NEWTON'’S SECOND LAW

Isaac Newton accomplished a lot. Among

the numerous physical and mathematical
insights he left us are three numbered laws

that bear his name. Newton’s second law is the

most important of these; it provides a method for un-
derstanding the motion of an object if we know the
forces that act on it. Newton’s third law is almost as
significant; it’s a rule about how two objects interact.
Newton’s first law, from a mathematical standpoint,
is a corollary to Newton’s second law, so it seems the
smallest of the three. But since Newton’s second law
is sufficiently intuition shattering, it’s helpful to get
our minds around something simpler before trying to
grasp it. Newton’s first law serves well in this capacity;
it makes a bold claim that seems obviously false.

In this chapter, we’ll discuss Newton’s first law and then turn our atten-
tion to Newton’s second law in one linear dimension, such as a horizontal
line or a vertical line. We’ll show how to think about Newton’s second law
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in a sequence of settings of increasing complexity, organized by what the
forces depend on. We'll start with constant forces, the simplest situation, be-
fore moving on to forces that depend only on time. Then we’ll turn to forces
that depend on the velocity of the particle they act on, followed by forces
that depend on both time and velocity. The techniques for solving Newton’s
second law change as the forces involved depend on different physical quan-
tities. We’ll introduce the Euler method for solving a differential equation
and explore a number of situations in which Newton’s second law is the cen-
tral principle that allows us some traction in understanding the motion of
an object.

Newton’s First Law

Chapter 14

Let’s return to the air track of Chapter 4. If you give the car a little push on
the air track and then let it go, it will travel at a constant speed until it hits
the end of the track. After we stop pushing the car, it continues to move at
some speed even with no force applied in the direction of motion. This ten-
dency for moving objects to keep moving is called inertia. The idea of inertia
is relevant in the one-dimensional spatial setting of the air track, and it’s also
relevant in the unconstrained three-dimensional spatial setting of the world
in which we live. The idea is important enough to be enshrined in a princi-
ple of physics called Newton’s first law. Here are three versions:

Newton’s first law, Newton’s words [15]

Every body perseveres in its state of being at rest or of moving uniformly
straight forward, except insofar as it is compelled to change its state by
forces impressed.

Newton’s first law, poetic version
A body in motion stays in motion. A body at rest stays at rest.

Newton’s first law, modern version
In the absence of applied forces, an object maintains the same velocity.

Recall that velocity is a vector, so maintaining the same velocity means
keeping the same speed as well as the same direction. Since acceleration
is change in velocity per unit of time, an equivalent way of expressing New-
ton’s first law is that in the absence of forces, an object experiences no
acceleration.

Notice that Newton’s first law makes no mention of forces that were ap-
plied in the past. The point is that if there are no forces acting now, the veloc-
ity will stay constant now. Any time there are no forces present, the velocity
will stay constant.

Why does Newton’s first law seem obviously false? Because we’re stuck
on the surface of the earth, a place that is rife with forces we might fail to
consider, friction and air resistance not least among them. Things are a bit
simpler out in space. We can imagine one astronaut tossing a small wrench



to another at slow speed. The wrench just glides straight across the ship, per-
haps rotating slowly about its center. That wrench is a great example of New-
ton’s first law.

Perhaps you’ve been in a car when the driver slams on the brakes so that
books, papers, and toys go flying forward (with respect to the car’s seats).
In my family, we celebrate these moments by shouting “Newton’s first law!”
From a perspective outside the (decelerating) car, the books, papers, and
toys are doing their best to travel in a straight line, at least for the short pe-
riod of time before gravity and other objects put an end to their line-like
motion.

Newton’s first law tells us that objects naturally go steady and straight.
In practice, though, they don’t. Newton’s second law explains how and why.

Newton’s Second Law in One Dimension

Newton’s first law tells us that when no forces are present, an object does
not accelerate. Newton’s second law claims that acceleration is caused by
forces.

Newton’s second law, Newton’s words [15]
A change in motion is proportional to the motive force impressed and
takes place along the straight line in which that force is impressed.

Newton’s second law, poetic version
An object’s acceleration is directly proportional to the net force acting on
the object and inversely proportional to its mass.

Modern versions of Newton’s second law are expressed by Equation 14.1
for Newton’s second law in one dimension, and Equation 16.1 for New-
ton’s second law in three dimensions. In the remainder of this chapter, we’ll
treat Newton’s second law in one dimension, which allows us to keep things
simple by using numbers rather than vectors for velocity, acceleration, and
force. In Chapter 16, we’ll treat Newton’s second law in full generality with
vectors.

To discuss force and mass in a quantitative way, we need units of mea-
sure. In the SI system, force is measured in Newtons (N). A 100-N force has
a different effect on a golf ball than it has on a bowling ball. According to
Newton, each object has a mass, which determines the readiness of an object
to accelerate in response to a force. A large-mass object experiences small ac-
celeration compared to a small-mass object exposed to the same force. The
ST unit of mass is the kilogram (kg).

Newton’s second law expresses a relationship between the following
three quantities:

*  The forces that act on an object
*  The mass of the object

*  The acceleration of the object
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Newton’s second law says that the acceleration of an object can be found
by dividing the net force acting on the object by the mass of the object. The
net force acting on an object is the sum of all the forces acting on the object.
In one dimension, some forces may be negative and some may be positive.

Newton’s second law is usually written as I,e; = ma. Unlike the one-
dimensional equations for velocity and acceleration (Equations 4.5 and 4.12),
this equation is not an equality of functions. The acceleration of the object
is only a function of time, but the net force generally depends on the time,
the position of the object, and the velocity of the object. The net force at
time ¢ is Fre(?, %(2), v(2)). A better way to write Newton’s second law is:

Newton’s second law in one dimension
Fre(t, x(2), v(t)) = ma(t) (14.1)

There is a chicken-and-egg issue going on with Newton’s second law. We
know from Equations 4.5 and 4.12 that v = Dx and a = Dv. If we know the
function a (meaning we know its value at all times), we can find the function
v given an initial velocity. (See Equation 6.1 and the corresponding function
velFromAcc.) We can then go on and find the function x given an initial po-
sition. (See Equation 6.5 and the corresponding function posFromvel.) But
Newton’s second law is telling us that acceleration depends on the forces,
which depend on the position and the velocity. To find the position of my
object, it seems that I need to find the velocity, and for that I need the ac-
celeration. However, the acceleration depends on both the position and the
velocity.

There is a name for this particular kind of chicken-and-egg problem.
Newton’s second law is an example of a differential equation. A differential
equation is a relationship between derivatives of an unknown function, with
the unknown function itself often regarded as the zeroth derivative. The un-
known function in the case of Newton’s second law is usually either the po-
sition x or the velocity v. Velocity can be written as the first derivative of po-
sition (v = Dx), and acceleration can be written as the second derivative of
position (a = Dv = D?x).

Newton’s second law looks more like a differential equation if we write it
in terms of an unknown position function.

Foe(t, x(0), Dx(1)) = mD*x(t) (14.2)

This is a second-order differential equation because it is a relationship
between the position function x, its first derivative Dx, and its second deriva-
tive D?x. The relationship for a particular physical object depends on the func-
tion Fye, which depends on the nature of the forces acting on the object.

In simple situations, the net force on an object may not depend on time,
position, and velocity, but rather only on zero, one, or two of these physical
quantities. In these simple situations, Newton’s second law may appear as
something simpler than a second-order differential equation. Table 14-1 lists
situations by the physical quantities that the forces depend on and gives the
mathematical technique needed to solve Newton’s second law.



Table 14-1: The Technigue for Solving Newton’s Second Law,
Based on Which Physical Quantities the Forces Depend On

Forces depend only on Solution technique

Nothing Algebra

Time Integration

Velocity Firstorder differential equation
Time and velocity Firstorder differential equation

Time, position, and velocity ~ Second-order differential equation

A net force that depends on nothing is a constant net force. Its value re-
mains constant over time, independent of time, position, or velocity. In the
next several sections, we’ll look at constant forces, forces that depend only
on time, forces that depend only on velocity, and forces that depend on
both time and velocity. This restriction allows us to limit our attention in
this chapter to first-order differential equations. In Chapter 15, we’ll look at
the more general case of one-dimensional motion in which the net force can
depend on time, position, and velocity.

