Index

Symbols

+ (addition) operator, 40
/ (division sign), 50
\% (modulo) operator, 554
* (multiplication sign), 50
=== (strict equality) operator, 5
!== (strict inequality) operator, 5

A

acceleration, xxxi, 36, 59-69
accumulation of forces, 77-78
angular, 120-121, 123-124, 155, 157-158
fluid resistance, 100
gravitational attraction, 87
Newton's second law of motion, 75-77
vector, 59-69
accept-reject algorithm, 18-19, 455
activation functions, 504-505, 508, 520
Adaptation in Natural and Artificial Systems (Holland), 438
adaptive decision-making systems, 499
addForce() method, 355, 357
addition (+) operator, 40
additive blending, 209-210
add() method, 42, 45, 65, 298-299
addParticle() method, 338
air resistance, 94. See also fluid resistance
alignment in flocking, 259, 268-269, 271
align() method, 270
alive property, 559-560
amplitude
defined, 135
oscillation, 135-137
with angular velocity, 140-142
waves, 143
anchors
distance constraints, 316-317
revolute constraints, 319
spring forces, 147-150
Anderson, Carl D., 167
Anderson, Edgar, 524-525
angleBetween() method
dot products, 242-243
path following, 248
vectors, 45
angleMode() function, 119, 281
angles, 118-120
angular acceleration, 120-121, 123-124,
155, 157-158
angular motion (rotation), 119-130
angular velocity, 120-122, 124, 138-142,
155, 157, 161
degrees, 118-119
radians, 119
angle variable, 122, 139-140, 144, 160
Animal class and objects, 188-192
anomaly detection, 499
applyBehaviors() method, 266
applyForce() method
creating forces, 83,85
factoring in mass, 81
fluid resistance, 95
force accumulation, 78
genetic algorithms, 471
gravitational attraction, 101, 103, 105
Newton's second law, 77
particle systems, 170, 172, 197-198
physics engines, 324-325
spring forces, 149, 151
steering forces, 220
applyRepeller() method, 202
arccosine, 128, 242
arcsine, 128
arctangent, 128-129
Aristotle, 73
Array class and objects, 174-175
array destructuring, 415
arrive behavior, 224-229
arrow notation, 40, 178
artificial intelligence (AI), 501. See also machine learning; neural networks
ASCII (American Standard Code for Information Interchange), 451
Ashley, Quinton, 291
associative rule, 42, 50
asynchronous operations, 534
async keyword, 534
atan() function, 128-129
atan2() function, 129-130
AttractionBehavior class and objects, 355-357
attract() method, 106, 111, 326
Attractor class and objects, 103-111, 151-152, 325, 356
autonomous agents, xxxii, 213-285
algorithmic efficiency, 274-284
complex systems, 215, 257-274
defined, 214
flow-field following, 233-239
key components of, 214-215, 220
path following, 240-257
steering behaviors, 215-240, 260-265, 268-274
await keyword, 534

B

background() method, 368
backpropagation, 520
Barnes-Hut algorithm, 115, 279
beginShape() function
polygons, 311
soft-body simulations, 344
vehicles and steering, 223
bell curves, 13-14
bias input, 507-508, 519-520, 526
big O notation, 274-275
bin-lattice spatial subdivision (binning), 275-278, 357
Bird class and objects, 550, 552, 555-556, 559, 563
blendMode() function, 209
blend modes, 208-209
Bloop class and objects, 488-489, 491-492
Bob class and objects, 150, 153
Body/Bodies class and objects, 294, 297-299
collision events, 330
linking Box objects with, 305
n-body problem, 110-111
polygons, 309
static, 307
Boid class and objects, 268-269, 272, 275, 277
boids model, 216, 268-278, 500
bounceEdges() method, 93-94
boundaries() method, 232
Boundary class and objects, 307-308, 331
Box2D, 290-291, 332
Box class and objects, 302-303, 305-307, 323-325
box variable, 298
brain property, 555
Braitenberg, Valentino, 216
branch() function, 422-424, 426
Brummitt, Liam, 291
brute-force algorithms, 439-441
Burges, Christopher J.C., 523
Bushnell, Nolan, 550
butterfly effect (nonlinearity), 258

