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A N D  G E N E R A L  O P E R A T I O N

Many people have a difficult time under-
standing how the Transmission Control 

Protocol (TCP) works. After spending dozens 
of hours writing almost 100 pages on the protocol, 

I am quite sympathetic! I think a main reason for the 
difficulty is that many descriptions of the protocol leap 
too quickly from a brief introduction straight into the mind-boggling details 
of TCP’s operation. The problem is that TCP works in a very particular way. 
Its operation is built around a few very important fundamentals that you 
absolutely must understand before the details of TCP operation will make 
much sense.

In this chapter, I describe some of the key operating fundamentals of 
TCP. I begin with a discussion of how TCP handles data and introduce the 
concepts of streams, segments, and sequences. I then describe the very 
important TCP sliding window system, which is used for acknowledgment, 
reliability, and data flow control. I discuss how TCP uses ports and how it 
identifies connections. I also describe the most important applications that 
use TCP and what ports they use for server applications. 
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TCP Data Handling and Processing

One of the givens in the operation of most of the protocols you’ll find at upper 
layers in the OSI Reference Model is that the protocols are oriented around the use 
of messages. These messages are analogous to a written letter in an envelope that 
contains a specific piece of information. They are passed from higher layers down 
to lower ones, where they are encapsulated in the lower layers’ headers (like 
putting them in another envelope), and then passed down further until they are 
actually sent out at the physical layer.

You can see a good example of this by looking at the User Datagram Protocol 
(UDP), TCP’s transport layer peer. To use UDP, an application passes it a distinct 
block of data that is usually fairly short. The block is packaged into a UDP message, 
then sent to the Internet Protocol (IP). IP packs the message into an IP datagram 
and eventually passes it to a layer 2 protocol such as Ethernet. There, IP places it 
into a frame and sends it to layer 1 for transmission.

Increasing the Flexibility of Application Data Handling: TCP’s Stream Orientation

The use of discrete messaging is pretty simple, and it obviously works well enough 
since most protocols make use of it. However, it is inherently limiting because it 
forces applications to create discrete blocks of data in order to communicate. 
There are many applications that need to send information continuously in a 
manner that doesn’t lend itself well to creating “chunks” of data. Others need to 
send data in chunks that are so large that applications could never send them as a 
single message at the lower layers.

To use a protocol like UDP, many applications would be forced to artificially 
divide their data into messages of a size that has no inherent meaning to them. This 
would immediately introduce new problems that would require more work for the 
application. The application would have to keep track of what data is in what message, 
and replace any data that was lost. It would need to ensure that the messages could 
be reassembled in the correct order, since IP might deliver them out of order.

Of course, you could program applications to do this, but it would make little 
sense, because these functions are already ones that TCP is charged with handling. 
Instead, the TCP designers took the very smart approach of generalizing TCP so 
that it could accept application data of any size and structure without requiring the 
data to be in discrete pieces. More specifically, TCP treats data coming from an 
application as a stream—thus, the description of TCP as stream-oriented. Each appli-
cation sends the data it wishes to transmit as a steady stream of octets (bytes). The 
application doesn’t need to carve the data into blocks or worry about how lengthy 
streams will get across the internetwork. It just “pumps bytes” to TCP.

TCP Data Packaging: Segments

TCP must take the bytes it gets from an application and send them using a network 
layer protocol, which is IP in this case. IP is a message-oriented protocol; it is not 
stream-oriented. Thus, we have simply “passed the buck” to TCP, which must take 
the stream from the application and divide it into discrete messages for IP. These 
messages are called TCP segments.
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NOTE Segment is one of the most confusing data structure names in the world of networking. 
From a dictionary definition standpoint, referring to a piece of a stream as a segment is sensible, 
but most people working with networks don’t think of a message as being a segment. In the indus-
try, the term also refers to a length of cable or a part of a local area network (LAN), among other 
things, so watch out for that.

IP treats TCP segments like all other discrete messages for transmission. IP 
places them into IP datagrams and transmits them to the destination device. The 
recipient unpackages the segments and passes them to TCP, which converts them 
back to a byte stream in order to send them to the application. This process is 
illustrated in Figure 46-1.

The TCP layer on a device accumulates data that it receives from the applica-
tion process stream. On regular intervals, the TCP layer forms segments that it will 
transmit using IP. Two primary factors control the size of the segment. First, there 
is an overall limit to the size of a segment, chosen to prevent unnecessary fragmen-
tation at the IP layer. A parameter called the maximum segment size (MSS) governs 
this size limit. The MSS is determined during connection establishment. Second, 
TCP is designed so that once a connection is set up, each of the devices tells the 
other how much data it is ready to accept at any given time. If the data is lower than 
the MSS value, the device must send a smaller segment. This is part of the sliding 
window system described a little later in this chapter.

