
11
EP IDEMIOLOGY AND SIR MODELS

In this chapter, we’ll develop a model of
an epidemic as it spreads in a susceptible
population, and use it to evaluate the effec-

tiveness of possible interventions.
My presentation of the model in the next few chapters is based on an ex-

cellent article by David Smith and Lang Moore, “The SIR Model for Spread
of Disease,” published in the Journal of Online Mathematics and Its Applica-
tions in December 2001 (https://www.maa.org/press/periodicals/loci/joma/
the-sir-model-for-spread-of-disease).

This chapter is available as a Jupyter notebook, where you can read the
text, run the code, and work on the exercises. You can access the notebook
at https://allendowney.github.io/ModSimPy/.

The Freshman Plague
Every year at Olin College, about 90 new students come to campus from
around the country and the world. Most of them arrive healthy and happy,
but usually at least one brings with them some kind of infectious disease.
A few weeks later, predictably, some fraction of the incoming class comes
down with what we call the “Freshman Plague.”

Modeling and Simulation in Python (Sample Chapter) © 10/18/22 by Allen B. Downey

https://www.maa.org/press/periodicals/loci/joma/the-sir-model-for-spread-of-disease
https://www.maa.org/press/periodicals/loci/joma/the-sir-model-for-spread-of-disease
https://allendowney.github.io/ModSimPy/


In this chapter we’ll introduce a well-known model of infectious disease,
the Kermack-McKendrick (KM) model, and use it to explain the progres-
sion of the disease over the course of the semester, to predict the effect of
possible interventions (like immunization), and to design the most effective
intervention campaign.

So far we have done our own modeling; that is, we’ve chosen physical
systems, identified factors that seem important, and made decisions about
how to represent them. In this chapter we start with an existing model and
reverse engineer it. Along the way we consider the modeling decisions that
went into it and identify its capabilities and limitations.

The Kermack-McKendrick Model
The KM model is an example of an SIR model, so named because it repre-
sents three categories of people:

S People who are “susceptible,” that is, capable of contracting the dis-
ease if they come into contact with someone who is infected.

I People who are “infectious,” that is, capable of passing along the dis-
ease if they come into contact with someone who is susceptible.

R People who have “recovered.” In the basic version of the model,
people who have recovered are considered to be no longer infectious
and immune to reinfection. That is a reasonable model for some dis-
eases, but not for others, so it should be on the list of assumptions to
reconsider later.

Let’s think about how the number of people in each category changes
over time. Suppose we know that people with the disease are infectious for
a period of four days, on average. If 100 people are infectious at a particular
point in time, and we ignore the particular time each one became infected,
we expect about one out of four to recover on any particular day.

Putting that a different way, if the time between infection and recovery
is four days, the recovery rate is about 0.25 recoveries per day, which we’ll
denote with the Greek letter gamma, γ, or the variable name gamma.

If the total number of people in the population is N, and the fraction
currently infectious is i, the total number of recoveries we expect per day
is γiN.

Now let’s think about the number of new infections. Suppose we know
that each susceptible person comes into contact with one person every three
days, on average, in a way that would cause them to become infected if the
other person is infected. We’ll denote this contact rate with the Greek letter
beta, β, or the variable name beta. It’s probably not reasonable to assume
that we know β ahead of time, but later we’ll see how to estimate it based on
data from previous outbreaks.

If s is the fraction of the population that’s susceptible, sN is the number
of susceptible people, βsN is the number of contacts per day, and βsiN is the
number of those contacts where the other person is infectious.

96 Chapter 11

Modeling and Simulation in Python (Sample Chapter) © 10/18/22 by Allen B. Downey



In summary:

• The number of recoveries we expect per day is γiN; dividing by N
yields the fraction of the population that recovers in a day, which
is γi.

• The number of new infections we expect per day is βsiN; dividing
by N yields the fraction of the population that gets infected in a day,
which is βsi.

The KM model assumes that the population is closed; that is, no one
arrives or departs, so the size of the population, N, is constant.

The KM Equations
If we treat time as a continuous quantity, we can write differential equations
that describe the rates of change for s, i, and r (where r is the fraction of the
population that has recovered):

ds
dt = –βsi

di
dt = βsi – γi

dr
dt = γi

To avoid cluttering the equations, I leave it implied that s is a function of
time, s(t), and likewise for i and r.

SIR models are examples of compartment models, so called because they
divide the world into discrete categories, or compartments, and describe
transitions from one compartment to another. Compartments are also called
stocks and transitions between them are called flows.