C

calculateDrag() method, 98
calculateState() method, 392
Calder, Alexander, 71
callback functions, 328-330, 534, 538, 556-557
Cantor, Georg, 401-402
cantor() function, 408-409
Cantor set, 402, 407-410, 431
canvas variable, 300
Cartesian coordinates, 130-134
converting to polar, 131-133
defined, 130
evolutionary computing, 473
path following, 252
pendulums, 160
Carver, George Washington, 543
Cat class and objects, 188-190
categories. See labels
Catto, Erin, 290
CDNs (content delivery networks), 291-292
Cell class and objects, 390
cellular automata (CA), xxxii, 359-396
cells, 360, 390-392
classifications, 379-381
defined, 360
elementary (1D CAs), 362-379
Game of Life (2D CAs), 381-390
grids, 360-362
neighborhoods, 360-364
states, 360-363
variations on, 392-395
central processing units (CPUs), 559
Chakri Maha Prasat Hall, 397
checkTarget() method, 480
choice variable, 5
circle() function, 44, 295, 337
classes, defined, 3. See also labels
classification, Wolfram, 379-381
complexity, 380-381
randomness, 380
repetition, 380
uniformity, 379
classification in machine learning, 522-529, 547
classifier variable, 532-533, 537
classify() method, 537-539, 556-557
classifySync() method, 557
cloning, 447, 491, 580
Cluster class and objects, 351-353
Coding Train, xxix-xxx, xxxviii
coefficient of friction (Q), 91, 94, 96
cohesion in flocking, 259, 268-269, 271-272
collides() method, 552
collisions
attraction and repulsion behaviors, 356
callbacks, 328-330, 534
collision detection, 289-290, 329
collision events, 327-331
collision resolution, 289
event listeners, 328
idealized elastic collisions, 92
inelastic collisions, 92-93
neuroevolution, 552-553, 564
physics libraries, 334
colorMode() method, 484
comma-separated values (CSV), 531
commutative rule, 42
complex adaptive systems, 395, 500
complex systems, 215, 257-274
Class 4 cellular automata, 380-381
combining behaviors, 265-268
competition and cooperation, 258-259
defined, 258
feedback, 259
flocking, 268-274
Game of Life, 382
implementing group behaviors, 259-265
key principles and characteristics, 258
nesting, 395
nonlinearity, 258
separation, 260-265
Composite container, 294, 298
compound bodies, 309, 312-314
Computational Beauty of Nature, The (Flake), xxx
concave shapes, 310
Confetti subclass and objects, 194-195, 197
connectionist systems, 500
constant acceleration, 60-62
const declaration, 5, 297
constrain() function
angular motion, 125
steering behaviors, 237
Constraint class and objects, 315, 317, 319
constraints, 294, 315-324
distance constraints, 315-319
mouse constraints, 315, 322-324
revolute constraints, 315, 319-322
constructor() method
particle systems, 197
random walkers, 4
constructors, defined, 4
contactEdge() function, 92
contains() method, 98, 479-480
content delivery networks (CDNs), 291-292
convex shapes, 310
Conway, John, 381
copy() method
forces and mass, 81 neuroevolutionary ecosystem simulation, 580
reproduction, 492
Cortes, Corinna, 523
$\cos ()$ function
coordinate conversion, 131
path following, 248
pendulums, 160
cosine
coordinate conversion, 131, 160
defined, 126
dot products, 242-243
lookup tables, 280-282
oscillation, 137
path following, 247
pendulums, 156
Coulton, Jonathan, 397
Courville, Raphaël de, xxx
Coveyou, Robert R., 1
CPUs (central processing units), 559
createButton() method, 571
createCanvas() method, 210
create() function, 296, 299, 312, 323
createVector() function, 39-40, 140, 297
Creature class and objects, 568,570,572, 574, 580
creature design, 585-588
matching form to environment, 587
perspective, 586
varying elements, 586-587
visual elements, 585
cross() method, 45
crossover, 447-450, 457-459, 561-563
crossover() method, 458, 492, 562
custom distributions, 16-19
accept-reject algorithm, 18-19
avoiding oversampling, 17
Lévy flight, 17
qualifying random values, 17-18
CustomShape class and objects, 309, 311

D

debug property, 532, 534
degrees, 118-119
delta angle, 143
deltaAngle variable, 143-145
delta time, 79, 121
delta weight, 510
dense (fully connected) layer, 526
derivatives, 331
deterministic structure, 24, 399-400, 402, 419-424, 426
differentiation, 331
dissipative forces, 90
distance constraints, 316-319
dist() method, 45
distributive rule, 50
division sign (/), 50
div() method, 45, 50, 65
DNA class and objects, 451-454, 458, 460-461, 467-469, 472-475, 484, 491-492
Dog class and objects, 187-192
dot () method, 45, 241
drag force, 94-95. See also fluid resistance
drag() method, 98
drawCircles() function, 405-406

E

eat() method, 187, 192-193, 580
Ecosystem Project, xxxvii-xxxviii autonomous agents, 285
cellular automata, 396
forces, 116
fractals, 435
genetic algorithms, 495
neural networks, 542
neuroevolution, 582
oscillation, 165
particle systems, 211
physics engines, 358
randomness, 31
vectors, 69
ecosystem simulation, 439, 487-493
genotype/phenotype distinction,
444, 490
neuroevolution, 573-582
reproduction, 491-493
selection, 491-493
elastic collisions, 92
elitist approach to parent selection, 445
elt property, 300
Emerson, Ralph Waldo, 213
Emitter class and objects, 179-184, 186-187, 195-198
emitters, 170, 179-181, 182-185
emitters variable, 184-185
endShape() function, 223, 311, 344
Engine class and objects, 294, 296-297,
304, 326
epochs, 533-534, 536
equilibrium, 73
Euclid, 34, 398
Euclidean geometry, 398, 401
Euclidean vectors, 34. See also vectors
Euler, Leonhard, 332
Euler integration, 332
event listeners, 328
evolutionary computing, 438.
See also genetic algorithms
exclusive or (XOR), 518-520
exponential increase, 465
extends keyword, 190