TCP Data Identification: Sequence Numbers

The fact that TCP treats data coming from an application as a stream of octets has a 
couple of very significant implications for the operation of the protocol. The first is 
related to data identification. Since TCP is reliable, it needs to keep track of all the 
data it receives from an application so it can make sure that the destination receives 
all the data. Furthermore, TCP must make sure that the destination receives the 
data in the order that the application sent it, and the destination must retransmit 
any lost data.

If a device conveyed data to TCP in block-like messages, it would be fairly simple 
to keep track of the data by adding an identifier to each message. Because TCP is 
stream-oriented, however, that identification must be done for each byte of data! This 
may seem surprising, but it is actually what TCP does through the use of sequence 
numbers. Each byte of data is assigned a sequence number that is used to keep track 
of it through the process of transmission, reception, and acknowledgment (though 
in practice, blocks of many bytes are managed using the sequence numbers of bytes 
at the start and end of the block). These sequence numbers are used to ensure that 
the sending application transmits and reassembles the segmented data into the 
original stream of data. The sequence numbers are required to implement the 
sliding window system, which enables TCP to provide reliability and data flow control.

KEY CONCEPT TCP is designed to have applications send data to it as a stream of bytes, 
rather than requiring fixed-size messages to be used. This provides maximum flexibility for a 
wide variety of uses, because applications don’t need to worry about data packaging and can 
send files or messages of any size. TCP takes care of packaging these bytes into messages 
called segments.
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Figure 46-1: TCP data stream processing and segment packaging TCP is different from most protocols 
because it does not require applications that use it to send data to it in messages. Once a TCP connection 
is set up, an application protocol can send TCP a steady stream of bytes that does not need to conform 
to any particular structure. TCP packages these bytes into segments that are sized based on a number of 
different parameters. These segments are passed to IP, where they are encapsulated into IP datagrams and 
transmitted. The receiving device reverses the process: Segments are removed from IP datagrams, and then 
the bytes are taken from the segments and passed up to the appropriate recipient application protocol as 
a byte stream.

KEY CONCEPT Since TCP works with individual bytes of data rather than discrete messages, 
it must use an identification scheme that works at the byte level to implement its data trans-
mission and tracking system. This is accomplished by assigning a sequence number to each byte 
that TCP processes.
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The Need for Application Data Delimiting

When TCP treats incoming data as a stream, the data the application using TCP 
receives is called unstructured. For transmission, a stream of data goes into TCP on 
the sending device, and on reception, a stream of data goes back to the application 
on the receiving device. Even though TCP breaks the stream into segments for 
transmission, these segments are TCP-level details that remain hidden from the 
application. When a device wants to send multiple pieces of data, TCP provides no 
mechanism for indicating where the dividing line is between the pieces, since TCP 
doesn’t examine the meaning of the data. The application must provide a means 
for doing this.

Consider, for example, an application that is sending database records. It 
needs to transmit record 579 from the Employees database table, followed by 
record 581 and record 611. It sends these records to TCP, which treats them all 
collectively as a stream of bytes. TCP will package these bytes into segments, but in a 
way that the application cannot predict. It is possible that each byte will end up in a 
different segment, but more likely that they will all be in one segment, or that part 
of each will end up in different segments, depending on their length. The records 
must have some sort of explicit markers so that the receiving device can tell where 
one record ends and the next starts.

TCP Sliding Window Acknowledgment System

What differentiates TCP from simpler transport protocols like UDP is the quality of 
the manner in which it sends data between devices. Rather than just sticking data in 
a message and saying, “off you go,” TCP carefully keeps track of the data it sends. 
This management of data is required to facilitate the following two key requirements 
of the protocol:

Reliability Ensuring that data that is sent actually arrives at its destination, and if it 
doesn’t arrive, detecting this and resending it.

Data Flow Control Managing the rate at which data is sent so that it does not over-
whelm the device that is receiving it.

To accomplish these tasks, the entire operation of the protocol is oriented 
around something called the sliding window acknowledgment system. It is no exaggera-
tion to say that comprehending how sliding windows work is critical to understanding 
just about everything else in TCP. It is also, unfortunately, a bit hard to follow if you 
try to grasp it all at once. I wanted to make sure that I explained the mechanism 
thoroughly without assuming that you already understood it. For this reason, I am 
going to start by explaining the concepts behind sliding windows, particularly how 
the technique works and why it is so powerful. 