Second Law with Constant Forces

The simplest situation for Newton’s second law is when the net force is con-
stant, independent of time, position, and velocity. Most problems in an in-
troductory physics course are like this because they can be solved without
differential equations and without a computer.

Let’s consider an example problem with constant forces.

Example 14.1. Suppose we have a car with mass 0.1 kg on an air track. The
car is initially moving east at a speed of 0.6 m/s. Starting at time ¢ = 0, we
apply to this car a constant force of 0.04 N to the east. At the same time, our
friend applies to the same car a constant force of 0.08 N to the west. What
will the subsequent motion of the car look like? In particular, how will the
velocity and the position of the car change in time?

Figure 14-1 shows the schematic diagram.

F%ct
Féet 2 R
Y
/m
a(t)::R@ u(t) :: R =<f> x(¢) :: R
R R

Figure 14-1: Schematic diagram for Newton’s second law with
constant forces
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The constant net force F§¢¢ (superscript ¢ for constant) acting on the
object needs to be divided by the mass of the object to obtain the accelera-
tion of the object. Because the net force is constant, the acceleration is also
constant.

a(t) = f"f‘ (14.3)

We write a(t) rather than a for acceleration, not because acceleration
changes with time, but because « is the acceleration function (type R -> R)
and a(t) is the acceleration (type R). We then integrate acceleration to obtain
the velocity.

m

u(t) = v(0) (14.4)

The integrator that produces velocity contains a real number (type R)
as state. This type is shown below the integrator in Figure 14-1. This inte-
grator remembers the current velocity so that it can be updated using the
acceleration.

We then integrate the velocity to obtain the position.

F ‘hcttz

x(t) = x(0) + v(0)t +
2m

(14.5)

The wires of the diagram represent quantities that are continuously
changing in time. Each wire in the diagram is labeled with a name and a
type. For this diagram, all of the wire types are real numbers.

Rectangular boxes represent purely functional constants and functions.
In other words, they are constants and functions that do not contain any
state, so that the output is a function only of the input. The circular integra-
tors contain states that must be combined with the input to produce the out-
put. The integrators are labeled with the type of state they contain, which is
the same as the type of the output from the integrator.

Before we write Haskell code to solve Newton’s second law for constant
forces, we are going to write a few lines of code that need to be at the top of
the source code file we build throughout this chapter. The first line turns
on warnings, which I recommend doing because the compiler will warn you
of things that are legal but unusual enough that they may not be what you
intended. The second line gives the code in this chapter the module name
Newton2. If we want to use functions we write here in later chapters, we’ll refer
to the current code using its module name. A module name is optional, but
if you use one, it must match the filename; in this case, the filename should
be Newton2.hs. The third line loads the gnuplot graphics library so that we
can make a graph. Imports like this must occur before any function defini-
tions or type signatures.

{-# OPTIONS -Wall #-}
module Newton2 where

import Graphics.Gnuplot.Simple




Example 14.1 is typical of situations in which Newton’s second law ap-
plies. Given a mass, an initial velocity, and some forces, we are asked to pro-
duce velocity as a function of time. In the Haskell language, a solution to
this example situation would be a (higher-order) function velocityCF (CF for
constant forces) with the following type:

velocityCF :: Mass

-> Velocity -- initial velocity
-> [Force] -- list of forces
-> Time -> Velocity -- velocity function

Recall that there are (at least) two ways to read this type signature. On
one reading, velocityCF takes four inputs—mass, initial velocity, a list of forces,
and a time—and produces as output a real number representing velocity. An
alternative reading is that velocityCF takes three inputs—mass, initial velocity,
and a list of forces—and produces as output a function for how velocity changes
with time. If we wanted to emphasize the latter viewpoint, we could write

velocityCF :: Mass -> Velocity -> [Force] -> (Time -> Velocity)

but it means the same thing as the original type signature.

We used the types Time, Mass, Velocity, and Force. These are not built-in
types in Haskell, so we’d better define what they mean. In one-dimensional
mechanics, all of these quantities can be represented with real numbers, so
we can write some type synonyms to define these types. Using a type syn-
onym in which R stands for Double,

type R = Double

we can write type synonyms for all of the other types:

type Mass
type Time
type Position
type Velocity
type Force

"
P A~ B~ B e ]

The definitions for types Mass, Time, and so on, need not appear before
their use in a type signature. Haskell allows definitions of constants, func-
tions, and types before or after their use.

If we can write a function velocityCF with the type signature above, we
will have solved not just Example 14.1, but all others like it. Our strategy in
writing such a function is:

*  Find the net force by adding all of the forces

* Find the acceleration using Newton’s second law (Equation 14.3)
*  Find the velocity from the acceleration (Equation 4.14 or 14.4)
Here’s a definition for velocityCF that expresses these three steps and

has the type we claimed earlier.
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velocityCF m vO fs

= let fNet = sum fs -- net force
a0 = fNet / m -- Newton's second law
vt =v0+a0*t -- constant acceleration eqgn
in v

To write the function velocityCF, we begin by naming the three inputs:
mass m, initial velocity vo, and list of forces fs. We then use a let construction
to define three local names for net force, acceleration, and velocity. To find
the net force, we sum up the forces in the list using the built-in sum function.
To find the acceleration, we divide the net force on the object by the mass of
the object, as Newton’s second law prescribes.

The third equation in the let construction defines a local function v
to represent the velocity function. We use Equation 4.14, one of the con-
stant acceleration equations introduced in standard introductory physics
textbooks, but we could just as easily have used Equation 14.4 in place of the
second and third lines of the let construction. Notice that we have written
the definition of velocityCF using the “three-input thinking” mentioned ear-
lier. Exercise 14.1 asks you to rewrite the function using four-input thinking.

We can write a function positionCF that produces a position function
given mass, initial position, initial velocity, and a list of constant forces.

positionCF :: Mass

-> Position -- initial position
-> Velocity -- initial velocity
-> [Force] -- list of forces

-> Time -> Position -- position function

positionCF m x0 vo fs
= let fNet = sum fs
a0 = fNet / m
xt =x0+v0*t+ ao¥t**2 / 2
in x

Here, we have used Equation 4.15 or 14.5. Returning to Example 14.1,
the velocity of the car as a function of time is

velocityCF 0.1 0.6 [0.04, -0.08]

because 0.1 kg is the mass of the car, 0.6 m/s is its initial velocity, and the
square-bracketed list contains the forces in Newtons. We can ask for the type
of this function in GHCi, and we can ask for values of the velocity at speci-
fic times.

Prelude> :1 Newton2

[1 of 1] Compiling Newton2 ( Newton2.hs, interpreted )
0k, one module loaded.

*Newton2> :t velocityCF 0.1 0.6 [0.04, -0.08]

velocityCF 0.1 0.6 [0.04, -0.08] :: Time -> Velocity

*Newton2> velocityCF 0.1 0.6 [0.04, -0.08] O



0.6

*Newton2> velocityCF 0.1 0.6 [0.04, -0.08] 1
0.2

Since we have the velocity function in hand, we can graph it. Let’s write
the code to do so first. Most of the code below is for setting up a title, axis
labels, and the name of the file we want produced. The interesting stuff is at
the end, where we give a list of times at which to evaluate the function and
the function itself.

carGraph :: 10 ()
carGraph
= plotFunc [Title "Car on an air track"

,XLabel "Time (s)"
,YLabel "Velocity of Car (m/s)"
,PNG "CarVelocity.png"
,Key Nothing
] [0..4 :: Time] (velocityCF 0.1 0.6 [0.04, -0.08])

This code produces the graph in Figure 14-2.
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Figure 14-2: Car velocity as a function of time in Example 14.1

If you load this chapter’s module, Newton2, into GHCi and enter carGraph,

*Newton2> carGraph

you will not get any return value, but the function will produce a Portable
Network Graphics (PNG) file named CarVelocity.png on your hard drive.
Without the PNG "CarVelocity.png" option, the carGraph function would pro-
duce a graph on the screen.