F

factorial() function, 404-405
factorials, 403-404
factory methods, 297-298
feedForward() method, 508
feed-forward model, 503
filter() function, 178
finishedTraining() callback function, 534, 538
fitness functions
customizing GAs, 464-467
defined, 445
ecosystem simulation, 489, 579
interactive selection, 483
reproduction, 448
selection, 452-453
smart rockets, 471-472, 481, 570
Flake, Gary William, xxx
flap() method, 550, 553, 557
Flappy Bird game, 545-565
classification, 547
coding, 550-554
collision events, 552, 564
decision-making process, 555
features, 546-547, 555-556
heredity, 561-565
neural network, 546-548
neuroevolution, 554-565
Nolan's law, 550
normalizing scores, 561, 563
reinforcement learning, 545
reproduction, 561-565
selection, 559-561
variation, 557
fleeing behavior, 223, 261-265
Flock class and objects, 272
flocking, 268-274
rules governing, 268-269
short-range relationships, 270
flock() method, 269
floor() method, 5, 7
Flower class and objects, 484
FlowField class and objects, 237-239
flow-field following, 233-239
fluid resistance, 94-100
formula for, 94-96
Mover and Liquid objects, 96-100
objects of variable mass, 98-100
simplified formula for, 96
Food class and objects, 492, 575
forces, xxxi, 71-116
accumulation of, 77-79
action/reaction pairs, 74
creating, 82-88
defined, 72
equilibrium, 73
mass and, 79-82
modeling, 82, 88-110
n-body problem, 110-115
Newton's laws of motion, 72-77
particle systems with, 197-200
physics engines, 72, 324
time step, 79
force variable, 149
forEach() loops, 175
for...in loops, 175
for loops
arrays of particles, 174, 176
cellular automata, 370-371
defined, 175
L-systems, 429
neuroevolutionary steering behaviors, 571
recursive functions, 403, 405-406, 408
soft-body simulations, 343
waves, 142, 144
for... of loops
arrays of particles, 175-176
collision events, 329
defined, 175
Koch curve, 413
particle emitters, 185
particle systems with forces, 199
polygons and shapes, 311
Fractal Geometry of Nature, The
(Mandelbrot), 398, 401
fractals, 397-435
Cantor set, 402, 407-410, 431
defined, 398
deterministic structure, 399-400
Euclidean geometry vs., 398, 401
examples of, 398-400
Koch curve, 411-419
L-systems, 427-435
Mandelbrot set, 401
mathematical monsters, 412
production rules, 401-402
recursion, 401-410
self-similarity, 400
Sierpiński triangles, 366, 373
stochastic structure, 400
tree structure, 399, 419-427
frameCount variable, 136-137, 179, 554
frames
arrays of particles, 179
number elapsed, 136
oscillation, 136-138, 140
pendulums, 157, 161
waves, 145
frequency, defined, 138
friction, 90-94
calculating, 92
coefficient of, 91, 94, 96
dissipative force, 90
elastic vs. inelastic collisions, 92-93
formula for, 89-91
velocity vector, 90-91
fromAngle() method, 133
fromCharCode() method, 451
fromVertices() function, 309
fully connected (dense) layer, 526
function keyword, 4

G

G (universal gravitational constant), 101-103, 107
Gala (Riley), 117
Galapagos (Sims), 483-484
Galileo, 87
Game of Life, 381-392
implementation, 385-390
object-oriented cells, 390-392
rules of, 382-385
Gardner, Martin, 381
GAs. See genetic algorithms
Gauss, Carl Friedrich, 13
Gaussian distributions.
See normal distributions
geneCounter variable, 474
generate() function, 414, 417-418, 429
generations. See also
reproduction; selection
cellular automata, 362-363
defined, 362
L-systems, 428
speeding up, 570
generation variable, 377
generative models, 500
genetic algorithms (GAs), xxxii, 437-495
coding, 450-462
customizing, 463-469
defined, 438-439
ecosystem simulation, 439, 487-493
evolution vs. intelligent design, 438
genotype/phenotype, 443-444, 467-469, 472, 490
heredity, 442, 447, 561-565
interactive selection, 439, 482-487
population creation, 443-444, 450-452
reproduction, 447-450, 457-459, 463-464, 491-493, 561-565
selection, 442, 444-447, 450, 452-457, 491-493, 559-561
smart rockets, 469-482
utility of, 440-441
variation, 442-443, 445-447, 449, 557-559
genotype
customizing GAs, 467-469
defined, 443
ecosystem simulation, 490
genotype/phenotype distinction, 444
interactive selection, 483, 486
smart rockets, 472
geometric vectors, 34. See also vectors
gesture classifiers, 529-541
data collection, 530-531
data preparation, 530-531
model deployment, 537-539
model evaluation, 534-537
model selection, 531-532
model training, 532-534
parameter tuning, 537
getNormalPoint() function, 252
GitHub
feedback and corrections, xxxviii
Magic Book project, xxix
repository for book, xxviii-xxix, xxxv, xxxviii, 583
global variables
avoiding unnecessary p5.Vector objects, 283
genetic algorithms, 463-464, 471, 474
gesture classifiers, 538
oscillation, 139
random walks, 6