KEY CONCEPT Since applications send data to TCP as a stream of bytes as opposed to 
prepackaged messages, each application must use its own scheme to determine where one 
application data element ends and the next begins.
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The Problem with Unreliable Protocols: Lack of Feedback

A simple “send and forget” protocol like IP is unreliable and includes no flow 
control for one main reason: It is an open-loop system in which the transmitter 
receives no feedback from the recipient. (I am ignoring error reports using ICMP 
and the like for the purpose of this discussion.) A datagram is sent, and it may or 
may not get there, but the transmitter will never have any way of knowing because 
there is no mechanism for feedback. This concept is illustrated in Figure 46-2.

Figure 46-2: Operation of an unreliable protocol In a system such as the one that IP uses, if a message 
gets to its destination, that’s great; otherwise, nobody will have a clue. Some external mechanism is 
needed to take care of the lost message, unless the protocol doesn’t really care whether a few bits and 
pieces are missing from its message stream.

Providing Basic Reliability Using Positive Acknowledgment with 
Retransmission (PAR)

Basic reliability in a protocol running over an unreliable protocol like IP can be 
implemented by closing the loop so the recipient provides feedback to the sender. 
This is most easily done with a simple acknowledgment system. Device A sends a 
piece of data to Device B, which receives the data and sends back an acknowl-
edgment saying, “Device A, I received your message.” Device A then knows its 
transmission was successful.

But since IP is unreliable, that message may in fact never get to where it is 
going. Device A will sit and wait for the acknowledgment and never receive it. 
Conversely, it is also possible that Device B gets the message from Device A, but the 
acknowledgment itself vanishes somehow. In either case, we don’t want Device A to 
sit forever waiting for an acknowledgment that is never going to arrive.

To prevent this from happening, Device A starts a timer when it first sends the 
message to Device B, which allows sufficient time for the message to get to Device B 
and for the acknowledgment to travel back, plus some reasonable time to allow for 
possible delays. If the timer expires before the acknowledgment is received, Device 
A assumes that there was a problem and retransmits its original message. Since this 
method involves positive acknowledgments (“Yes, I got your message”) and a facility 
for retransmission when needed, it is commonly called positive acknowledgment with 
retransmission (PAR), as shown in Figure 46-3.
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Figure 46-3: Basic reliability: positive acknowledgment with retransmission (PAR) This diagram shows 
one of the most common and simple techniques for ensuring reliability. Each time Device A sends a mes-
sage, it starts a timer. Device B sends an acknowledgment back to Device A when it receives a message, 
so that Device A knows that it successfully transmitted the message. If a message is lost, the timer goes 
off, and Device A retransmits the data. Note that only one message can be outstanding at any time, mak-
ing this system rather slow.

PAR is a technique that is used widely in networking and communications for 
protocols that exchange relatively small amounts of data, or protocols that exchange 
data infrequently. The basic method is functional, but it is not well suited to a 
protocol like TCP. One main reason is that it is inefficient. Device A sends a message, 
and then waits for the acknowledgment. Device A cannot send another message to 
Device B until it hears that Device B received its original message, which is very 
wasteful and would make the protocol extremely slow.

KEY CONCEPT A basic technique for ensuring reliability in communications uses a rule that 
requires a device to send back an acknowledgment each time it successfully receives a trans-
mission. If a device doesn’t acknowledge the transmission after a period of time, its sender 
retransmits the acknowledgment. This system is called positive acknowledgment with retrans-
mission (PAR). One drawback with this basic scheme is that the transmitter cannot send a second 
message until after the first device has acknowledged the first.
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Improving PAR

The first improvement we can make to the PAR system is to provide some means of 
identification to the messages that were sent, as well as the acknowledgments. For 
example, we could put a message ID field in the message header. The device sending 
the message would uniquely identify it, and the recipient would use this identifier 
in the acknowledgment. For example, Device A might send a piece of data in a 
message with the message ID 1. Device B would receive the message and then send 
its own message back to Device A, saying “Device A, I received your message 1.” 
The advantage of this system is that Device A can send multiple messages at once. 
It must keep track of each one that it sends, and whether or not Device B sent an 
acknowledgment. Each device also requires a separate timer, but that’s not a big 
problem.

