
Although this book will teach you how
to write better code without mastering

assembly language, the absolute best HLL
programmers do know assembly, and that

knowledge is one of the reasons they write great code.
As mentioned in Chapter 1, although this book can
provide a 90 percent solution if you just want to write great HLL code,
to fill in that last 10 percent you’ll need to learn assembly language. While
teaching you assembly language is beyond the scope of this book, it’s still
an important subject to discuss. To that end, this chapter will explore
the following:

•	 The problem with learning assembly language

•	 High-level assemblers and how they can make learning assembly lan-
guage easier

2
S H O U L D N ’ T Y O U L E A R N
A S S E M B LY L A N G U A G E ?

10 Chapter 2

•	 How you can use real-world products like Microsoft Macro Assembler
(MASM), Gas (Gnu Assembler), and HLA (High-Level Assembly) to
easily learn assembly language programming

•	 How an assembly language programmer thinks (that is, the assembly
language programming paradigm)

•	 Resources available to help you learn assembly language programming

2.1  Benefits and Roadblocks to Learning Assembly Language
Learning assembly language—really learning assembly language—offers
two benefits. First, you’ll gain a complete understanding of the machine
code that a compiler can generate. By mastering assembly language, you’ll
achieve the 100 percent solution just described and be able to write better
HLL code. Second, you’ll be able to code critical parts of your application
in assembly language when your HLL compiler is incapable, even with your
help, of producing the best possible code. Once you’ve absorbed the les-
sons of the following chapters to hone your HLL skills, moving on to learn
assembly language is a very good idea.

There’s one catch to learning assembly language, though. In the past,
it’s been a long, difficult, and frustrating task. The assembly language pro-
gramming paradigm is sufficiently different from HLL programming that
most people feel like they’re starting over from square one when learning it.
It’s very frustrating when you know how to do something in a programming
language like C/C++, Java, Swift, Pascal, or Visual Basic, but you can’t yet
figure out the solution in assembly language.

Most programmers like being able to apply past experience when learn-
ing something new. Unfortunately, traditional approaches to learning assem-
bly language programming tend to force HLL programmers to forget what
they’ve learned in the past. This book, in contrast, offers a way for you to effi-
ciently leverage your existing knowledge while learning assembly language.

2.2  How This Book Can Help
Once you’ve read through this book, there are three reasons you’ll find it
much easier to learn assembly language:

•	 You’ll be more motivated to learn it because you’ll understand why
doing so can help you write better code.

•	 You’ll have had five brief primers on assembly language (80x86,
PowerPC, ARM, Java bytecode, and Microsoft IL), so even if you’d never
seen it before, you’ll have learned some by the time you finish this book.

•	 You’ll have already seen how compilers emit machine code for all the
common control and data structures, so you’ll have learned one of the
most difficult lessons for a beginning assembly programmer—how to
achieve things in assembly language that they already know how to do
in an HLL.

Shouldn’t You Learn Assembly Language? 11

Though this book won’t teach you how to become an expert assembly
language programmer, the large number of example programs that dem-
onstrate how compilers translate HLLs into machine code will acquaint you
with many assembly language programming techniques. You’ll find these
useful should you decide to learn assembly language after reading this book.

Certainly, you’ll find this book easier to read if you already know assem-
bly language. However, you’ll also find assembly language easier to master
once you’ve read this book. Since learning assembly language is probably
more time-consuming than reading this book, the more efficient approach
is to start with the book.

2.3  High-Level Assemblers to the Rescue
Way back in 1995, I had a discussion with the University of California,
Riverside, computer science department chair. I was lamenting the fact
that students had to start over when taking the assembly course, spending
precious time to relearn so many things. As the discussion progressed, it
became clear that the problem wasn’t with assembly language, per se, but
with the syntax of existing assemblers (like Microsoft Macro Assembler,
or MASM). Learning assembly language entailed a whole lot more than
learning a few machine instructions. First of all, you have to learn a new
programming style. Mastering assembly language involves learning not
only the semantics of a few machine instructions but also how to put those
instructions together to solve real-world problems. And that’s the hard part.

Second, pure assembly language is not something you can efficiently
pick up a few instructions at a time. Writing even the simplest programs
requires considerable knowledge and a repertoire of a couple dozen or
more machine instructions. When you add that repertoire to all the other
machine organization topics students must learn in a typical assembly
course, it’s often several weeks before they are prepared to write anything
other than “spoon-fed” trivial applications in assembly language.