Glow class and objects, 568, 570
graphics processing units (GPUs), 559
gravity and gravitational attraction,
101-110
acting on two objects, 86
constraining distance, 107
direction of attraction force, 102
formula for, 101
inverse proportion to distance, 101-102
n-body problem, 110-115
one object attracts another object, 103-107
one object attracts many objects, 109-110
particle systems with forces, 197-199
pendulums, 154-159
repellers vs., 200-201
scaled by mass, 88
weight, 76
GravityBehavior class and objects, 336
gravity variable, 296
G variable, 102-103, 107

H

HALF_PI constant, 119
handleCollisions() function, 328-330
handPose() function, 528
heading() method, 45, 130, 223, 530
health variable, 489, 579
heredity, 442, 447, 561-565
higher-order functions, 175, 178
hinges, 319
Hodgin, Robert, 209
Holland, John, 438
Hooke, Robert, 147
Hooke's law, 147-148
Hugo, Victor, 287
hyperparameters, 522, 534, 537
I
I (moment of inertia), 124, 158
if statements, 231, 249, 387, 530
imageClassifier() function, 528
image textures, 205-211
additive blending, 209-210
blend modes, 208-209
Gaussian distributions, 207-208
PNG format, 206
renderers, 210
resolution, 208
img variable, 207
inelastic collisions, 92-93
infinite monkey theorem, 440
Infinity value, 256-257
inheritance, 185-192
defined, 187
extending, 190-191
overriding, 191
particles with, 193-197
springs, 339
subclasses, 188, 190
superclasses, 188, 190
tree structure, 189
instanceof operator, 331
integrals, defined, 331
integration, 331-333
defined, 331
Euler integration, 332
Runge-Kutta integration, 333
Verlet integration, 333
interactive motion, 66-69
interactive selection, 482-487
defined, 439, 483
population creation, 483-484
user-assigned fitness ratings, 484, 486
inverse proportion, 75, 101-102
iris dataset, 524-525
isDead() method, 179, 197
isStatic property, 300, 307

J

Jakobsen, Thomas, 333
JavaScript, xxvii-xxviii. See also names of specific libraries and programming elements
abundance of options, 174
addition operator, 40
arrays, 174, 187, 233
arrow notation, 178
callback functions, 534
const vs. let, 5
Infinity value, 257
inheritance, 190
object destructuring, 297
object literals, 298, 434
objects, 3
strict equality and inequality operators, 5
JSON (JavaScript Object Notation), 531

K

k (spring constant), 148
Kaku, Michio, 497
kente cloth, 359
khipu devices, 497
Kleinman, Kim, 525
Klise, Steven, xxix, 385
Koch, Helge von, 411
Koch curve, 411-419
KochLine class and objects, 412-415
kochPoints() method, 415
Kutta, Martin, 333
L
labels, 522-524, 526, 538, 540
Lasky, David, 585
learning constant, 511
Learning Processing (Shiffman), 185
LeCun, Yann, 523
lerp() method, 45
let declaration, 5
Lévy flight, 17
lifeCounter variable, 477-478
lifespan property, 170-171, 392, 474, 477
limit() method, 45, 61
Lindenmayer, Aristid, 427
Lindenmayer systems. See L-systems
linearly separable problems, 517-519
line() function, 408-409, 412, 421-422, 432
Liquid class and objects, 96-99
liquid variable, 97
living root bridges, 287
load() function, 537
loadJSON() function, 534
lock() method, 340
lookup() method, 237-239
lookup tables, 280-282
Lorenz, Edward Norton, 258
L-systems (Lindenmayer systems), 427-435
alphabet, 428
axiom, 428
generations, 428
production rules, 428
simple, 428-430
strings, 427-428
Lunar Lander game, 549-550
M
machine learning. See also neural networks
classification, 522-529
epochs, 533-534, 536
features, 546-547
life cycle, 521-522, 529-541
loss, 536
with ml5.js, 521-529
network design, 524-528
regression, 524, 527-528
reinforcement learning, 501, 545-549
supervised learning, 501, 509, 521-523, 549
transfer learning, 502
unsupervised learning, 501
Madsen, Rune, xxix
mag() function, 45, 51, 95
Magnetosphere, 209
magnitude squared, 279-280
magSq() function, 280
Mandelbrot, Benoit, 398, 401
Mandelbrot set, 397, 401
$\operatorname{map}()$ function
genetic algorithms, 484
genotype/phenotype, 468
neuroevolutionary ecosystem simulation, 576
noise ranges, 21-22
oscillation, 136
particle systems, 195
Marsh, Zannah, 31, 585-588
Marshall Islands stick chart, 33-69
mass
fluid resistance and objects of variable mass, 98-100
force accumulation, 77-79
gravitational attraction, 101-102, 104, 109
incorporating into simulations, 79-82
Newton's second law, 75-77
units of measurement, 80
weight vs., 76
mass variable, 79, 83, 197
mathematical monsters, 412
mating pools, 445, 453-455
Matter.js library, 288, 291-328
adding forces, 324-327
Body objects, 294, 297-299
collision events, 327-331
compared to Toxiclibs.js, 334-335
Composite container, 294
constraints, 294, 315-324
Engine objects, 294, 296
importing, 291-293
object destructuring, 297
overview of, 293-296
p5.js and, 302-305
polygons and groups of shapes, 309-315
Render class, 299-301
static bodies, 307-308
vectors, 294-295
McCulloch, Warren S., 499
mean
calculating, 14-15
defined, 13
methods
defined, 4
static vs. nonstatic, 64-66
Miikkulainen, Risto, 550
Million Random Digits with 100,000 Normal Deviates, A (RAND), 1
millis() function, 136
Mills, Mike, xxvii
ml5.js library, 502
machine learning, 521-529
model deployment, 537
model selection, 531-532
model training, 532
neuroevolution, 554-557, 559, 562-563, 566-567
parameter tuning, 537
reinforcement learning, 548
splitting datasets, 537
syntax, 528-529
MNIST (Modified National Institute of Standards and Technology) dataset, 523-524
modulo (\%) operator, 554
mo'i fish, 213
moment of inertia (/), 124, 158
Mouse class and objects, 323
MouseConstraint class and objects, 315, 323-324
mouse constraints, 315, 322-324
mousePressed() function, 328, 485
Mover class and objects
acceleration, 60-61
angular motion, 122-123, 126-128
combining steering behaviors, 266
creating forces, 82-83, 85-86
fluid resistance, 96-98
friction, 92
gravitational attraction, 103-110
incorporating mass into simulations, 79, 81
interactive motion, 67
motion with vectors, 55-57, 59
Newton's first law, 73
Newton's second law, 76-77
spring forces, 149
Muhonen, Taru, xxx
multilayered perceptrons, 519-520
multiplication sign (*), 50
mult() method
combining steering behaviors, 267
interactive motion, 68
vector multiplication, 45, 48-49, 65
mutate() method, 458-459, 562
mutation, 449-450, 457-459, 463-464, 562

