. This is truly powerful!
Open a new Python script, name it printf_random.py, and enter the following
code.

printf_random.py

from pydbg import *

from pydbg.defines import *

import struct

import random

This is our user defined callback function

def printf_randomizer(dbg):

 # Read in the value of the counter at ESP + 0x8 as a DWORD

 parameter_addr = dbg.context.Esp + 0x8

 counter = dbg.read_process_memory(parameter_addr,4)

 # When we use read_process_memory, it returns a packed binary

 # string. We must first unpack it before we can use it further.

Gray Hat Python
(C) 2009 by Justin Seitz

PyDbg—A Pure Py thon Windows Debugger 59

 counter = struct.unpack("L",counter)[0]

 print "Counter: %d" % int(counter)

 # Generate a random number and pack it into binary format

 # so that it is written correctly back into the process

 random_counter = random.randint(1,100)

 random_counter = struct.pack("L",random_counter)[0]

 # Now swap in our random number and resume the process

 dbg.write_process_memory(parameter_addr,random_counter)

 return DBG_CONTINUE

Instantiate the pydbg class

dbg = pydbg()

Now enter the PID of the printf_loop.py process

pid = raw_input("Enter the printf_loop.py PID: ")

Attach the debugger to that process

dbg.attach(int(pid))

Set the breakpoint with the printf_randomizer function

defined as a callback

printf_address = dbg.func_resolve("msvcrt","printf")

dbg.bp_set(printf_address,description="printf_address",handler=printf_randomizer)

Resume the process

dbg.run()

Now run both the printf_loop.py and the printf_random.py scripts. The
output should look similar to what is shown in Table 4-1.

Table 4-1: Output from the Debugger and the Manipulated Process

Output from Debugger Output from Debugged Process

Enter the printf_loop.py PID: 3466 Loop iteration 0!

… Loop iteration 1!

… Loop iteration 2!

… Loop iteration 3!

Counter: 4 Loop iteration 32!

Counter: 5 Loop iteration 39!

Counter: 6 Loop iteration 86!

Counter: 7 Loop iteration 22!

Counter: 8 Loop iteration 70!

Counter: 9 Loop iteration 95!

Counter: 10 Loop iteration 60!

Gray Hat Python
(C) 2009 by Justin Seitz

60 Chapter 4

You can see that the debugger set a breakpoint on the fourth iteration
of the infinite printf loop, because the counter as recorded by the debugger
is set to 4. You will also notice that the printf_loop.py script ran fine until it
reached iteration 4; instead of outputting the number 4, it output the
number 32! It is clear to see how our debugger records the real value of
the counter and sets the counter to a random number before it is output
by the debugged process. This is a simple yet powerful example of how you
can easily extend a scriptable debugger to perform additional actions when
debugging events occur. Now let’s take a look at handling application crashes
with PyDbg.

4.2 Access Violation Handlers

An access violation occurs inside a process when it attempts to access memory
it doesn’t have permission to access or in a particular way that it is not allowed.
The faults that lead to access violations range from buffer overflows to improp-
erly handled null pointers. From a security perspective, every access violation
should be reviewed carefully, as the violation might be exploited.

When an access violation occurs within a debugged process, the debugger
is responsible for handling it. It is crucial that the debugger trap all informa-
tion that is relevant, such as the stack frame, the registers, and the instruction
that caused the violation. You can now use this information as a starting point
for writing an exploit or creating a binary patch.

PyDbg has an excellent method for installing an access violation handler,
as well as utility functions to output all of the pertinent crash information.
Let’s first create a test harness that will use the dangerous C function strcpy()
to create a buffer overflow. Following the test harness, we will write a brief
PyDbg script to attach to and handle the access violation. Let’s start with the
test script. Open a new file called buffer_overflow.py, and enter the following
code.

buffer_overflow.py

from ctypes import *

msvcrt = cdll.msvcrt

Give the debugger time to attach, then hit a button

raw_input("Once the debugger is attached, press any key.")

Create the 5-byte destination buffer

buffer = c_char_p("AAAAA")

The overflow string

overflow = "A" * 100

Run the overflow

msvcrt.strcpy(buffer, overflow)

Gray Hat Python
(C) 2009 by Justin Seitz

PyDbg—A Pure Py thon Windows Debugger 61

Now that we have the test case built, open a new file called access_
violation_handler.py, and enter the following code.

access_violation_handler.py

from pydbg import *

from pydbg.defines import *

Utility libraries included with PyDbg

import utils

This is our access violation handler

def check_accessv(dbg):

 # We skip first-chance exceptions

 if dbg.dbg.u.Exception.dwFirstChance:

 return DBG_EXCEPTION_NOT_HANDLED

 crash_bin = utils.crash_binning.crash_binning()

 crash_bin.record_crash(dbg)

 print crash_bin.crash_synopsis()

 dbg.terminate_process()

 return DBG_EXCEPTION_NOT_HANDLED

pid = raw_input("Enter the Process ID: ")

dbg = pydbg()

dbg.attach(int(pid))

dbg.set_callback(EXCEPTION_ACCESS_VIOLATION,check_accessv)

dbg.run()

Now run the buffer_overflow.py file and take note of its PID; it will pause
until you are ready to let it run. Execute the access_violation_handler.py file,
and enter the PID of the test harness. Once you have the debugger attached,
hit any key in the console where the harness is running, and you will see
output similar to Listing 4-1.