Of course, we also need to consider this exchange from the standpoint of De-
vice B. Before, Device B had to deal with only one message at a time from Device A. 
Now it may have several show up all at once. What if it is already busy with transmis-
sions from another device (or ten)? We need some mechanism that lets Device B say, 
“I am only willing to handle the following number of messages from you at a time.” 
We could do that by having the acknowledgment message contain a field, such as 
send limit, which specifies the maximum number of unacknowledged messages 
Device A was allowed to have in transit to Device B at one time.

Device A would use this send limit field to restrict the rate at which it sent 
messages to Device B. Device B could adjust this field depending on its current load 
and other factors to maximize performance in its discussions with Device A. This 
enhanced system would thus provide reliability, efficiency, and basic data flow 
control, as illustrated in Figure 46-4. 

TCP’s Stream-Oriented Sliding Window Acknowledgment System

So does TCP use this variation on PAR? Of course not! That would be too simple. 
Conceptually, the TCP sliding window system is very similar to this method, which is 
why it is important that you understand it. However, it requires some adjustment. 
The main reason has to do with the way TCP handles data: the matter of stream 
orientation compared to message orientation discussed earlier in this chapter. The 
technique I have outlined involves explicit acknowledgments and (if necessary) 
retransmissions for messages. Thus, it would work well for a protocol that exchanged 
reasonably large messages on a fairly infrequent basis. 

TCP, on the other hand, deals with individual bytes of data as a stream. Trans-
mitting each byte one at a time and acknowledging each one at a time would quite 
obviously be absurd. It would require too much work, and even with overlapped 
transmissions (that is, not waiting for an acknowledgment before sending the next 
piece of data), the result would be horribly slow.

KEY CONCEPT The basic PAR reliability scheme can be enhanced by identifying each 
message to be sent, so multiple messages can be in transit at once. The use of a send limit 
allows the mechanism to also provide flow control capabilities, by allowing each device to 
control the rate at which other devices send data to it.
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Figure 46-4: Enhanced PAR This diagram shows two enhancements to the basic PAR scheme from 
Figure 46-3. First, each message now has an identification number; each can be acknowledged individ-
ually, so more than one message can be in transit at a given time. Second, Device B regularly communi-
cates to Device A a send limit parameter, which restricts the number of messages Device A can have 
outstanding at once. Device B can adjust this parameter to control the flow of data from Device A.

This slowness is why TCP does not send bytes individually but divides them into 
segments. All of the bytes in a segment are sent together and received together, 
and thus acknowledged together. TCP uses a variation on the method I described 
earlier, in which the sequence numbers I discussed earlier identify the data sent 
and acknowledged. Instead of acknowledging the use of something like a message 
ID field, we acknowledge data using the sequence number of the last byte of data in 
the segment. Thus, we are dealing with a range of bytes in each case, and the range 
represents the sequence numbers of all the bytes in the segment.

Conceptual Division of TCP Transmission Stream into Categories

Imagine a newly established TCP connection between Device A and Device B. 
Device A has a long stream of bytes that it will transmit, but Device B can’t accept 
them all at once, so it limits Device A to sending a particular number of bytes at 
once in segments, until the bytes in the segments already sent have been 
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acknowledged. Then Device A is allowed to send more bytes. Each device keeps 
track of which bytes have been sent and which have not, and which have been 
acknowledged. 

At any point in time, we can take a “snapshot” of the process. If we do, we can 
conceptually divide the bytes that the sending TCP has in its buffer into the 
following four categories, and view them as a timeline (see Figure 46-5): 

1. Bytes Sent and Acknowledged The earliest bytes in the stream will have been 
sent and acknowledged. These bytes are basically viewed from the standpoint 
of the device sending data. In the example in Figure 46-5, 31 bytes of data have 
already been sent and acknowledged. These would fall into category 1.

2. Bytes Sent but Not Yet Acknowledged These are the bytes that the device has 
sent but for which it has not yet received an acknowledgment. The sender can-
not consider these handled until they are acknowledged. In Figure 46-5, there 
are 14 bytes here, in category 2.

3. Bytes Not Yet Sent for Which Recipient Is Ready These are bytes that the 
device has not sent, but which the recipient has room for based on its most 
recent communication to the sender regarding how many bytes it is willing to 
handle at once. The sender will try to send these immediately (subject to cer-
tain algorithmic restrictions that you’ll explore later). In Figure 46-5, there are 
6 bytes in category 3.

4. Bytes Not Yet Sent for Which Recipient Is Not Ready These are the bytes fur-
ther down the stream, which the sender is not yet allowed to send because the 
receiver is not ready. In Figure 46-5, there are 44 bytes in category 4.