Note that the negative acceleration in the graph in Figure 14-2 (which
exists over the entire time interval from ¢ = 0 to ¢ = 4 s) does not mean that
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the car is always slowing down. Rather, a negative acceleration means an ac-
celeration to the west. The car slows down during the first 1.5 s as it is mov-
ing east but then begins to speed up as it moves west. When the acceleration
and velocity of an object point in the same direction, the object speeds up.
When the acceleration and velocity of an object point in opposite directions,
the object slows down.

With the functions velocityCF and positionCF, we have general-purpose
ways of solving any Newton’s second law type problem in one spatial dimen-
sion with constant forces. Next we’ll consider forces that change in time.

Second Law with Forces that Depend Only on Time

The next situation for Newton’s second law is when the net force depends
on time but not on position or velocity. Figure 14-3 shows a schematic dia-
gram for Newton’s second law with forces that depend only on time.

R

\

Fflet
Fnet(t) R

\

/m
a(t)::R_>@ u(t) :: R =<f> x(¢) :: R
R R

Figure 14-3: Schematic diagram for Newton’s second law with forces that depend only
on fime

The constant number 1 is fed into an integrator to produce a value for
time. (The time changes at a rate of 1 second per second.) As usual, wires
are labeled with names and types. Integrators are labeled with the type of
state they hold. Time is fed into the net force function Fhe (superscript ¢ for
time-dependent), which produces net force as output. To obtain the accel-
eration of the object, we need to divide the net force acting on the object by
the object’s mass.

Floei(?)
m

alt) = (14.6)
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We then integrate the acceleration to obtain the velocity,

u(t) = v(0) + /t a(')dt' =v(0) + 1 /thlet(t’)dt’ (14.7)
0 m Jo

and we integrate the velocity to obtain the position:

x(t) = x(0) + /[ o) dt"

0
! 1 t” / / /!
=x(0)+/0 v(0) + %/o Fhe)dl'| dt

t//

t
=x(0)+v(0)t+l/ / Fle(dYdl' | dt”
m Jo |Jo

The wires of the diagram represent quantities that are continuously
changing in time. Rectangular boxes represent pure functions, whereas cir-
cular elements contain state.

To solve Newton’s second law problems with forces that depend on
time, we’d like a higher-order function that produces a velocity function,
similar to velocityCF in the previous section. One difference is that now we
need to provide a list of force functions rather than a list of numerical forces.
We want a function velocityFt (the Ft suffix denotes that forces depend only
on time) with the following type signature:

velocityFt :: Mass -> Velocity -> [Time -> Force] -> Time -> Velocity

Given the mass of our object, its initial velocity, and a list of force func-
tions, we want to produce a velocity function.

Because we’re going to do numerical integration to get the velocity func-
tion, we’ll add one additional parameter to this type signature, namely the
time step for numerical integration. Thus, we arrive at the following defini-
tion for velocityFt:

velocityFt :: R -- dt for integral
-> Mass
-> Velocity -- initial velocity
-> [Time -> Force] -- list of force functions
-> Time -> Velocity -- velocity function

velocityFt dt m vo fs
= let fNet t = sum [f t | f <- fs]
at="fNett/m
in antiDerivative dt vo a

In this definition, we begin by naming the inputs: dt for an integration
time step, m for the mass of the object we are attending to, vo for the initial
velocity of this object, and fs for a list of force functions. Note that the local
variable for forces, fs, had type [Force] (or [R]) when used in velocityCF and
positionCF for situations with constant forces, but it now has type [Time ->
Force] (or [R -> R]) for situations with forces that depend on time.
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We again use a let construction to define local functions, a net force
function, and an acceleration function. The net force function adds to-
gether the forces provided in the list fs. We might have hoped we could use
the same line of code we used in velocityCF, namely fNet = sum fs, to sum
the forces. After all, fs is still a list. The trouble is that sum works only with
types that are instances of Num, as you can see if you look at the type of sum.
So while it is happy to add numbers (type R), it is not happy to add functions
(typeR -> R). Fortunately, we can evaluate the force functions at a time t in-
troduced as an argument to fNet and then add the resulting numbers.

The acceleration function comes from Newton’s second law. Here, we
might have hoped that we could divide the net force function by the mass
to obtain the acceleration function, perhaps writing a = fNet / m. But re-
call that the division operator insists that it work with two values that have
the same type and that this type be an instance of Fractional. The division
operator does not want to work with functions. Again, we address this by
evaluating the fNet function at the time t introduced as the argument to the
acceleration function a.

Finally, the velocity comes from taking an antiderivative of the accel-
eration function. We defined the functions antiDerivative and integral in
Chapter 6, but we’ll repeat their definitions here:

antiDerivative :: R -> R -> (R -> R) -> (R -> R)
antiDerivative dt vOo a t = vO + integral dt a 0 t

integral :: R -> (R ->R) -> R -> R -> R
integral dt f a b
=sum [ft *dt | t<- [a+dt/2, a+3*dt/2 .. b - dt/2]]

Note that velocityFt dt m vo fs has type R -> R and is the velocity func-
tion for an object with mass m, initial velocity vo, and list of force functions
fs. This velocity function is part of the solution to the mechanics problem.
Another part of the solution is a position function. We can write a function
positionFt that produces a position function given mass, initial position, ini-
tial velocity, and a list of force functions.

positionFt :: R -- dt for integral
-> Mass
-> Position -- initial position
-> Velocity -- initial velocity
-> [Time -> Force] -- list of force functions
-> Time -> Position -- position function

positionFt dt m x0 vo fs
= antiDerivative dt x0 (velocityFt dt m vo fs)

This function works by taking an antiderivative of the velocity function,
which we find using velocityFt.

As an example of solving Newton’s second law with a time-dependent
force, consider a child riding a bike. By working the pedals, the child ar-
ranges for the ground to apply a constant forward force of 10 N on the bike



for 10 seconds, after which the child coasts for the next 10 seconds. Follow-
ing the coasting, the child returns to the 10-N force for another 10 seconds,
and so on, as illustrated in Figure 14-4.

Child pedaling then coasting

Force on bike (N)

0 10 20 30 40
Time(s)
Figure 14-4: Force as a function of time for a child on a bike

In this example, we’ll assume that air resistance is not important and
that there is only one force on the bike.

Here is the equation for the time-dependent force of pedaling and
coasting:

Fp

(1) = {10 N, (20 s)n <t < (20 s)n + 10 s for some integer n (14.8)

ON, (20s)n+10s <¢<(20s)n+20 s for some integer n

The force is either 0 N or 10 N, depending on where the time falls in
a 20-second cycle. If the time falls in the first 10 seconds of the cycle, the
force is 10 N. If, on the other hand, the time falls in the last 10 seconds of
the cycle, the force is 0 N.

Here is the time-dependent force of Equation 14.8 in Haskell:

pedalCoast :: Time -> Force
pedalCoast t
= let tCycle = 20
nComplete :: Int
nComplete = truncate (t / tCycle)
remainder = t - fromIntegral nComplete * tCycle
in if remainder < 10

then 10
else 0

The local variable tCycle is the number of seconds for a full cycle. The
variable nComplete uses the Prelude function truncate to calculate the number
of complete cycles from the time t. The truncate function produces a type
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with type class Integral (recall Integer and Int are instances of Integral). We
provide a local type signature to say that we want nComplete to have type Int.
The local type signature is optional, but the compiler will give us a warning
that it chose a default type if we don’t specify something. Remove the local
type signature to see what the warning looks like. This is a mild warning. We
don’t mind that the compiler chooses Integer instead of Int. You can feel
free to ignore this warning and use the code without the type signature if
you wish.

The remainder is the number of seconds, between 0 and 20, that have
elapsed since the beginning of the most recent cycle. We want remainder to
be a real number, so we must use fromIntegral to convert nComplete :: Int into
a real number.