N

N (normal force), 91-92
namespaces, 295
natural language processing (NLP), 500
n-body problem, 110-115
arrays, 113-115
two-body attraction, 111-113
NEAT (NeuroEvolution of Augmenting
Topologies) algorithm, 550
neighborhoods, 360-364, 367, 371-374,
381-383
neighborSum variable, 387
neuralNetwork() function, 528, 534, 555, 563, 567
neural networks, xxxii, 497-542
adaptive nature of, 500
backpropagation, 520
classification, 522-529
data normalization, 517
defined, 498
difficult applications for artificial neural networks, 499-500
epochs, 533-534, 536
gesture classifiers, 529-541
human brain, 498-499
learning strategies, 501, 502
loss, 536
machine learning
defined, 501
libraries, 502, 521-529
life cycle, 521-522, 529-541
network design, 524-528
neurons, 498-499
nonlinearly separable problems, 518
perceptrons, 502-520
pretrained models, 502
procedural vs. connectionist systems, 500
regression, 524, 527-528
synthetic data, 512
weight adjustment, 500-501
neuroevolution, xxxii, 543-582
collision events, 552, 564
decision-making process, 555
defined, 544
early examples of, 549
ecosystem simulation, 573-582
features, 555-556
heredity, 561-565
NEAT algorithm, 550
normalizing scores, 561, 563
reinforcement learning and, 545-549
reproduction, 561-565
selection, 559-561
steering behaviors, 565-573
variation, 557
neuroEvolution property, 555
New Kind of Science, A (Wolfram), 361
new operator, 6
Newton, Isaac, xxxi, 72
Newton's laws of motion, 72-77
first law, 72-73
second law, 75-77, 80, 89, 155, 157-158
third law, 73-75
nextGeneration() function, 485
Nguyen, Dong, 550-554
noiseDetail() function, 27
noise() function, 20-21, 27, 139
nonlinearity (butterfly effect), 258
nonlinearly separable problems, 518-519, 526
nonstatic methods, 64-66
nonuniform distributions, 9-13
applying unequal weights to multiple outcomes, 11-12
asking for random numbers, 11
controlling probability of events, 13
filling arrays with numbers, 11
uses for, 9-10
normal distributions (Gaussian distributions), 13-16, 207
bell curves, 13-14
defined, 13
standard, 15
normal force (N), 91-92
normalization
data, 517, 533
fitness scores, 445-446, 561, 563
vectors, 53-55, 67, 102-103, 295
normalizeData() function, 533
normalizeFitness() function, 563
normalize() method
interactive motion, 68
path following, 248
vector normalization, 45, 53-54
velocity unit vector, 96
n-squared algorithms, 115
Nucera, Diana, 501

0

object destructuring, 297, 415
object literals, 298, 316-317, 434, 555
object-oriented programming (OOP), 3-4, 59, 83, 158-159, 239. See also inheritance; polymorphism
objects, defined, 3
Obstacle class and objects, 478-480
offscreen() method, 553
one-dimensional Perlin noise, 20-22
Onuoha, Mimi, 501
optimization, 522
oscillation, xxxi, 117-165
angles, 118-120
angular motion (rotation), 119, 120-130
with angular velocity, 138-142
defined, 118, 134
pendulums, 154-164
polar vs. Cartesian coordinates, 130-134
properties of, 134-138
spring forces, 147-154
trigonometry functions, 125-126
waves, 142-146
Oscillator class and objects, 140-141, 165
overfitting data, 536
oversampling, 17