In this example there are three stocks (susceptible, infectious, and re-
covered) and two flows (new infections and recoveries). Compartment mod-
els are often represented visually using stock and flow diagrams. Refer to
Figure 11-1, which shows the stock and flow diagram for the KM model.

Susceptible Infectious Recovered

β γ

Figure 11-1: A stock and flow diagram for the KM model

Stocks are represented by rectangles; flows are represented by arrows.
The widget in the middle of an arrow represents a valve that controls the
rate of flow; Figure 11-1 shows the parameters that control the valves.

Epidemiology and SIR Models 97

Modeling and Simulation in Python (Sample Chapter) © 10/18/22 by Allen B. Downey



Implementing the KM Model
For a given physical system, there are many possible models, and for a given
model, there are many ways to represent it. For example, we can represent
an SIR model as a stock and flow diagram, as a set of differential equations,
or as a Python program. The process of representing a model in these forms
is called implementation. In this section we’ll implement the KM model in
Python.

We represent the initial state of the system using a State object with state
variables s, i, and r; they represent the fraction of the population in each
compartment.

We can initialize the State object with the number of people in each com-
partment; for example, here is the initial state with 1 infected student in a
class of 90:

init = State(s=89, i=1, r=0)

show(init)

state

s 89
i 1
r 0

We can convert the numbers to fractions by dividing by the total:

init /= init.sum()

show(init)

state

s 0.988889
i 0.011111
r 0.000000

For now, let’s assume we know the time between contacts and time be-
tween infection and recovery:

tc = 3 # time between contacts in days

tr = 4 # recovery time in days

We can use them to compute the parameters of the model:

beta = 1 / tc # contact rate (per day)

gamma = 1 / tr # recovery rate (per day)

98 Chapter 11

Modeling and Simulation in Python (Sample Chapter) © 10/18/22 by Allen B. Downey



We’ll use a System object to store the parameters and initial conditions.
The following function takes the system parameters and returns a new System

object:

def make_system(beta, gamma):

init = State(s=89, i=1, r=0)

init /= init.sum()

return System(init=init, t_end=7*14,

beta=beta, gamma=gamma)

The default value for t_end is 14 weeks, about the length of a semester.
Here’s what the System object looks like:

system = make_system(beta, gamma)

show(system)

value

init s 0.988889 i 0.011111 r 0.000000 Name...
t_end 98
beta 0.333333
gamma 0.25

Now that we have an object to represent the system and its state, we are
ready for the update function.

The Update Function
The purpose of an update function is to take the current state of a system
and compute the state during the next time step. Here’s the update function
we’ll use for the KM model:

def update_func(t, state, system):

s, i, r = state.s, state.i, state.r

infected = system.beta * i * s

recovered = system.gamma * i

s -= infected

i += infected - recovered

r += recovered

return State(s=s, i=i, r=r)

update_func takes as parameters the current time, a State object, and a System

object.

Epidemiology and SIR Models 99

Modeling and Simulation in Python (Sample Chapter) © 10/18/22 by Allen B. Downey



The first line unpacks the State object, assigning the values of the state
variables to new variables with the same names. This is an example of multi-
ple assignmentassignment, multiple. The left side is a sequence of variables; the
right side is a sequence of expressions. The values on the right side are as-
signed to the variables on the left side in order. By creating these variables,
we avoid repeating state several times, which makes the code easier to read.

The update function computes infected and recovered as a fraction of the
population, then updates s, i, and r. The return value is a State that contains
the updated values.

We can call update_func like this:

state = update_func(0, init, system)

show(state)

state

s 0.985226
i 0.011996
r 0.002778

The result is the new State object.
You might notice that this version of update_func does not use one of

its parameters, t. I include it anyway because update functions sometimes
depend on time, and it is convenient if they all take the same parameters,
whether they need them or not.

Running the Simulation
Now we can simulate the model over a sequence of time steps:

def run_simulation1(system, update_func):

state = system.init

for t in range(0, system.t_end):

state = update_func(t, state, system)

return state

The parameters of run_simulation1 are the System object and the update func-
tion. The System object contains the parameters, initial conditions, and val-
ues of 0 and t_end.

100 Chapter 11

Modeling and Simulation in Python (Sample Chapter) © 10/18/22 by Allen B. Downey



We can call run_simulation1 like this:

final_state = run_simulation1(system, update_func)

show(final_state)

state

s 0.520568
i 0.000666
r 0.478766

The result indicates that after 14 weeks (98 days), about 52 percent of the
population is still susceptible, which means they were never infected; almost
48 percent have recovered, which means they were infected at some point;
and less than 1 percent are actively infected.