Figure 14-5 shows the position of the child as a function of time.

Child pedaling then coasting
300

250 t

200 |

150 |

Position of Bike (m)
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50

0 5 10 15 20 25 30 35 40
Time (s)
Figure 14-5: Position as a function of time for the child on a bike

Here is the Haskell code that produced Figure 14-5:

childGraph :: I0 ()
childGraph
= plotFunc [Title "Child pedaling then coasting"

,XLabel "Time (s)"
,YLabel "Position of Bike (m)"
,PNG "ChildPosition.png"
,Key Nothing
] [0..40 :: R] (positionFt 0.1 20 0 0 [pedalCoast])

The most interesting part of the code is the last line, where we specify the
function we want plotted. This function, positionfFt 0.1 20 0 0 [pedalCoast],
uses the positionFt function we developed earlier in the chapter with a time
step of 0.1 s, a mass of 20 kg, Os for initial position and initial velocity, and a
list of forces that includes only the force of pedaling and coasting. All of the



relevant physical information is included in the “name” of the function we
are plotting.

You can see from the graph in Figure 14-5 that during the first 10 sec-
onds, the child’s position curve is parabolic, as we’d expect from constant
acceleration. From 10 to 20 seconds, the position shows constant velocity
while the child is coasting. From 20 to 30 seconds, there is another period
of acceleration in which the position curve is parabolic, followed by a second
period of coasting.

With the functions velocityFt and positionFt, we have general-purpose
ways of solving any Newton’s second law type problem in one spatial dimen-
sion with forces that depend only on time. We're now ready to look at forces
that depend on velocity, the most common of which is air resistance.

Air Resistance

In this section, we’ll make a short diversion from our path of considering
Newton’s second law in the presence of forces that depend on time, velocity,
neither, or both to develop an expression for the force of air resistance on
an object in one-dimensional motion. Air resistance is a force that depends
only on velocity, and we’ll use it in the next several sections as we develop
ways to solve Newton’s second law with forces that depend on velocity.

Introductory physics classes typically ignore air resistance or treat it very
lightly, because the presence of air resistance turns Newton’s second law
into a differential equation, which is considered beyond the scope of an in-
troductory physics course. In this chapter and the next, we’ll develop numer-
ical methods for solving differential equations, meaning that air resistance is
not something we want to avoid; in fact, it showcases the power of our tools.

To develop a model of air resistance, let’s think of the interaction be-
tween an object and the air around it as a collision. Suppose the object is
moving with velocity v. In this section, v represents the real-valued, one-
dimensional velocity of the object (a quantity with type R) and not the ve-
locity function or the speed.

Let the cross-sectional area of the object be A and the density of air be p.
We analyze the motion of the object over a small time interval d¢. We assume
that the initial velocity of the air is 0, and that the final velocity of the air is
v (in other words, after the collision, the air is traveling at the same speed as
the object).

The distance the object travels in time dt is vdt. The volume of air swept
out by the object in time d¢ is Avdi. The mass of air disturbed by the object
in time d¢ is pAvdt. The momentum imparted to the air by the object in time
dt is the product of the mass of the air, pAv dt, and the change in velocity of
the air, which is v, as we assume that the air starts from rest and ends the
short time interval with velocity v. The momentum imparted to the air is
pAv2 dt. The force felt by the air is this change in momentum per unit time,
or pAv®. The force felt by the object from the air is equal and opposite to
this following Newton’s third law, which we will discuss in Chapter 19.
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Our derivation was really quite approximate because we don’t know that
the air molecules really end up with velocity v, and we haven’t even tried to
account for the forces of air molecules on each other as the air compresses.
Nevertheless, the form of our result is quite useful and approximately cor-
rect. Objects with different shapes respond a bit differently though, so it
is useful to introduce a drag coefficient C to account for these differences.
The drag coefficient is a dimensionless constant that is a property of the ob-
ject that is flying through the air. It is also conventional to include a factor
of 1/2 so that the magnitude of the force of air resistance on the object is
CpAv?/2. This expression is never negative. We would prefer an expression
in which the force is negative when the velocity is positive and positive when
the velocity is negative. Our final expression for the one-dimensional force
of air resistance is )

2

where the minus sign and the absolute value ensure that the force acts in a
direction opposite the velocity. Air resistance is acting to slow the object. In
Haskell, we’ll write Equation 14.9 for air resistance as follows:

Fo(v) =—-=CpAlviv (14.9)

fAir :: R -- drag coefficient
-> R -- air density
-> R -- cross-sectional area of object
-> Velocity
-> Force
fAir drag rho area v = -drag * rho * area * abs v * v / 2

In the mathematical notation of Equation 14.9, we’re treating F;, as a
function of one variable. The parameters C, p, and A are not listed explic-
itly as variables that F,;; depends on. Eliding parameters like this is stan-
dard practice in physics, but in some sense it’s an abuse of notation. In the
Haskell notation, we must include all of the variables that the force of air re-
sistance depends on. We list the three parameters first, before the velocity,
so that an expression like fAir 1 1.225 0.6 is a fully legitimate function that
takes only velocity as input. The function fAir 1 1.225 0.6 has already chosen
drag = 1, rho = 1.225, and area = 0.6.

With this brief foray into air resistance, and particularly the develop-
ment of Equation 14.9, we’re now ready to look at Newton’s second law in
the case where forces on our object depend only on its velocity.

Second Law with Forces that Depend Only on Velocity

Chapter 14

The next situation for Newton’s second law is when the net force depends
on velocity but not on time or position. What we really mean here is that the
forces do not depend explicitly on time. Velocity is a function that depends
on time, and forces are allowed to depend on the velocity in this section, so
there is a sense in which the forces depend on time. The constraint in this
section is that the forces can depend on time only through the velocity.



The force functions may depend only on one variable, the velocity. We
use F to denote the jth force function of one variable that gives force when
supplied with velocity and we use ¢ to denote the function of one vari-
able that gives net force when supplied with velocity.

FYevo) = Y F¥(v)
J

We use vy as a local variable for velocity (type R) rather than v in this sec-
tion because we want v to stand for the velocity function of our object (type
R -> R).

Figure 14-6 shows a schematic diagram for Newton’s second law with
forces that depend only on velocity.

v
net

\4

]

_>@ u(t) :: R =<f> x(t) :: R

R R

-

a(t) ::

Figure 14-6: Newton’s second law with forces that depend only on velocity

This diagram, unlike previous diagrams, contains a loop. The velocity
produced by the integrator of acceleration serves as the input to the net
force function. The loop in the diagram indicates that Newton’s second law
produces a differential equation. Because the loop contains one integrator,
we get a first-order differential equation. A differential equation is a more
difficult mathematical problem than a mere integral or antiderivative, as we
had when forces depended only on time.

Newton’s second law is given by the following equation:

d

v [o(t)] = % > FYu(t) (14.10)
j

The information this equation represents is the same as the information
in the schematic diagram of Figure 14-6. The equation describes how the
rate of change of velocity depends on velocity itself through the forces that
act on the object. The function newtonSecondV, presented next, is yet a third
way to express Newton’s second law; this function returns the rate of change
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of velocity when given the current value of velocity along with the forces that
act on the object.

newtonSecondV :: Mass

-> [Velocity -> Force] -- list of force functions
-> Velocity -- current velocity
-> R -- derivative of velocity

newtonSecondV m fs vO = sum [f vO | f <- fs] / m

We can integrate the acceleration to obtain the velocity.

u(t) = v(0)+/0t a()dt' =v(0) + % /Ot U ec(v(?)) dt’

Unlike the case with time-dependent forces, we cannot simply perform
the integral here because the velocity function we are trying to find appears
under the integral. How to proceed?