Figure 46-5: Conceptual division of TCP transmission stream into categories

NOTE I am using very small numbers here to keep the example simple and to make the dia-
grams a bit easier to construct! TCP does not normally send tiny numbers of bytes around for 
efficiency reasons.

The receiving device uses a similar system in order to differentiate between 
data received and acknowledged, data not yet received but ready to receive, and data 
not yet received and not yet ready to be received. In fact, both devices maintain a 
separate set of variables to keep track of the categories into which bytes fall in the 
stream they are sending, as well as the stream they are receiving. This is explored 
further in Chapter 48’s section named “TCP Sliding Window Data Transfer and 
Acknowledgment Mechanics,” which describes the detailed sliding window data 
transfer procedure.
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Sequence Number Assignment and Synchronization

The sender and receiver must agree on the sequence numbers that they will assign 
to the bytes in the stream. This is called synchronization and is done when the TCP 
connection is established. For simplicity, let’s assume that the first byte was sent 
with sequence number 1 (this is not normally the case). Thus, in the example 
shown in Figure 46-5, the byte ranges for the four categories are as follows:

1. The bytes sent and acknowledged are bytes 1 to 31.

2. The bytes sent but not yet acknowledged are bytes 32 to 45.

3. The bytes not yet sent for which the recipient is ready are bytes 46 to 51.

4. The bytes not yet sent for which the recipient is not ready are bytes 52 to 95.

The Send Window and Usable Window

The key to the operation of the entire process is the number of bytes that the 
recipient is allowing the transmitter to have unacknowledged at one time. This is 
called the send window, or often, just the window. The window is what determines 
how many bytes the sender is allowed to transmit, and is equal to the sum of the 
number of bytes in category 2 and category 3. Thus, the dividing line between the 
last two categories (bytes not sent that the recipient is ready for and bytes the 
recipient is not ready for) is determined by adding the window to the byte number 
of the first unacknowledged byte in the stream. In the example shown in Figure 46-5, 
the first unacknowledged byte is 32. The total window size is 20.

The term usable window is defined as the amount of data the transmitter is still 
allowed to send given the amount of data that is outstanding. It is thus exactly equal 
to the size of category 3. You may also commonly hear the edges of the window 
mentioned. The left edge marks the first byte in the window (byte 32). The right 
edge marks the last byte in the window (byte 51). See Figure 46-6 for an illustration 
of these concepts.

KEY CONCEPT The TCP sliding window system is a variation on the enhanced PAR system, 
with changes made to support TCP’s stream orientation. Each device keeps track of the status of 
the byte stream that it needs to transmit. The device keeps track by dividing the byte streams into 
four conceptual categories: bytes sent and acknowledged, bytes sent but not yet acknowledged, 
bytes not yet sent but that can be sent immediately, and bytes not yet sent that cannot be sent 
until the recipient signals that it is ready for them.

KEY CONCEPT The send window is the key to the entire TCP sliding window system. It 
represents the maximum number of unacknowledged bytes that a device is allowed to have 
outstanding at one time. The usable window is the amount of the send window that the sender is 
still allowed to send at any point in time; it is equal to the size of the send window less the 
number of unacknowledged bytes already transmitted.
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Figure 46-6: TCP transmission stream categories and send window terminology This diagram shows the 
same categories as the ones in Figure 46-5, except that it shows the send window as well. The black box 
is the overall send window (categories 2 and 3 combined); the light gray box represents the bytes 
already sent (category 2), and the dark gray box is the usable window (category 3).

Changes to TCP Categories and Window Sizes After Sending Bytes in the Usable Window

Now let’s suppose that in the example shown in Figure 46-6 there is nothing 
stopping the sender from immediately transmitting the 6 bytes in category 3 
(the usable window). When the sender transmits them, the 6 bytes will shift from 
category 3 to category 2. The byte ranges will now be as follows (see Figure 46-7):

1. The bytes sent and acknowledged are bytes 1 to 31.

2. The bytes sent but not yet acknowledged are bytes 32 to 51.

3. The bytes not yet sent for which the recipient is ready are none.

4. The bytes not yet sent for which the recipient is not ready are bytes 52 to 95.

Figure 46-7: TCP stream categories and window after sending usable window bytes This diagram 
shows the result of the device sending all the bytes that it is allowed to transmit in its usable window. It is 
the same as Figure 46-6, except that all the bytes in category 3 have moved to category 2. The usable 
window is now zero and will remain so until it receives an acknowledgment for bytes in category 2.