P

p5. Image class and objects, 170
p5.js library, xxvii-xxviii
const and let, 5
documentation, xxix
"Get Started" page, xxix
list of sketches, xxxv
Matter.js and, 302-305
noise, 27
vectors, 37-40
Web Editor, $x x x v$
p5play library, 291
p5. Vector class and objects, 37, 42
acceleration, 67-68
angular motion, 130
avoiding unnecessary, 282-284
coordinate conversion, 133
dot products, 241
genetic algorithms, 473
incorporating mass into force
simulations, 81-82
Koch curve, 414-415
oscillation, 140, 142
particle systems, 198
steering forces and behaviors, 218, 235
vectors, 39-40, 44, 47-48, 50-51, 53, 61, 64-66
parameter tuning, 522, 537
parseInt() function, 374
Particle class and objects, 59
attraction and repulsion behaviors, 355-356
collision events, 329-331
constraints, 316, 320
force-directed graphs, 351-352
particle systems, 169-170, 172-175, 186, 193-199, 203
soft-body simulations, 343, 346-347
Toxiclibs.js particles, 337-339
ParticleString2D class and objects, 343
ParticleSystem class and objects, 59, 169, 179
particle systems, 167-211
arrays of particles, 174-179
defined, 168
emitters, 179-185
with forces, 197-200
image textures, 205-211
inheritance, 185-197
polymorphism, 185-187, 192-197
with repellers, 200-205
single particles, 169-173
situations involving, 168-169
Path class and objects, 245-246, 252, 254-255
path following, 240-257
defined, 240
dot products, 240-243
multiple segments, 252-257
normal, 246-247
path radius, 245
scalar projection, 249
simple, 243-252
pattern recognition, 499, 505-508
Pedercini, Paolo, 291
Pendulum class and objects, 158-159
pendulums, 154-164
angular acceleration and velocity, 155, 157
damping trick, 161
defined, 154
distance constraints, 317-318
force of the pendulum, 156-157
gravity and tension, 154-155
moment of inertia, 158
net force, 155
object-oriented structure, 159-160
soft, 343-345
torque, 158
People's Guide to Al, A (Onuoha and Nucera), 501
Perceptron class and objects, 508-511
perceptrons, 502-517
activation functions, 504-505
bias input, 507-508
coding, 508-517
computing output, 504-505
defined, 502-503
feed-forward model, 503
learning constant, 511
linearly vs. nonlinearly separable problems, 517-519
multilayered, 519-520
pattern recognition, 505-508
perceptron algorithm, 504-505
summing inputs, 504-505
training, 512-515, 520
weighting inputs, 503-505
period
defined, 135-136
frame count, 136-138, 179
frequency and, 138
oscillation, 135-138, 140
waves, 143
Perlin, Ken, 19-20
Perlin noise, 19-30
defined, 19
ecosystem simulation, 488
fractals, 427
neuroevolutionary steering behaviors, 568
noise ranges, 22-25
one-dimensional, 20-22
overusing, 29
steering behaviors, 236, 238
two-dimensional, 25-30
uniform distributions vs., 19-20
uses for, 29
phenotype
customizing GAs, 467-469
defined, 443-444
ecosystem simulation, 490-491
genotype/phenotype distinction, 444
interactive selection, 484, 486
smart rockets, 472, 474
Phillips, Kyle, 333
physics engines, 72, 79, 288. See also forces; physics libraries
physics libraries, xxxii, 287-358
Box2D, 290-291
integration methods, 331-333
Matter.js library, 291-328
p5play library, 291
reasons for using, 289-290
Toxiclibs.js library, 333-357
pi (π), defined, 120
PI constant, 119-120
Pipe class and objects, 551-553
Pitts, Walter, 499
pivots, 154, 158-161
plugin objects, 329-330
polar coordinates, 130-134
converting to Cartesian, 131-133
defined, 130
evolutionary computing, 473
pendulums, 160
polygon() method, 309
polymorphism, 185-187, 192-193
defined, 187, 193
particles with, 193-197, 338
springs, 339
pop() function, 420-422
Population class and objects, 475-476, 485
Positron (Anderson), 167
predict() method, 566
predictSync() method, 566
preload() method, 207
pretrained machine learning models, 502, 528, 559
probabilistic approach to parent selection, 445-446
probability of the fittest, 10
procedural systems, 500
Processing, xxvii-xxix, xxxviii, 333
production rules
fractal trees, 419-420
Koch curve, 411
L-systems, 427-429
recursion, 401-402
promises, 534
pseudorandom numbers, 1, 9, 19
Pueblo pottery, 437
push() method, 175, 420-422
Pythagorean theorem, 51, 280