� python25.dll:1e071cd8 mov ecx,[eax+0x54] from thread 3376 caused access
violation when attempting to read from 0x41414195

� CONTEXT DUMP

 EIP: 1e071cd8 mov ecx,[eax+0x54]

 EAX: 41414141 (1094795585) -> N/A

 EBX: 00b055d0 (11556304) -> @U`" B`Ox,`O)Xb@|V`"L{O+H]$6 (heap)

 ECX: 0021fe90 (2227856) -> !$4|7|4|@%,\!$H8|!OGGBG)00S\o (stack)

 EDX: 00a1dc60 (10607712) -> V0`w`W (heap)

 EDI: 1e071cd0 (503782608) -> N/A

 ESI: 00a84220 (11026976) -> AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA (heap)

 EBP: 1e1cf448 (505214024) -> enable() -> NoneEnable automa (stack)

 ESP: 0021fe74 (2227828) -> 2? BUH` 7|4|@%,\!$H8|!OGGBG) (stack)

Gray Hat Python
(C) 2009 by Justin Seitz

62 Chapter 4

 +00: 00000000 (0) -> N/A

 +04: 1e063f32 (503725874) -> N/A

 +08: 00a84220 (11026976) -> AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA (heap)

 +0c: 00000000 (0) -> N/A

 +10: 00000000 (0) -> N/A

 +14: 00b055c0 (11556288) -> @F@U`" B`Ox,`O)Xb@|V`"L{O+H]$ (heap)

� disasm around:

 0x1e071cc9 int3

 0x1e071cca int3

 0x1e071ccb int3

 0x1e071ccc int3

 0x1e071ccd int3

 0x1e071cce int3

 0x1e071ccf int3

 0x1e071cd0 push esi

 0x1e071cd1 mov esi,[esp+0x8]

 0x1e071cd5 mov eax,[esi+0x4]

 0x1e071cd8 mov ecx,[eax+0x54]

 0x1e071cdb test ch,0x40

 0x1e071cde jz 0x1e071cff

 0x1e071ce0 mov eax,[eax+0xa4]

 0x1e071ce6 test eax,eax

 0x1e071ce8 jz 0x1e071cf4

 0x1e071cea push esi

 0x1e071ceb call eax

 0x1e071ced add esp,0x4

 0x1e071cf0 test eax,eax

 0x1e071cf2 jz 0x1e071cff

� SEH unwind:

 0021ffe0 -> python.exe:1d00136c jmp [0x1d002040]

 ffffffff -> kernel32.dll:7c839aa8 push ebp

Listing 4-1: Crash output using PyDbg crash binning utility

The output reveals many pieces of useful information. The first portion �
tells you which instruction caused the access violation as well as which module
that instruction lives in. This information is useful for writing an exploit or if
you are using a static analysis tool to determine where the fault is. The second
portion � is the context dump of all the registers; of particular interest is
that we have overwritten EAX with 0x41414141 (0x41 is the hexadecimal value of
the capital letter A). As well, we can see that the ESI register points to a string
of A characters, the same as for a stack pointer at ESP+08. The third section �
is a disassembly of the instructions before and after the faulting instruction,
and the final section � is the list of structured exception handling (SEH) handlers
that were registered at the time of the crash.

You can see how simple it is to set up a crash handler using PyDbg. It is
an incredibly useful feature that enables you to automate the crash handling
and postmortem of a process that you are analyzing. Next we are going to use
PyDbg’s internal process snapshotting capability to build a process rewinder.

Gray Hat Python
(C) 2009 by Justin Seitz

PyDbg—A Pure Py thon Windows Debugger 63

4.3 Process Snapshots

PyDbg comes stocked with a very cool feature called process snapshotting. Using
process snapshotting you are able to freeze a process, obtain all of its memory,
and resume the process. At any later point you can revert the process to the
point where the snapshot was taken. This can be quite handy when reverse
engineering a binary or analyzing a crash.

4.3.1 Obtaining Process Snapshots

Our first step is to get an accurate picture of what the target process was up
to at a precise moment. In order for the picture to be accurate, we need to
first obtain all threads and their respective CPU contexts. As well, we need to
obtain all of the process’s memory pages and their contents. Once we have
this information, it’s just a matter of storing it for when we want to restore a
snapshot.