Processing Acknowledgments and Sliding the Send Window

Some time later, the destination device sends back a message to the sender and 
provides an acknowledgment. The destination device will not specifically list out 
the bytes that it has acknowledged, because as I said earlier, listing the bytes would 
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be inefficient. Instead, the destination device will acknowledge a range of bytes that 
represents the longest contiguous sequence of bytes it has received since the ones it 
had previously acknowledged.

For example, let’s suppose that the bytes already sent but not yet acknowledged 
at the start of the example (bytes 32 to 45) were transmitted in four different 
segments. These segments carried bytes 32 to 34, 35 to 36, 37 to 41, and 42 to 45, 
respectively. The first, second, and fourth segments arrived, but the third did not. 
The receiver will send back an acknowledgment only for bytes 32 to 36 (32 to 34 
and 35 to 36). The receiver will hold bytes 42 to 45 but won’t acknowledge them, 
because this would imply that the receiver has received bytes 37 to 41, which have 
not shown up yet. This is necessary because TCP is a cumulative acknowledgment 
system that can use only a single number to acknowledge data. That number is the 
number of the last contiguous byte in the stream that was successfully received. 
Let’s also say that the destination keeps the window size the same at 20 bytes.

NOTE An optional feature called selective acknowledgments does allow noncontiguous blocks 
of data to be acknowledged. This is explained in Chapter 49’s section named “TCP Noncontiguous 
Acknowledgment Handling and Selective Acknowledgment (SACK)”; we’ll ignore this complica-
tion for now.

When the sending device receives this acknowledgment, it will be able to 
transfer some of the bytes from category 2 to category 1, because they have now 
been acknowledged. When it does so, something interesting will happen. Since 5 
bytes have been acknowledged, and the window size didn’t change, the sender is 
allowed to send 5 more bytes. In effect, the window shifts or slides over to the right 
in the timeline. At the same time 5 bytes move from category 2 to category 1, 5 bytes 
move from category 4 to category 3, creating a new usable window for subsequent 
transmission. So, after the groups receive the acknowledgment, they will look like 
what you see in Figure 46-8. The byte ranges will be as follows:

1. The bytes sent and acknowledged are bytes 1 to 36.

2. The bytes sent but not yet acknowledged are bytes 37 to 51.

3. The bytes not yet sent for which the recipient is ready are bytes 52 to 56.

4. The bytes not yet sent for which the recipient is not ready are bytes 57 to 95.

Figure 46-8: Sliding the TCP send window After receiving acknowledgment for bytes 32 to 36, the 
bytes move from category 2 to 1 (shown in dark shading). The send window shown in Figure 46-7 slides 
right by 5 bytes; shifting 5 bytes from category 4 to 3, and opening a new usable window.
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This process will occur each time an acknowledgment is received, thereby 
causing the window to slide across the entire stream in order to be transmitted. 
And thus, ladies and gentlemen, you have the TCP sliding window acknowledg-
ment system!

It is a very powerful technique that allows TCP to easily acknowledge an arbi-
trary number of bytes using a single acknowledgment number. It provides reliability 
to the byte-oriented protocol without spending time on an excessive number of 
acknowledgments. For simplicity, the example I’ve used here leaves the window size 
constant, but in reality, it can be adjusted to allow a recipient to control the rate at 
which data is sent, thereby enabling flow control and congestion handling.

Dealing with Missing Acknowledgments

But what about bytes 42 through 45 in the example shown in Figure 46-8? Until seg-
ment 3 (containing bytes 37 to 41) shows up, the receiving device will not send an 
acknowledgment for those bytes, and it won’t send any others that show up after it. 
The sending device will be able to send the new bytes that were added to category 3, 
namely, bytes 52 to 56. The sending device will then stop, and the window will be 
stuck on bytes 37 to 41.

Like the PAR system, TCP includes a system for timing transmissions and 
retransmitting. Eventually, the TCP device will resend the lost segment. Unfor-
tunately, one drawback of TCP is that since it does not separately acknowledge 
segments, it may have to retransmit other segments that the recipient actually 
received (such as the segment with bytes 42 to 45). This starts to get very complex, 
as I discussed in the topic on TCP retransmissions in Chapter 49.