Q

quadratic increase, 465, 472
quadtree data structure, 278-279

R

radians, 119-120
radians() function, 119
RAND Corporation, 1
random2D() method, 45, 63-64, 235, 473
random3D() method, 45
random acceleration, 62-64
randomCharacter() function, 451, 459
random() function
custom distributions, 17
fractal trees, 426
genetic algorithms, 455
nonuniform distributions, 9, 11, 13
normal distributions, 13
Perlin noise, 20-21, 27
random walkers, 4-5, 7-9
randomGaussian() function normal distributions, 14-16
particle systems, 208
randomness, xxxi, 1-31
cellular automata, 380
custom distributions, 16-19
nonuniform distributions, 9-13
normal distributions, 13-16
Perlin noise, 19-30
pseudorandom numbers, 9
random walks, 2-9, 63
single-event probability, 10
steering behaviors, 235
random walks and walkers, 2-9 custom distributions, 16-17
defined, 2-3
neuroevolutionary steering behaviors, 568
nonuniform distributions, 12-13
Perlin noise, 23
probability, 8
random acceleration, 63
uniform distributions, 8-9
uses for, 3
raycasting, 575
recordDistance variable, 480
rectangle() method, 298, 305, 307
Rect class and objects, 336
rect() function, 298
recursion, 401-402
Cantor set with, 407-410
exit conditions, 404-405
factorials, 403-404
recursive circles, 405-407
recursive functions, 402-404
regression, 524, 527-528, 547, 565-566
reinforcement learning, 545-549, 555, 559
defined, 501
features, 546-547
policies, 549
reward functions, 549
supervised learning vs., 549
removeBody() method, 306-307
Render class and objects, 299-302, 305
renderers, 210
Repeller class and objects, 200-205
repellers, 200-205
repel() method, 202
reproduce() method, 580
reproduction, 447-450, 457-459, 491-493
cloning, 447
crossover, 447-449, 450, 457-459, 561-563
mutation, 449-450, 457-459, 463-464, 562
repetition, 450
reproduction() method, 475, 563
resetPipes() function, 564
Resnick, Mitchel, 215, 385
rest length, 147-148, 150, 339
revolute constraints, 319-322
Reynolds, Craig, 215-216, 218, 220-221, 227-229, 233, 238, 240, 243, 249-250, 253, 257, 261, 263, 265, 268, 275
rigid-body simulations, 334, 342. See also Matter.js library
Riley, Bridget, 117
Rocket class and objects, 469-472, 474-475, 479-480
rollover() method, 485
Ronald, Edmund, 549-550
Rosenblatt, Frank, 502-503
rotate() function, 45, 420-422
angular motion, 118, 121-122
physics engines, 306
turtle graphics, 432
rulesets, 363-365, 367-370, 373-374, 379
arbitrary nature of, 364
defined, 363
storing, 373
rules() function, 370, 372-374
Runge, Carl, 333
Runge-Kutta integration, 333
run() method
arrays of particles, 174
flocking, 272
genetic algorithms, 479
neuroevolutionary steering behaviors, 566
particle emitters, 184
particle systems, 197
Runner class and objects, 300-302, 304

S

Samuel, Arthur Lee, 501
Satoro, Ryunosuke, 359
save() function, 537
scalar projection, 243, 249, 252
scalars
angular motion, 121
formulas, 89
mass, 80
vector multiplication, 48
vectors vs., 40
scaling, 48
Schmidt, Karsten, 333
Schoenauer, Marc, 549-550
<script> tags, 291-292, 334, 521
seeking behavior, 217-224, 260-261
seek() method, 225, 249-250
combining with separate(), 266-267
neuroevolutionary steering behaviors, 568-569
reducing number of temporary objects, 283
seeking behavior, 219
selection, 442, 444-447, 450, 452-457, 491-493
elitist approach, 445
fitness functions, 445
interactive, 439, 482-487
mating pools, 445, 453-455
normalizing scores, 445-446
parent selection, 445-446, 454-455
probabilistic approach, 445-446
selection() method, 475, 477-478
Sensor class and objects, 576
sensors
creating, 573-578
learning from, 578-581
soft, 499
separate() method
combining with seek(), 266-267
flocking, 271
separation, 260-262, 264
separation in flocking, 259-265, 268-269
setBackend() function, 558-559
setMag() method, 45, 68, 103 shapes
compound bodies, 312-314
concave shapes, 310
convex shapes, 310
creature design, 585
of data, 533
Matter.js library, 309-315
soft-body simulations, 343
vehicles and steering, 223
shift() function, 179
show() method, 4
angular motion, 123, 128
fluid resistance, 96
force-directed graphs, 352-353
motion with vectors, 56
oscillation, 142
particle systems, 169, 194-195
pendulums, 159
soft-body simulations, 343
Sierpiński, Wacław, 366
Sierpiński triangles, 366-367, 373
signal processing, 499
Silverman, Brian, 385
simple harmonic motion, 135, 137-140
Sims, Karl, 482-484
sine
coordinate conversion, 131, 160
defined, 126
lookup tables, 280-282
oscillation, 134-137
pendulums, 156-157, 159
sine waves, 117, 134, 139, 142-144
$\sin ()$ function
coordinate conversion, 131
oscillation, 136-139
pendulums, 160
springs, 147
single-event probability, 10
slice() method, 372, 492
smart rockets, 469-482, 486
developing, 470-475
evolving obstacle avoidance, 478
fitness functions, 471-472
genotype/phenotype distinction, 472
global variables, 471
neuroevolutionary steering behaviors, 565-573
population management, 475-478
SodaConstructor game, 342
soft-body simulations, 342-350
defined, 342
particle-spring connections, 342-343
soft-body characters, 346-350
soft pendulums, 343-345
soft sensors, 499
sohcahtoa mnemonic device, 125-126
sort() function, 178
spatial subdivisions, 115, 275-278
splice() method, 176, 178-179, 307
Spring class and objects, 150-153, 346-347, 353
spring constant (k), 148
spring forces, 147-154
current length vs. rest length, 147-148
Hooke's law, 147-148
object-oriented structure, 149-152
square() function, 305-306
standard deviation, 13-16
Stanley, Kenneth O., 550
star-nosed moles, 543
states, 360-363
static methods, 64-66
staying within walls behavior, 231-233
steering behaviors, 215-233
action selection, 216-217
arrive behavior, 224-229
fleeing, 223, 261-265
flocking, 268-274
flow-field following, 233-239
locomotion, 216-217
maximum force, 220-221
maximum speed, 219, 225-227
neuroevolution, 565-573
path following, 240
seeking, 217-224, 260-261
staying within walls, 231-233
steering forces, 216-222, 228-229, 232, 258, 265-266, 268, 284, 510-511, 565, 568, 579
vehicles, 215-216
wandering, 229-231
step() method, 4-5
stochastic fractals, 400, 425-427
strict equality (===) operator, 5
strict inequality (!==) operator, 5
strings
L-systems, 427-428
soft-body simulations, 343-346
Stump, Greg, 585
subclasses, 188-192
sub() method, 45, 47, 66-67
superclasses, 188, 190
super() function, 189-192, 194
supervised learning, 501, 509, 521-523, 549
survival of the fittest/reproducers, 10, 442, 487
synthetic data, 512, 527