To solve the differential equation, Equation 14.10, we will discretize
time, which is something we have been doing with our numerical deriva-
tives and integrals when we chose a time step. As long as our time step A¢
is smaller than any important time scales in the situation we are addressing,
the slope of the line connecting points (¢, v(¢)) and (¢ + At, v(t + At)) will be
approximately equal to the derivative of velocity at time .

ot + At) = o(t)  do(t)
At ot

Rearranging this equation leads to the Euler method for solving a first-
order differential equation.
du(t)
di

u(t+ At) =~ u(t) + At (14.11)
The Euler method approximates the velocity at ¢ + At by the sum of the
velocity at ¢ and the product of the derivative at ¢ with the time step A¢. The
Euler method gives a way to find velocity at a later time from velocity at an
earlier time if we know the derivative of velocity at the earlier time.
Figure 14-7 pictorially describes the Euler method for solving Newton’s
second law.



0(0) v(At) v(2At) v(3AL) uv(4At)

Figure 14-7: Euler method for Newton’s second law in one dimension, for the
special case in which net force depends only on velocity

The diagram shows how data is acted on by pure functions to compute
the velocity of the object at different times. Because the diagram employs
only pure functions (functions that do nothing but return an output from
inputs and unchanging global values), we refer to this as a functional diagram.
Whereas the schematic diagram in Figure 14-6 presents time as continuous,
this diagram shows time as discrete. And whereas the schematic diagram has
wires with values that are continuously changing in time, the functional dia-
gram has wires with values that do not change. Different points in time have
different wires in the functional diagram. While a schematic diagram may
contain the stateful integrator from Figure 6-5, a functional diagram uncoils
and replaces the integrator with a discrete, functional model like the one in
Figure 6-7. We can see from Figure 14-7 that the same set of computations
occurs at each time step to produce a new velocity from an old velocity. We
call the set of computations that occurs at each time step the velocity-update
Jfunction.

Figure 14-8 shows the velocity-update function, which is based on the
application of the Euler method to one small time step.
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u(t)

Figure 14-8: Velocity-update function
used in the Euler method for solving
Newton’s second law with forces

that depend only on velocity

u(t + At)

Figure 14-8 shows a functional diagram for velocity update, visually de-
scribing how velocity at ¢ + At is computed from velocity at ¢ and the forces.

Here is the velocity-update equation showing how a new velocity is ob-
tained from an old velocity:

u(t+ Af) = o(t) + Wm (14.12)

Lastly, we have the Haskell function updateVelocity, which advances the
value of the velocity by one time step.

updateVelocity :: R -- time interval dt
-> Mass
-> [Velocity -> Force] -- list of force functions
-> Velocity -- current velocity
-> Velocity -- new velocity

updateVelocity dt m fs vo
= v0 + (newtonSecondV m fs v0) * dt

The functional diagram in Figure 14-8, the velocity-update equation
(Equation 14.12), and the function updateVelocity express the same informa-
tion in different forms, namely how to take one step in time with the Euler
method.

Now we want to write a function velocityFv, similar to velocityCF and
velocityFt, but for the case of forces that depend on velocity. To think of
updateVelocity as a function that takes Velocity as input and gives Velocity as
output, we want to think of the time step, mass, and list of force functions as
parameters. The function updateVelocity dt m fs has type Velocity -> Velocity
and plays the role of the iterable function f in Figure 6-4 on page 76.

velocityFv :: R -- time step
-> Mass



-> Velocity -- initial velocity v(0)
-> [Velocity -> Force] -- list of force functions
-> Time -> Velocity -- velocity function
velocityFv dt m vo fs t
= let numSteps = abs $ round (t / dt)
in iterate (updateVelocity dt m fs) vo !! numSteps

We define a local variable numSteps to be the number of time steps we
need to take to get as close as possible to the desired time t. We iterate the
function updateVelocity dt m fs, starting at the initial velocity vo, and then
select the single value of velocity from this infinite list that is closest to the
desired time.

As an example of a situation with forces that depend only on velocity,
let’s consider a bicycle rider heading north on a flat, level road. We’ll con-
sider two forces in this situation. First, there is the northward force that
the road exerts on the tires of the bicycle because the rider is working the
pedals. Let us call this force Fiqer (it is directly produced by the road on the
bike, but it is indirectly produced by the rider), and assume that this force is
a constant 100 N. Second, there is the southward force of air resistance that
impedes the northward progress of the rider, especially when she is travel-
ing quickly. We’ll use the expression for air resistance that we developed in
the previous section with Equation 14.9. The net force is

F%et(v()) = Frider * Fair(v())
1
2

Let’s take the mass of the bike plus rider to be m = 70 kg. We’ll choose a
drag coefficient of C = 2, take the density of air to be p = 1.225 kg/ m3, and
approximate the cross-sectional area of bike and rider to be 0.6 m?. Starting
from rest, our mission is to find the velocity of the bike as a function of time.

Before we use our Haskell functions to investigate the motion of the
bike, we’re going to show how to use the Euler method by hand.

= Frider = CPA |UO‘ L&)

Evler Method by Hand

Let’s use the Euler method by hand to compute the first several values of
velocity for the bike. The purpose in doing this is to get a clear understand-
ing of what is happening in the Euler method, so the code we write will be
meaningful and not just a formal representation of some abstract vague pro-
cess. We choose a time step of 0.5 s. Our mission is to complete the follow-
ing table. We can fill in all of the time values because they are simply spaced
at 0.5 s intervals. The initial velocity is 0, so we fill that in as well.

t(s) wvit) (m/s)
0.0 0.0000
0.5

1.0

1.5
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We will complete the table by using Equation 14.12 to update the veloc-
ity over and over again. To compute the velocity at 0.5 s, we choose ¢ = 0 in
Equation 14.12.

Fe(v(0.0 8))(0.5 )
70 kg
%et(0.0000 m/s)(0.5 s)
70 kg
(100 N)(0.5 s)
70 kg

(0.5 8) =v(0.0s) +

=0.0000 m/s +

=0.0000 m/s +
=(0.7143 m/s

We update the table with

t(s) i) (m/s)
0.0 0.0000
0.5 07143
1.0

1.5

and then we calculate v(1.0 s) using Equation 14.12 with ¢ = 0.5 s:

FYe(v(0.5 8))(0.5 s)
70 kg
F%e1(0.7143 m/s)(0.5 s)
70 kg

(1.0 s) =v(0.5s) +

=0.7413 m/s +

=0.7413 m/s

, [100N-(1)(1.225 kg/m?)(0.6 m?)(0.7143 m/s)?](0.5 s)
70 kg

=1.4259 m/’s

We add this to the appropriate row of the table and continue.

, Phe(@(1.09))(0.5 5)
70 kg
FYet(1.4259 m/$)(0.5 5)
70 kg

v(1.58) = (1.0 s)

=1.4259 m/s +

=1.4259 m/’s

, [100N-(1)(1.225 kg/m%)(0.6 m?)(1.4259 m/s)2](0.5 s)
70 kg

=2.1295 m/s
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The completed table looks like this:

t(s) wvit) (m/s)

0.0 0.0000
0.5 0.7143
1.0 1.4259
1.5 2.1295

Evler Method in Haskell

Now we’ll use the velocityFv function to calculate velocity for the bike. Here
is a velocity function for the bike with a time step of 1 s:

bikeVelocity :: Time -> Velocity
bikeVelocity = velocityFv 1 70 0 [const 100,fAir 2 1.225 0.6]

The higher-order function const can be used to make a constant func-
tion. The function const 100 takes one input, ignores it, and returns 100 as
output. Itis equivalent to the anonymous function \_ -> 100. We’re using it
here to represent the constant force of 100 N.

Notice the data that must be supplied to solve the bike problem. We
provide the 70-kg mass, the 0 m/s initial velocity of the bike, and the two
forces: const 100, a constant force of 100 N, and fAir 2 1.225 0.6, which is
the force of air resistance with a drag coefficient of 2, an air density of
1.225 kg/mg, and a cross-sectional area of 0.6 m2.