More Information on TCP Sliding Windows

Despite the length of this explanation, the preceding is just a summary description 
of the overall operation of sliding windows. This chapter does not include all of the 
modifications used in modern TCP! As you can see, the sliding window mechanism 
is at the heart of the operation of TCP as a whole. In the chapter that describes seg-
ments and discusses data transfer, you will see in more detail how TCP transmitters 
decide how and when to create segments for transmission. Chapter 49 provides 
much more information about how sliding windows enable a device to manage the 
flow of data to it on a TCP connection. It also discusses special problems that can 

KEY CONCEPT When a device gets an acknowledgment for a range of bytes, it knows the 
destination has successfully received them. It moves them from the “sent but unacknowledged” to 
the “sent and acknowledged” category. This causes the send window to slide to the right, 
allowing the device to send more data.

KEY CONCEPT TCP acknowledgments are cumulative and tell a transmitter that the receiving 
device successfully received all the bytes up to the sequence number indicated in the acknowl-
edgment. Thus, if the receiving device receives bytes out of order, the device cannot acknowledge 
them until all the preceding bytes are received.
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arise if window size is not carefully managed and how you can avoid problems such 
as congestion in TCP implementations through key changes to the basic sliding 
window mechanism described in this section.

TCP Ports, Connections, and Connection Identification

The two TCP/IP transport layer protocols, TCP and UDP, play the same architec-
tural role in the protocol suite, but do it in very different ways. In fact, one of the 
few functions that the two have in common is that they both provide a method of 
transport layer addressing and multiplexing. Through the use of ports, both protocols 
allow the data from many different application processes to be aggregated and sent 
through the IP layer, and then returned up the stack to the proper application 
process on the destination device. I explain TCP ports in detail in Chapter 43.

Despite this commonality, TCP and UDP diverge somewhat even in how they 
deal with processes. UDP is a connectionless protocol, which means that devices do 
not set up a formal connection before sending data. UDP does not have to use 
sliding windows or keep track of how long it has been since UDP sent a transmission 
and so forth. When the UDP layer on a device receives data, it just sends it to the 
process that the destination port indicates, and that’s that. UDP can seamlessly 
handle any number of processes that are sending it messages because UDP handles 
them all identically.

In contrast, since TCP is connection-oriented, it has many more responsibilities. 
Each TCP software layer needs to be able to support connections to several other 
TCPs simultaneously. The operation of each connection is separate from of each 
other connection, and the TCP software must manage each operation indepen-
dently. TCP must be sure that it not only routes data to the right process, but that it 
also manages transmitted data on each connection without any overlap or confusion.

The first consequence of this is that TCP must uniquely identify each connec-
tion. It does this by using the pair of socket identifiers that correspond to the two 
endpoints of the connection, where a socket is simply the combination of the IP 
address and the port number of each process. This means a socket pair contains 
four pieces of information: source address, source port, destination address, and 
destination port. Thus, TCP connections are sometimes said to be described by this 
addressing quadruple.

I introduced this concept in Chapter 43, where I gave the example of a 
Hypertext Transfer Protocol (HTTP) request that a client sends at 177.41.72.6 to a 
website at 41.199.222.3. The server for that website will use well-known port number 
80, so the server’s socket is 41.199.222.3:80. If the server assigns a client ephemeral 
port number 3022 for the web browser, the client socket is 177.41.72.6:3022. The 
overall connection between these devices can be described using this socket pair: 
(41.199.222.3:80, 177.41.72.6:3022).

This identification of connections using both client and server sockets is what 
provides the flexibility in allowing multiple connections between devices that we 
probably take for granted on the Internet. For example, busy application server 
processes (such as web servers) must be able to handle connections from more 
than one client; otherwise, the Web would be pretty much unusable. Since the 
client and server’s socket identify the connection, this is no problem. At the same 
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time that the web server maintains the connection, it can easily have another 
connection to say, port 2199 at IP address 219.31.0.44. The connection identifier 
that represents this as follows: (41.199.222.3:80, 219.31.0.44:2199). 

In fact, you can have multiple connections from the same client to the same 
server. Each client process will be assigned a different ephemeral port number, so 
even if they all try to access the same server process (such as the web server process 
at 41.199.222.3:80), they will all have a different client socket and represent unique 
connections. This difference is what lets you make several simultaneous requests to 
the same website from your computer.

Again, TCP keeps track of each of these connections independently, so each 
connection is unaware of the others. TCP can handle hundreds or even thousands 
of simultaneous connections. The only limit is the capacity of the computer running 
TCP, and the bandwidth of the physical connections to it—the more connections 
running at once, the more each one has to share limited resources.