One important feature of MASM back in 1995 was support for HLL-like
control statements such as .if and .while. While these statements are not
true machine instructions, they do allow students to use familiar program-
ming constructs early in the course, until they’ve had time to learn enough
low-level machine instructions that they can use them in their applications.
By using these high-level constructs early on in the term, students can con-
centrate on other aspects of assembly language programming and not have
to assimilate everything all at once. This allows them to start writing code
much sooner in the course and, as a result, they wind up covering more
material by the end of the term.

An assembler like MASM (32-bit v6.0 and later) that provides control
statements similar to those found in HLLs—in addition to the traditional
low-level machine instructions that do the same thing—is called a high-level
assembler. In theory, with an appropriate textbook that teaches assembly
language programming using these high-level assemblers, students could
begin writing simple programs during the very first week of the course.

12 Chapter 2

The only problem with high-level assemblers like MASM is that they
provide just a few HLL control statements and data types. Almost every-
thing else is foreign to someone who is familiar with HLL programming.
For example, data declarations in MASM are completely different from data
declarations in most HLLs. Beginning assembly programmers still have
to relearn a considerable amount of information, despite the presence of
HLL-like control statements.

2.4  High-Level Assembly Language
Shortly after the discussion with my department chair, it occurred to me
that there is no reason an assembler couldn’t adopt a more high-level syntax
without changing the semantics of assembly language. For example, con-
sider the following statements in C/C++ and Pascal that declare an integer
array variable:

int intVar[8]; // C/C++

var intVar: array[0..7] of integer; (* Pascal *)

Now consider the MASM declaration for the same object:

intVar sdword 8 dup (?) ;MASM

While the C/C++ and Pascal declarations differ from each other, the
assembly language version is radically different from both. A C/C++ pro-
grammer will probably be able to figure out the Pascal declaration even if
they have never seen Pascal code before, and vice versa. However, Pascal
and C/C++ programmers probably won’t be able to make heads or tails of
the assembly language declaration. This is but one example of the problems
HLL programmers face when first learning assembly language.

The sad part is that there’s really no reason a variable declaration in
assembly language has to be so radically different from one in an HLL.
It makes absolutely no difference in the final executable file which syntax
an assembler uses for variable declarations. Given that, why shouldn’t an
assembler use a more high-level-like syntax so people switching over from
HLLs will find the assembler easier to learn? Pondering this question led
me to develop a new assembly language, specifically geared toward teaching
assembly language programming to students who had already mastered an
HLL, called High-Level Assembly (HLA). In HLA, the aforementioned array
declaration looks like this:

var intVar:int32[8]; // HLA

Though the syntax is slightly different from C/C++ and Pascal (actu-
ally, it’s a combination of the two), most HLL programmers can probably
figure out the meaning of this declaration.

Shouldn’t You Learn Assembly Language? 13

The whole purpose of HLA’s design is to provide an assembly language
programming environment as similar as possible to that of traditional
(imperative) high-level programming languages, without sacrificing the
capability to write real assembly language programs. Those components
of the language that have nothing to do with machine instructions use a
familiar high-level language syntax, while the machine instructions still
map one-to-one to the underlying 80x86 machine instructions.

Making HLA as similar as possible to various HLLs means that students
learning assembly language programming don’t have to spend as much
time assimilating a radically different syntax. Instead, they can apply their
existing HLL knowledge, which makes the process of learning assembly lan-
guage easier and faster.

A comfortable syntax for declarations and a few HLL-like control
statements aren’t all you need to make learning assembly language as effi-
cient as possible, however. One very common complaint about learning
assembly language is that it provides very little support for programmers,
who must constantly reinvent the wheel while writing assembly code. For
example, when learning assembly language programming using MASM,
you’ll quickly discover that assembly language doesn’t provide useful I/O
facilities such as the ability to print integer values as strings to the user’s
console. Assembly programmers are responsible for writing such code
themselves. Unfortunately, writing a decent set of I/O routines requires
sophisticated knowledge of assembly language programming. The only
way to gain that knowledge is by writing a fair amount of code first, but
doing so without having any I/O routines is difficult. Therefore, a good
assembly language educational tool also needs to provide a set of I/O rou-
tines that allow beginning assembly programmers to do simple I/O tasks,
like reading and writing integer values, before they have the program-
ming sophistication to write such routines themselves. HLA accomplishes
this with the HLA Standard Library, a collection of subroutines and macros
that make it very easy to write complex applications.