Collecting the Results
The previous version of run_simulation returns only the final state, but we
might want to see how the state changes over time. We’ll consider two ways
to do that: first, using three TimeSeries objects; then using a new object called
a TimeFrame.

Here’s the first version:

def run_simulation2(system, update_func):

S = TimeSeries()

I = TimeSeries()

R = TimeSeries()

state = system.init

S[0], I[0], R[0] = state

for t in range(0, system.t_end):

state = update_func(t, state, system)

S[t+1], I[t+1], R[t+1] = state.s, state.i, state.r

return S, I, R

First, we create TimeSeries objects to store the results. Next, we initialize state

and the first elements of S, I, and R.

Epidemiology and SIR Models 101

Modeling and Simulation in Python (Sample Chapter) © 10/18/22 by Allen B. Downey



Inside the loop, we use update_func to compute the state of the system at
the next time step, then use multiple assignment to unpack the elements of
state, assigning each to the corresponding TimeSeries.

At the end of the function, we return the values S, I, and R. This is the
first example we have seen where a function returns more than one value.

We can run the function like this:

S, I, R = run_simulation2(system, update_func)

We’ll use the following function to plot the results:

def plot_results(S, I, R):

S.plot(style='--', label='Susceptible')

I.plot(style='-', label='Infected')

R.plot(style=':', label='Recovered')

decorate(xlabel='Time (days)',

ylabel='Fraction of population')

We can run it like this:

plot_results(S, I, R)

It takes about three weeks (21 days) for the outbreak to get going, and
about five weeks (35 days) to peak. The fraction of the population that’s in-
fected is never very high, but it adds up. In total, almost half the population
gets sick.

102 Chapter 11

Modeling and Simulation in Python (Sample Chapter) © 10/18/22 by Allen B. Downey



Now with a TimeFrame
If the number of state variables is small, storing them as separate TimeSeries

objects might not be so bad. But a better alternative is to use a TimeFrame,
which is another object defined in the ModSim library. A TimeFrame is a kind
of DataFrame, which we used earlier to store world population estimates.

Here’s a more concise version of run_simulation using a TimeFrame:

def run_simulation(system, update_func):

frame = TimeFrame(columns=system.init.index)

frame.loc[0] = system.init

for t in range(0, system.t_end):

frame.loc[t+1] = update_func(t, frame.loc[t], system)

return frame

The first line creates an empty TimeFrame with one column for each state
variable. Then, before the loop starts, we store the initial conditions in the
TimeFrame at 0. Based on the way we’ve been using TimeSeries objects, it is
tempting to write

frame[0] = system.init

but when you use the bracket operator with a TimeFrame or DataFrame, it selects
a column, not a row.

To select a row, we have to use loc, like this:

frame.loc[0] = system.init

Since the value on the right side is a State, the assignment matches up the
index of the State with the columns of the TimeFrame; that is, it assigns the s

value from system.init to the s column of frame, and likewise with i and r.
During each pass through the loop, we assign the State we get from

update_func to the next row of frame. At the end, we return frame.
We can call this version of run_simulation like this:

results = run_simulation(system, update_func)

Here are the first few rows of the results:

results.head()

s i r

0 0.988889 0.011111 0.000000
1 0.985226 0.011996 0.002778
2 0.981287 0.012936 0.005777
3 0.977055 0.013934 0.009011
4 0.972517 0.014988 0.012494

Epidemiology and SIR Models 103

Modeling and Simulation in Python (Sample Chapter) © 10/18/22 by Allen B. Downey



The columns in the TimeFrame correspond to the state variables, s, i, and r.
As with a DataFrame, we can use the dot operator to select columns from a

TimeFrame, so we can plot the results like this:

plot_results(results.s, results.i, results.r)

The results are the same as before, now in a more convenient form.

Summary
This chapter presented an SIR model of infectious disease and two ways to
collect the results, using several TimeSeries objects or a single TimeFrame. In
the next chapter we’ll use the model to explore the effect of immunization.

Exercises
Before you go on, you might want to work on the following exercise.

11.1
Suppose the time between contacts is four days and the recovery time
is five days. After 14 weeks, how many students have been infected in
total?

Hint: What is the change in S between the beginning and the end of
the simulation?

104 Chapter 11

Modeling and Simulation in Python (Sample Chapter) © 10/18/22 by Allen B. Downey