Before we can take the process snapshots, we have to suspend all threads
of execution so that they don’t change data or state while the snapshot is being
taken. To suspend all threads in PyDbg, we use suspend_all_threads(), and to
resume all the threads, we use the aptly named resume_all_threads(). Once we
have suspended the threads, we simply make a call to process_snapshot(). This
automatically fetches all of the contextual information about each thread
and all memory at that precise moment. Once the snapshot is finished, we
resume all of the threads. When we want to restore the process to the snapshot
point, we suspend all of the threads, call process_restore(), and resume all of
the threads. Once we resume the process, we should be back at our original
snapshot point. Pretty neat, eh?

To try this out, let’s use a simple example where we allow a user to hit a
key to take a snapshot and hit a key again to restore the snapshot. Open a
new Python file, call it snapshot.py, and enter the following code.

snapshot.py

from pydbg import *

from pydbg.defines import *

import threading

import time

import sys

class snapshotter(object):

 def __init__(self,exe_path):

 self.exe_path = exe_path

 self.pid = None

 self.dbg = None

 self.running = True

Gray Hat Python
(C) 2009 by Justin Seitz

64 Chapter 4

� # Start the debugger thread, and loop until it sets the PID

 # of our target process

 pydbg_thread = threading.Thread(target=self.start_debugger)

 pydbg_thread.setDaemon(0)

 pydbg_thread.start()

 while self.pid == None:

 time.sleep(1)

� # We now have a PID and the target is running; let's get a

 # second thread running to do the snapshots

 monitor_thread = threading.Thread(target=self.monitor_debugger)

 monitor_thread.setDaemon(0)

 monitor_thread.start()

� def monitor_debugger(self):

 while self.running == True:

 input = raw_input("Enter: 'snap','restore' or 'quit'")

 input = input.lower().strip()

 if input == "quit":

 print "[*] Exiting the snapshotter."

 self.running = False

 self.dbg.terminate_process()

 elif input == "snap":

 print "[*] Suspending all threads."

 self.dbg.suspend_all_threads()

 print "[*] Obtaining snapshot."

 self.dbg.process_snapshot()

 print "[*] Resuming operation."

 self.dbg.resume_all_threads()

 elif input == "restore":

 print "[*] Suspending all threads."

 self.dbg.suspend_all_threads()

 print "[*] Restoring snapshot."

 self.dbg.process_restore()

 print "[*] Resuming operation."

 self.dbg.resume_all_threads()

� def start_debugger(self):

 self.dbg = pydbg()

Gray Hat Python
(C) 2009 by Justin Seitz

PyDbg—A Pure Py thon Windows Debugger 65

 pid = self.dbg.load(self.exe_path)

 self.pid = self.dbg.pid

 self.dbg.run()

� exe_path = "C:\\WINDOWS\\System32\\calc.exe"

snapshotter(exe_path)

So the first step � is to start the target application under a debugger
thread. By using separate threads, we can enter snapshotting commands
without forcing the target application to pause while it waits for our input.
Once the debugger thread has returned a valid PID �, we start up a new
thread that will take our input �. Then when we send it a command, it will
evaluate whether we are taking a snapshot, restoring a snapshot, or quitting
�—pretty straightforward. The reason I picked Calculator as an example
application � is that we can actually see this snapshotting process in action.
Enter a bunch of random math operations into the calculator, enter snap into
our Python script, and then do some more math or hit the Clear button. Then
simply type restore into our Python script, and you should see the numbers
revert to our original snapshot point! Using this technique you can walk
through and rewind certain parts of a process that are of interest without
having to restart the process and get it to that exact state again. Now let’s
combine some of our new PyDbg techniques to create a fuzzing assistance
tool that will help us find vulnerabilities in software applications and automate
crash handling.

4.3.2 Putting It All Together

Now that we have covered some of the most useful features of PyDbg, we will
build a utility program to help root out (pun intended) exploitable flaws in
software applications. Certain function calls are more prone to buffer over-
flows, format string vulnerabilities, and memory corruption. We want to pay
particular attention to these dangerous functions.

The tool will locate the dangerous function calls and track hits to those
functions. When a function that we deemed to be dangerous gets called, we
will dereference four parameters off the stack (as well as the return address
of the caller) and snapshot the process in case that function causes an over-
flow condition. If there is an access violation, our script will rewind the process
to the last dangerous function hit. From there it single-steps the target applica-
tion and disassembles each instruction until we either throw the access
violation again or hit the maximum number of instructions we want to inspect.
Anytime you see a hit on a dangerous function that matches data you have
sent to the application, it is worth taking a look at whether you can manipulate
the data to crash the application. This is the first step toward creating an
exploit.