Here is the code to produce a graph of velocity versus time:

bikeGraph :: I0 ()
bikeGraph = plotFunc [Title "Bike velocity"
,XLabel "Time (s)"
,YLabel "Velocity of Bike (m/s)"
,PNG "BikeVelocity1.png"
,Key Nothing
] [0,0.5..60] bikeVelocity

The code plots the bikeVelocity function, including a title and axis labels,
and makes a PNG file that can be included in another document. Figure 14-9
contains the graph itself.
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Figure 14-9: Bike velocity as a function of time. The stair-stepping look
can be fixed and is discussed in the text.

A phenomenon occurs in Figure 14-9 that does not occur in constant
acceleration situations: the establishment of a terminal velocity. After 20 sec-
onds or so, the forward force of the road (from the pedaling) matches the
backward force of the air. At this point we have no net force (or a very small
net force), and the velocity stays at the terminal velocity.

Why the stair-stepping look to Figure 14-9? We used a time step of one
second to do the calculation of the velocity function bikeVelocity, but then
we asked the plotFunc function to give us a plot of that function every half a
second. If we want a smooth plot, we have a couple of options. The simplest
would be to ask for a plot with time values spaced at least one second apart.
Alternatively, we could calculate the bikeVelocity function using a smaller
time step. In any case, we shouldn’t ask for more resolution in the graph
than we asked for in the function we are graphing.

With the functions velocityFv and positionFv, the latter of which you are
asked to write in Exercise 14.4, we have general-purpose tools for solving any
Newton’s second law type problem in one spatial dimension with forces that
depend only on velocity. Before we turn to the case in which forces depend
on both time and velocity, let’s take a moment to view what we’ve just done
from a broader perspective.

The State of a Physical System

Chapter 14

A fruitful way to structure our thinking about Newton’s second law, and also
later about the Maxwell equations, revolves around the concept of the state
of a physical system, which is the collection of information needed to say
precisely what is going on with the system at a particular instant of time.



The state represents the current “state of affairs” of the system, contain-
ing enough information that future prediction can be based on the current
state instead of past information about the system. The state evolves in time,
changing according to some rule.

Given a physical system that we wish to understand, the state-based
paradigm suggests the following conceptual division:

1. What information is required to specify the state of the system?
2. What is the state at some initial time?

3. By what rule does the state change with time?

When we treated Newton’s second law with constant forces and forces
that depend only on time, we did not use a state-based method because we
did not need one. In those cases, we could use algebra or integration to
find how the position and velocity of our object changed in time. When we
looked at forces that depend on velocity, we had a schematic diagram with a
loop that corresponded to a differential equation, shown in Figure 14-6. The
state-based method is particularly useful for differential equations.

There are three things to notice about Figure 14-6 that relate to the
state-based method. First, notice that there is one integrator in the loop and
that this integrator holds the value of velocity as state. Second, notice that
the differential equation, Equation 14.10, gives an expression for the rate
of change of velocity. Lastly, notice that the forces depend on velocity. For
these three reasons, in the case where forces depend only on velocity, the
state of the object consists of the velocity of the object.

In general, the answer to question 1 is a data type. The state of an object
experiencing forces that depend only on the object’s velocity is a value of
the data type Velocity. In the next section, where forces depend on time and
velocity, the data type we will use for state is the pair (Time,Velocity). As we
consider more complex physical situations, the data type we use to hold the
state of our physical system will contain more information.

Question 2 above is, in some sense, the smallest question. It may even
be possible to do some analysis without an answer to question 2. But if we
wish to know properties of a system at a later time, then we wish to know
the state at a later time, and this typically requires knowing the state at some
earlier time. The answer to question 2 is a value of the data type from ques-
tion 1.

Question 3 requires a physical theory to answer. In the case of mechan-
ics, Newton’s second law gives the rule by which the state changes in time.

Let’s see how the state-based method applies in the case where the forces
on an object depend only on time and the velocity of the object.

Second Law with Forces that Depend on Time and Velocity

The next situation for Newton’s second law is when the forces depend on
both time and velocity but not on position. The force functions depend on
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two variables, time and velocity. We use F'j to denote the jth function of
two variables that gives a force when supplied with time and velocity, and we
use F% e to denote the function of two variables that gives net force when
supplied with time and velocity.

Flfet,09) =Y FY (t,09)

J

Figure 14-10 shows a schematic diagram for Newton’s second law with
forces that depend on time and velocity.

147
F net

Flheit,v(0) == R

Y

o]

_>@ u(t) :: R =<f> x(¢) :: R

R R

e

a(t) ::

Figure 14-10: Newton'’s second law with forces that depend on time and velocity

The schematic diagram contains a loop, so Newton’s second law is a dif-
ferential equation, given in Equation 14.14.

% []=1 (14.13)

% [u(t)] = %ZF‘]’ (t, v(t)) (14.14)

J

Notice that there is one integrator in the loop in Figure 14-10, which
holds the value of velocity as state. There is a way to solve this differential
equation using only velocity as the state of the object. However, since the
rate of change of velocity in Equation 14.14 depends on both time and veloc-
ity (because the forces depend on time and velocity), the state-based method



is simpler to apply if we allow both time and velocity to be state variables.
This is to say that the data type we will use for state is (Time,Velocity). The
difference between Equation 14.10, which expresses Newton’s second law
with forces that depend only on velocity, and Equation 14.14, which ex-
presses Newton’s second law with forces that depend on time and/or veloc-
ity, is simply that we need to know the current value of time in the latter case
but not in the former. Including time in the state (Time,Velocity) is a simple
way to gain convenient access to the current time.

Which quantities deserve to be called state variables? Say I have a par-
ticle in space acted on by a known (time-independent) force law. The state
variables are the position and velocity because we can calculate the position
and velocity at the next time instant from them. Why is acceleration not a
state variable? To use the terminology of earlier sections in this chapter,
state variables are numbers that identify a particular solution to the differen-
tial equation—they are the initial values that convert integrals into antideriva-
tives. Time is usually not considered a state variable, but taking it as one
makes it easier to think about time-dependent forces. Readers interested in a
more in-depth discussion of state variables and their uses are encouraged to
see [16] and [17].

The Haskell function newtonSecondTV, shown below, expresses Newton’s
second law in the case where forces depend on time and velocity.

newtonSecondTV :: Mass

-> [(Time,Velocity) -> Force] -- force funcs
-> (Time,Velocity) -- current state
-> (R,R) -- deriv of state

newtonSecondTV m fs (t,v0)
= let fNet = sum [f (t,v0) | f <- fs]
acc = fNet / m
in (1,acc)

Given the mass of an object and a list of forces that act on the object,
now expressed as functions of the state (Time,Velocity), newtonSecondTV gives
instructions for computing the time derivatives of the state variables from
the state variables themselves. The return type (R,R) is meant to stand for
time derivative of time, which is always the dimensionless number 1, and
time derivative of velocity, which is acceleration. The acceleration is com-
puted from Newton’s second law by finding the net force and dividing by
the mass.

To solve Equation 14.14, we will discretize time and use the Euler method.
We'll continue to use Equation 14.11 for the Euler method. Figure 14-11 pic-
torially describes the Euler method for solving Newton’s second law when
forces depend on time and/or velocity.
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Figure 14-11: Euler method for Newton’s second law in one dimension, for
the special case in which net force depends only on time and/or velocity

The diagram shows how functions act on the state variables at one point
in time to compute the state variables at the next point in time. The same set
of computations reoccurs at each time step to produce a new state from an
old state. We call the set of computations that occurs at each time step the
state-update function.

The state-update function is shown pictorially in Figure 14-12. The fig-
ure shows a functional diagram for state update, visually describing how
time and velocity at ¢ + At are computed from time and velocity at ¢, given
the force functions.

u(t)

Figure 14-12: Euler method update for
Newton’s second law with forces that
depend only on time and velocity
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Here are the state-update equations showing how the new state variables
are obtained from the old state variables:
t+At=t+1At (14.15)

Fie(t, 0(0))
m

u(t+ At) = u(t) + At (14.16)

Equations 14.15 and 14.16 are state-update equations for an object ex-
posed to forces that depend on time and velocity. The state-update equa-
tions tell us how the state variables time and velocity must be updated to
advance to the next time step. The time update in Equation 14.15 is easy:
we just add At to the old time to get the new time. To update the velocity in
Equation 14.16, we compute an acceleration, multiply by a time step to get
a change in velocity, and add that change to the old velocity. Applying these
state-update equations is how we carry out the Euler method for solving a
differential equation. This state-update procedure is the main tool we will
use to solve problems in Newtonian mechanics.