T

tangent, 126-128
tension, 154-155
TensorFlow.js, 502
model evaluation, 534-536
parameter tuning, 537
Visor interface, 534-536
testing datasets, 521, 536-537
That Creative Code Page, xxx
thi.ng umbrella, 333
thi.ng vectors, 333
think() method, 555, 557, 579
this keyword, 4, 56
this. x and this. y variables, 305
Thompson, John Henry, xxvii
Thorp, Jer, 469-470
time-series prediction, 499
torque (τ), 124, 158
Toxiclibs.js library, 288
attraction and repulsion behaviors,
354-357
compared to Matter.js, 334-335
force-directed graphs, 351-354
soft-body simulations, 342-350
Verlet physics, 333-342
training datasets, 516-517, 521, 524, 532-533, 536
train() method, 533-534
transfer learning, 502
translate() function, 48, 306, 420-421, 432
trapezoid() method, 309
tree structure, 399, 419-427
deterministic structure, 419-425
stochastic structure, 425-427
turtle graphics, 432
Turtles, Termites, and Traffic Jams
(Resnick), 215
two-dimensional Perlin noise, 25-30
TWO_PI constant, 119, 137, 566

U

Ulam, Stanisław, 361
uniform distributions, 8-9, 19-20
units of measurement, 80
unit vectors, 53, 248
gravitational attraction, 101-102
vector normalization, 67
velocity unit vector, 89-90, 96
universal gravitational constant (G), 101-103, 107
unlock() method, 340
unsupervised learning, 501
Unwin, Antony, 525
update() method
acceleration, 60, 62
angular motion, 123-124
force accumulation, 78
motion with vectors, 56
neuroevolution, 550
neuroevolutionary steering behaviors, 570
Newton's first law, 73
Newton's second law, 77
particle systems, 169, 187
pendulums, 159
physics engines, 304
Verlet physics, 336

V

validation datasets, 536-537
variation, 442-443, 445-447, 449, 557-559
Vec2D class and objects, 335-336, 338
Vec3D class and objects, 335
Vector class and objects, 39, 42, 325, 335
vectors, xxxi, 33-69
acceleration, 59-69
bouncing ball sketch, 34-36, 43
components of, 41
creating, 294
defined, 34, 37
drawing, 34
formulas, 89
magnitude, 102-103
motion, 55-59
normalizing, 102-103
operations with, 40-55, 295
p5.js and, 37-40
position, 38-39, 44
properties and variables, 36
scalars vs., 40
scaling, 48, 102, 295
vector-based algorithm for motion, 38, 40, 42
velocity, 38-39, 44
Vehicle class and objects, 215-216, 218-223, 239, 250-252, 259-262, 266, 468
Vehicles (Braitenberg), 216
VerletConstrainedSpring2D class and objects, 339
Verlet integration and physics, 333-342
VerletMinDistanceSpring2D class and objects, 339
VerletParticle2D class and objects, 337-339, 355
VerletSpring2D class and objects, 339, 347, 353
vertex() function, 311, 344
viscous force, 94. See also fluid resistance
Visor interface, 534-536
von Neumann, John, 361

W

wagon wheel effect, 124
Walker class and objects, 3-9
custom distributions, 16-17
data for, 3-4
four possible steps, 4-6
nine possible steps, 7
nonuniform distributions, 12-13
Perlin noise, 23-24, 28
wavelength, 143-144
waves, 142-146
motion, 144-146
sine waves, 117, 134, 139, 142-144
static, 143-144
wavelength, 143-144
WEBGL mode, 210
WebGL (Web Graphics Library) renderer, 210, 274
weight, mass vs., 76
weightedSelection() function, 462, 475, 561
while loops, 405-406, 455
whileTraining() callback function, 534
Windmill class and objects, 320-321
Wolfram, Stephen, 361, 362-363,
367-368, 379
Wolfram Physics Project, 361
World class and objects, 488-489, 492-493
X
XOR (exclusive or), 518-520