Warm up your coding fingers, open a new Python script called danger_
track.py, and enter the following code.

Gray Hat Python
(C) 2009 by Justin Seitz

66 Chapter 4

danger_track.py

from pydbg import *

from pydbg.defines import *

import utils

This is the maximum number of instructions we will log

after an access violation

MAX_INSTRUCTIONS = 10

This is far from an exhaustive list; add more for bonus points

dangerous_functions = {

 "strcpy" : "msvcrt.dll",

 "strncpy" : "msvcrt.dll",

 "sprintf" : "msvcrt.dll",

 "vsprintf": "msvcrt.dll"

 }

dangerous_functions_resolved = {}

crash_encountered = False

instruction_count = 0

def danger_handler(dbg):

 # We want to print out the contents of the stack; that's about it

 # Generally there are only going to be a few parameters, so we will

 # take everything from ESP to ESP+20, which should give us enough

 # information to determine if we own any of the data

 esp_offset = 0

 print "[*] Hit %s" % dangerous_functions_resolved[dbg.context.Eip]

print "==="

 while esp_offset <= 20:

 parameter = dbg.smart_dereference(dbg.context.Esp + esp_offset)

 print "[ESP + %d] => %s" % (esp_offset, parameter)

 esp_offset += 4

 print "===\n"

 dbg.suspend_all_threads()

 dbg.process_snapshot()

 dbg.resume_all_threads()

 return DBG_CONTINUE

def access_violation_handler(dbg):

 global crash_encountered

 # Something bad happened, which means something good happened :)

 # Let's handle the access violation and then restore the process

 # back to the last dangerous function that was called

 if dbg.dbg.u.Exception.dwFirstChance:

Gray Hat Python
(C) 2009 by Justin Seitz

PyDbg—A Pure Py thon Windows Debugger 67

 return DBG_EXCEPTION_NOT_HANDLED

 crash_bin = utils.crash_binning.crash_binning()

 crash_bin.record_crash(dbg)

 print crash_bin.crash_synopsis()

 if crash_encountered == False:

 dbg.suspend_all_threads()

 dbg.process_restore()

 crash_encountered = True

 # We flag each thread to single step

 for thread_id in dbg.enumerate_threads():

 print "[*] Setting single step for thread: 0x%08x" % thread_id

 h_thread = dbg.open_thread(thread_id)

 dbg.single_step(True, h_thread)

 dbg.close_handle(h_thread)

 # Now resume execution, which will pass control to our

 # single step handler

 dbg.resume_all_threads()

 return DBG_CONTINUE

 else:

 dbg.terminate_process()

 return DBG_EXCEPTION_NOT_HANDLED

def single_step_handler(dbg):

 global instruction_count

 global crash_encountered

 if crash_encountered:

 if instruction_count == MAX_INSTRUCTIONS:

 dbg.single_step(False)

 return DBG_CONTINUE

 else:

 # Disassemble this instruction

 instruction = dbg.disasm(dbg.context.Eip)

 print "#%d\t0x%08x : %s" % (instruction_count,dbg.context.Eip,
instruction)

 instruction_count += 1

 dbg.single_step(True)

 return DBG_CONTINUE

dbg = pydbg()

pid = int(raw_input("Enter the PID you wish to monitor: "))

Gray Hat Python
(C) 2009 by Justin Seitz

68 Chapter 4

dbg.attach(pid)

Track down all of the dangerous functions and set breakpoints

for func in dangerous_functions.keys():

 func_address = dbg.func_resolve(dangerous_functions[func],func)

 print "[*] Resolved breakpoint: %s -> 0x%08x" % (func, func_address)

 dbg.bp_set(func_address, handler = danger_handler)

 dangerous_functions_resolved[func_address] = func

dbg.set_callback(EXCEPTION_ACCESS_VIOLATION, access_violation_handler)

dbg.set_callback(EXCEPTION_SINGLE_STEP, single_step_handler)

dbg.run()

There should be no big surprises in the preceding code block, as we have
covered most of the concepts in our previous PyDbg endeavors. The best way
to test the effectiveness of this script is to pick a software application that is
known to have a vulnerability,2 attach the script, and then send the required
input to crash the application.

We have taken a solid tour of PyDbg and a subset of the features it pro-
vides. As you can see, the ability to script a debugger is extremely powerful
and lends itself well to automation tasks. The only downside to this method is
that for every piece of information you wish to obtain, you have to write code
to do it. This is where our next tool, Immunity Debugger, bridges the gap
between a scripted debugger and a graphical debugger you can interact with.
Let’s carry on.

2 A classic stack-based overflow can be found in WarFTPD 1.65. You can still download this FTP
server from http://support.jgaa.com/index.php?cmd=DownloadVersion&ID=1.

Gray Hat Python
(C) 2009 by Justin Seitz