TCP Common Applications and Server Port Assignments

In the overview of TCP in Chapter 45, you saw that the protocol originally included 
the functions of both modern TCP and IP. TCP was split into TCP and IP in order 
to allow applications that didn’t need TCP’s complexity to bypass it, using the much 
simpler UDP as a transport layer protocol instead. This bypass was an important 
step in the development of the TCP/IP protocol suite, since there are several 
important protocols for which UDP is ideally suited, and even some for which TCP 
is more of a nuisance than a benefit.

Most commonly, however, UDP is used only in special cases. I describe the two 
types of applications that may be better suited to UDP than TCP in Chapter 44: 
applications where speed is more important than reliability, and applications that 
send only short messages infrequently. The majority of TCP/IP applications do not 
fall into these categories. Thus, even though the layering of TCP and IP means that 
most protocols aren’t required to use TCP, most of them do anyway. The majority 
of the protocols that use TCP employ all, or at least most, of the features that it 
provides. The establishment of a persistent connection is necessary for many 
interactive protocols, such as Telnet, as well as for ones that send commands and 
status replies, like HTTP. Reliability and flow control are essential for protocols like 
the File Transfer Protocol (FTP) or the email protocols, which send large files. 

Table 46-1 shows some of the more significant application protocols that run 
on TCP. For each protocol, I have shown the well-known or registered port number 
that’s reserved for that protocol’s server process (clients use ephemeral ports, not 
the port numbers in the table). I have also shown the special keyword shortcut for 
each port assignment and provided brief comments on why the protocol is well 
matched to TCP.

KEY CONCEPT Each device can handle simultaneous TCP connections to many different 
processes on one or more devices. The socket numbers of the devices in the connection, called 
the connection’s endpoints, identify each connection. Each endpoint consists of the device’s IP 
address and port number, so the four-way communication between client IP address and port 
number, and server IP address and port number identifies each connection.
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A couple of the protocols in Table 46-1 use both TCP and UDP in order to get 
the best of both worlds. UDP can send short, simple messages, while TCP moves 
larger files. Many of the protocols that use both TCP and UDP are actually utility/
diagnostic protocols (such as Echo, Discard, and the Time Protocol). These are 
special cases, because they developers designed them to use both UDP and TCP 
specifically to allow their use for diagnostics on both protocols.

I have not included an exhaustive list of TCP applications in Table 46-1. See 
Chapter 42 for common TCP/IP applications and port numbers, and also a 
reference to the full (massive) list of well-known and registered TCP server ports.

Table 46-1: Common TCP Applications and Server Port Assignments

Port # Keyword Protocol Comments

20 and 
21

ftp-data/ftp File Transfer Protocol (FTP, 
data and control)

Used to send large files, so it is ideally suited for TCP.

23 telnet Telnet Protocol Interactive session-based protocol. Requires the connection-
based nature of TCP.

25 smtp Simple Mail Transfer Protocol 
(SMTP)

Uses an exchange of commands, and sends possibly large files 
between devices. 

53 domain Domain Name Server (DNS) An example of a protocol that uses both UDP and TCP. For 
simple requests and replies, DNS uses UDP. For larger 
messages, especially zone transfers, DNS uses TCP.

70 gopher Gopher Protocol A messaging protocol that has been largely replaced by the 
WWW.

80 http Hypertext Transfer Protocol 
(HTTP/World Wide Web)

The classic example of a TCP-based messaging protocol.

110 pop3 Post Office Protocol (POP 
version 3)

Email message retrieval protocols that use TCP to exchange 
commands and data.

119 nntp Network News Transfer 
Protocol (NNTP)

Used for transferring NetNews (Usenet) messages, which can 
be lengthy.

139 netbios-ssn NetBIOS Session Service A session protocol, clearly better suited to TCP than UDP.

143 imap Internet Message Access 
Protocol (IMAP)

Another email message retrieval protocol.

179 bgp Border Gateway Protocol 
(BGP)

While interior routing protocols like RIP and OSPF use either 
UDP or IP directly, BGP runs over TCP. This allows BGP to 
assume reliable communication even as it sends data over 
potentially long distances.

194 irc Internet Relay Chat (IRC) IRC is like Telnet in that it is an interactive protocol that is 
strongly based on the notion of a persistent connection between 
a client and server.

2049 nfs Network File System (NFS) NFS was originally implemented using UDP for performance 
reasons. Given that it is responsible for large transfers of files 
and given UDP’s unreliability, NFS was probably not the best 
idea, so developers created TCP versions. The latest version of 
NFS uses TCP exclusively.

6000–
6063

TCP x11 Used for the X Window graphical system. Multiple ports are 
dedicated to allow many sessions.
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