The following Haskell function updateTV, named because it updates both
time and velocity, advances the value of the state by one time step.

updateTV :: R -- time interval dt
-> Mass
-> [(Time,Velocity) -> Force] -- list of force funcs
-> (Time,Velocity) -- current state
-> (Time,Velocity) -- new state

updateTV dt m fs (t,vo0)
= let (dtdt, dvdt) = newtonSecondTV m fs (t,v0)
in (t + dtdt * dt
,VO + dvdt * dt)

The function updateTV takes a few parameters and produces a function
with type (Time,Velocity) -> (Time,Velocity). The third input of updateTv,
named fs with type [(Time,Velocity) -> Force], could have been an input
with type [Time -> Velocity -> Force];it’s a matter of style, and either choice
will work just fine. Here I chose the former, as time and velocity are already
paired in the function output.

The time-velocity pair we are passing around in this function represents
the state of the object to which we are applying Newton’s second law. The
function updateTV is then an example of a state-update function. In an ear-
lier section, when forces depended only on velocity, the velocity alone acted
as state, and the function updateVelocity was the appropriate state-update
function.

The functional diagram in Figure 14-12, Equations 14.15 and 14.16,
and the function updateTV express the same information in different forms,
namely how to take one step in time with the Euler method.

Depending on what we want to calculate, there are two things we might
do with the updateTV function, corresponding to two types of representation
of the time-velocity data. First, we may wish to produce a list of time-velocity
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pairs. Second, we may wish to produce velocity as a function of time. We’ll
develop functions for these two purposes in the next two subsections.

Method 1: Produce a List of States

A list of time-velocity pairs can be regarded as a solution to a Newton’s sec-
ond law problem with forces that depend on time and velocity because a
time-velocity pair gives the state. The list of states contains a time-velocity
pair for each time that has been probed by the Euler method in Figure 14-11.
The function statesTV produces a list of time-velocity pairs when given a time
step, a mass, an initial state, and a list of force functions.

statesTV :: R -- time step
-> Mass
-> (Time,Velocity) -- initial state
-> [(Time,Velocity) -> Force] -- list of force funcs
-> [(Time,Velocity)] -- infinite list of states

statesTV dt m tvo fs
= iterate (updateTV dt m fs) tvo

We use iterate to achieve the repeated composition in Figure 14-11.
But which function do we want to iterate? It’s not simply updateTV because
updateTV takes three parameters as input before the time-velocity pair. The function we
iterate must have type a -> a, or in this case (Time,Velocity) -> (Time,Velocity).
The solution is to give updateTV its first three parameters to form the function
we send to iterate. The function we want to iterate is updateTV dt m fs, start-
ing with the initial time-velocity pair tvo.

The function statesTV gives a general-purpose way of solving any New-
ton’s second law type problem in one spatial dimension with forces that de-
pend only on time and velocity. By a solution, we mean an infinite list of
states (time-velocity pairs) of the object, spaced one time step apart from
each other.

Method 2: Produce a Velocity Function

Now we want to write a function, velocityFtv, that is similar to velocityCF,
velocityFt, and velocityFv, but for the case of forces that depend on time and
velocity. We’'ll use the infinite list produced by statesTv, picking out the par-
ticular time-velocity pair that comes closest to our desired time and using
the Prelude function snd to return the velocity, unpaired from the time.

velocityFtv :: R -- time step
-> Mass
-> (Time,Velocity) -- initial state
-> [(Time,Velocity) -> Force] -- list of force funcs
-> Time -> Velocity -- velocity function

velocityFtv dt m tvo fs t
= let numSteps = abs $ round (t / dt)
in snd $ statesTV dt m tvo fs !l numSteps




With the functions velocityFtv and positionFtv, the latter of which you
will be asked to write in Exercise 14.9, we have general-purpose ways of solving
any Newton’s second law type problem in one spatial dimension with forces
that depend only on time and velocity. Let’s now take a look at a situation
that involves just such forces.

Example: Pedaling and Coasting with Air Resistance

As an example of a situation with forces that depend on time and velocity,
let’s reconsider our child bicycle rider who is pedaling and coasting, but
now in the presence of air resistance. We’ll consider two forces in this situ-
ation. First, there’s the time-dependent force Fj,.(¢) of pedaling from Equa-
tion 14.8. Second, there’s the force of air resistance F,i-(vg) that impedes the
motion of the child, for which we’ll use Equation 14.9. The net force is

Fﬁ)e[(t, UO) = ch(t) + Fair(vO)

The mass of the bike plus child is m = 20 kg. We’ll choose a drag coef-
ficient of C = 2, take the density of air to be p = 1.225 kg/m?, and approx-
imate the cross-sectional area of bike and rider to be 0.5 m?. Starting from
rest, our mission is to find the velocity of the bike as a function of time.

We update the velocity with Equation 14.16. Before we use our Haskell
functions to investigate the motion of the bike, we’ll show how to use the
Euler method by hand.

Evler Method by Hand

Let’s use the Euler method by hand to compute several values of velocity
for the bike. Again, the purpose in doing the Euler method by hand is sim-
ply to get a clear picture of how the state variables get updated in the Euler
method. We'll pick a time step of 6 s, even though this is too big to get ac-
curate results, as it is not small compared to relevant time scales, such as the
20-second cycle time. We choose a time step of 6 s so we can sample both
pedaling and coasting over the first few time steps. Our mission is to com-
plete the following table. We can fill in all of the time values because they
are simply spaced at six-second intervals. The initial velocity is 0, so we’ll fill
that in as well.

t(s) vit) (m/s)
0 0.0000
6
12
18

The force of pedaling is either 10 N or 0 N, depending on the value of
the time.

Fyc(0's) = Fpe(65) = 10N
Foc(125) = Fpc(18'5) = ON
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Repeatedly applying Equation 14.16, we obtain the following:

Fie(0'5,9(0 5))(6 5)

20 kg

(10N)(6s)
20 kg

v(6s) =v(0s)+

= 0.0000 m/s +

=3.0000 m/s
Fiie(6s,0(6 5))(6 5)
20 kg

[(10 N) - (1)(1.225 kg/m®)(0.5 m?)(3.0000 m,/s)>](6 s)
20 kg

v(12's) = v(6 s) +

=3.0000 m/s +

= 4.3463 m/s
. F%.(12 s,0(125))(6 s)
20 kg
[(0 N) - (1)(1.225 kg/m3)(0.5 m?)(4.3463 m/s)?](6 s)
20 kg

(18 s) = v(12 s)

=4.3463 m/s +
=(0.8752 m/s

The completed table looks like this:

t(s) vit) (m/s)

0 0.0000
6 3.0000
12 4.3463
18 0.8752

Let’s turn now to Haskell, using each of the two methods we discussed
earlier.

Method 1: Produce a List of States

Here we’ll use the function statesTV to produce an infinite list of velocity-
time pairs called pedalCoastAir for the child on the bike.

pedalCoastAir :: [(Time,Velocity)]
pedalCoastAir = statesTV 0.1 20 (0,0)
[\(t,_) -> pedalCoast t
>\N(,v) -> fAir 2 1.225 0.5 v]

Notice the data that must be supplied to solve this problem. We pro-
vide a 0.1-s time step, the 20-kg mass, an initial state consisting of 0 for the
time and 0 for the velocity, and the two forces, expressed here as anonymous
functions. The function pedalCoast is a function only of time, so it cannot be
listed directly as a force function because a force function for statesTv takes
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a time-velocity pair as input. The underscores are present because the ped-
aling function does not depend on the second item in the state, which hap-
pens to be velocity, and because air resistance does not depend on the first
item in the state, which happens to be time.

A list of pairs is something we can plot with the plotPath function from
the gnuplot library, but we need to truncate the list to a finite list before plot-
ting, or plotPath will hang while trying to finish calculating an infinite list. In
pedalCoastAirGraph below, we use the takeWhile function to extract the states
with times less than or equal to 100 seconds.

pedalCoastAirGraph :: I0 ()
pedalCoastAirGraph
= plotPath [Title "Pedaling and coasting with air"
,XLabel "Time (s)"
,YLabel "Velocity of Bike (m/s)"
,PNG "pedalCoastAirGraph.png"
,Key Nothing
] (takeWhile (\(t, ) -> t <= 100)
pedalCoastAir)

This code produces Figure 14-13, which shows the velocity as a function
of time for the child pedaling and coasting in the presence of air resistance.

Pedaling and coasting with air

Velocity of Bike (m/s)

0 10 20 30 40 50 60 70 80 90 100
Time (s)

Figure 14-13: Pedaling and coasting with air resistance

As expected, the child’s speed increases during the pedaling intervals
and decreases during the coasting intervals.

Method 2: Produce a Velocity Function

Now let’s use the function velocityFtv to produce a velocity function for the
child on the bike.
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pedalCoastAir2 :: Time -> Velocity
pedalCoastAir2 = velocityFtv 0.1 20 (0,0)
[\( t,_v) -> pedalCoast t
SNty v) -> fAir 1 1.225 0.5 v]

The data we give to pedalCoastAir2 is the same data we gave to pedalCoastAir.
Because pedalCoastAir2 is a function R -> R, it can be plotted with the plotFunc
function from the gnuplot package. It would produce the same graph as that
in Figure 14-13.

Summary

This chapter discussed Newton’s first law and introduced Newton’s second
law in the context of one-dimensional motion. The chapter presented a se-
quence of increasingly sophisticated settings for Newton’s second law. Eas-
iest among them is when the forces on an object are constant, that is, un-
changing in time. Next is when the forces on an object depend only on time,
in which case we can apply integration to find the velocity and the position
of the object. Forces that depend on velocity, such as the air resistance intro-
duced in this chapter, require that we solve a differential equation, which is
a more complex task than integration. The chapter also introduced the Eu-
ler method for solving a first-order differential equation. The Euler method,
along with Newton’s second law, provides a rule for updating the state of the
object we are tracking, allowing us to predict its future motion. The choice
of state variables, or physical quantities contained in the state, is determined
by what the forces depend on. If forces depend only on velocity, then veloc-
ity alone can serve as the particle state. If forces depend on time and veloc-
ity, we use time and velocity as state variables.

In the next chapter, we allow the forces to depend on position as well as
time and velocity. This produces a second-order differential equation and
requires that time, position, and velocity all be state variables.

Exercises

Chapter 14

Exercise 14.1. Write a function velocityCF' that does the same thing and has
the same type signature as velocityCF, but in which the time t :: Time is listed
explicitly on the left of the equal sign in the definition.

velocityCF' :: Mass

-> Velocity -- initial velocity
-> [Force] -- list of forces
-> Time -> Velocity -- velocity function

velocityCF' m vOo fs t = undefined m vo fs t

Exercise 14.2. Using the positionCF function, make a graph for the position
of the car on the air track in Example 14.1 as a function of time. Assume the
initial position of the car is -1 m.



Exercise 14.3. Write a function

sumF :: [R -> R] -> R -> R
sumF = undefined

that adds a list of functions to produce a function that represents the sum.
Replace undefined with your code, and feel free to include one or two vari-
ables to the left of the equal sign in the definition. Using sumF, we could write
the first line in the let construction of velocityFt as fNet = sumF fs.

Exercise 14.4. Write a Haskell function

positionFv :: R -- time step
-> Mass
-> Position -- initial position x(0)
-> Velocity -- initial velocity v(0)
-> [Velocity -> Force] -- list of force functions
-> Time -> Position -- position function

positionFv = undefined

that returns a position function for a Newton’s second law situation in which
the forces depend only on the velocity. Replace the undefined with your code,
and feel free to include variables to the left of the equal sign in the definition.

Exercise 14.5. Any Newton’s second law problem that can be solved with
velocityFv can also be solved with velocityFtv. Rewrite the bikeVelocity func-
tion so that it uses velocityFtv instead of velocityFv.

Exercise 14.6. Doing the Euler method by hand on page 225, we found the
velocity after 1.5 s to be v(1.5 s) = 2.1295 m/s. Use the velocityFv function to
calculate this same number.

Exercise 14.7. Doing the Euler method by hand on page 235, we found the
velocity after 18 s to be v(18 s) = 0.8752 m/s. Use statesTV or velocityFtv to
calculate this same number.

Exercise 14.8. Fix the stair-stepping issue in Figure 14-9 so that a smooth
plot appears.

Exercise 14.9. Write a Haskell function

positionFtv :: R -- time step
-> Mass
-> Position -- initial position x(0)
-> Velocity -- initial velocity v(0)
-> [(Time,Velocity) -> Force] -- force functions
-> Time -> Position -- position function

positionFtv = undefined

that returns a position function for a Newton’s second law situation in which
the forces depend only on time and velocity. Replace the undefined with your
code, and feel free to include variables to the left of the equal sign in the
definition.
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Exercise 14.10. Produce a graph of position versus time for the situation in
Figure 14-13.

Exercise 14.11. To deepen our understanding of the Euler method, we’ll do
a calculation by hand (using only a calculator and not the computer).

Consider a 1-kg mass exposed to two forces. The first force is an oscilla-
tory force, pushing first one way and then the other. With ¢ in seconds, the
force in Newtons is given by

Fi(t)=4cos2t
The second force is an air resistance force in Newtons, given by
Fa(vg) = =37

where vy is the current velocity of the mass in meters per second.
The net force is

F.(t,v9) = F1(t) + Fa(vg) = 4 cos 2t - 3uy
Suppose the mass is initially moving 2 m/s so that
v(0s)=2m/s

Use the Euler method with a time step of A¢ = 0.1 s to approximate the
value of v(0.3 s). Keep at least four figures after the decimal point in your
calculations. Show your calculations in a small table.

Exercise 14.12. Write a Haskell function

updateExample :: (Time,Velocity) -- starting state
-> (Time,Velocity) -- ending state
updateExample = undefined

that takes a time-velocity pair (¢y, vg) and returns an updated time-velocity
pair (¢1,v7) for a single step of the Euler method for a 1-kg object experienc-
ing a net force of

Fﬁ/cl(t, vg) = F1(t) + Fo(vg) = 4 cos 2t — 3

Use a time step of At = 0.1 s. Show how to use the function updateExample
to calculate the value v(0.3 s) that you calculated by hand in Exercise 14.11.

Exercise 14.13. Consider a 1-kg object experiencing a net force
Fhfwt(t: v0) = ~avy

where @ = 1 N s/m, subject to the initial condition (0 s) = 8 m/s. Use
the Euler method to find the velocity of the object over the time interval
0s <t < 10s. Plot velocity as a function of time to see what it looks like.
Compare your results to the exact solution:

o(t) = (8 m/s)e”



Try out different time steps to see what happens when the time step gets
too big.

Find a time step that is small enough that the Euler solution and the
exact solution nicely overlap on a plot. Find another time step that is big
enough that you can see the difference between the Euler solution and the
exact solution on a plot.

Make a nice plot (with title, axis labels, and so on) with these three solu-
tions on a single graph (bad Euler, good Euler, and exact). Label the Euler
results with the time step you used and label the exact result “Exact.”

Exercise 14.14. Consider the differential equation

du(t)
dt

= cos(t +v(t))

subject to the initial condition v(0) = 0. This differential equation has no
exact solution. Use the Euler method with a step size of Az = 0.01 to find (¢)
over the interval 0 < ¢ < 3. Make a nice plot of the resulting function and
include the value v(3) to five significant figures.

Exercise 14.15. Each wire in a functional diagram can be labeled with a
type. Label each wire in Figure 14-11 with a type.
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