Because of HLA’s popularity and the fact that HLA is a free, open
source, and public domain product available for Windows and Linux, this
book uses HLA syntax for compiler-neutral examples involving assembly
language. Despite the fact that it is now over 20 years old and supports only
the 32-bit Intel instruction set, HLA is still an excellent way to learn assem-
bly language programming. Although the latest Intel CPUs directly support
64-bit registers and operations, learning 32-bit assembly language is just as
relevant for HLL programmers as 64-bit assembly.

2.5  Thinking High-Level, Writing Low-Level
The goal of HLA is to allow a beginning assembly programmer to think in
HLL terms while writing low-level code (in other words, the exact opposite
of what this book is trying to teach). For students first approaching assem-
bly language, being able to think in high-level terms is a godsend—they can
apply techniques they’ve already learned in other languages when faced

14 Chapter 2

with a particular assembly language programming problem. Controlling the
rate at which a student has to learn new concepts in this way can make the
educational process more efficient.

Ultimately, of course, the goal is to learn the low-level programming
paradigm. This means gradually giving up HLL-like control structures and
writing pure low-level code (that is, “thinking low-level and writing low-
level”). Nevertheless, starting out by “thinking high-level while writing low-
level” is a great, incremental way to learn assembly language programming.

2.6  The Assembly Programming Paradigm
(Thinking Low-Level)

It should be clear now that programming in assembly language is quite dif-
ferent from programming in common HLLs. Fortunately, for this book, you
don’t need to be able to write assembly language programs from scratch.
Nevertheless, if you know how assembly programs are written, you’ll be able
to understand why a compiler emits certain code sequences. To that end,
I’ll take some time here to describe how assembly language programmers
(and compilers) “think.”

The most fundamental aspect of the assembly language program-
ming paradigm—that is, the model for how assembly programming is
accomplished—is that large projects are broken up into mini-tasks that
the machine can handle. Fundamentally, a CPU can do only one tiny task
at a time; this is true even for complex instruction set computers (CISC).
Therefore, complex operations, like statements you’ll find in an HLL, have
to be broken down into smaller components that the machine can execute
directly. As an example, consider the following Visual Basic (VB) assign-
ment statement:

profits = sales - costOfGoods - overhead - commissions

No practical CPU will allow you to execute this entire VB statement as
a single machine instruction. Instead, you have to break this assignment
statement down to a sequence of machine instructions that compute indi-
vidual components of it. For example, many CPUs provide a subtract instruc-
tion that lets you subtract one value from a machine register. Because the
assignment statement in this example consists of three subtractions, you’ll
have to break the assignment operation down into at least three different
subtract instructions.

The 80x86 CPU family provides a fairly flexible subtract instruction:
sub(). This particular instruction allows the following forms (in HLA syntax):

sub(constant, reg); // reg = reg - constant
sub(constant, memory); // memory = memory - constant
sub(reg1, reg2); // reg2 = reg2 - reg1
sub(memory, reg); // reg = reg - memory
sub(reg, memory); // memory = memory - reg

Shouldn’t You Learn Assembly Language? 15

Assuming that all of the identifiers in the original VB code represent
variables, we can use the 80x86 sub() and mov() instructions to implement
the same operation with the following HLA code sequence:

// Get sales value into EAX register:

mov(sales, eax);

// Compute sales-costOfGoods (EAX := EAX - costOfGoods)

sub(costOfGoods, eax);

// Compute (sales-costOfGoods) - overhead
// (note: EAX contains sales-costOfGoods)

sub(overhead, eax);

// Compute (sales-costOfGoods-overhead)-commissions
// (note: EAX contains sales-costOfGoods-overhead)

sub(commissions, eax);

// Store result (in EAX) into profits:

mov(eax, profits);

This code breaks down the single VB statement into five different HLA
statements, each of which does a small part of the total calculation. The
secret behind the assembly language programming paradigm is knowing
how to break down complex operations like this into a simple sequence of
machine instructions. We’ll take another look at this process in Chapter 13.

HLL control structures are another big area where complex operations
are broken down into simpler statement sequences. For example, consider
the following Pascal if() statement:

if(i = j) then begin

 writeln("i is equal to j");

end;

CPUs do not support an if() machine instruction. Instead, you com-
pare two values that set condition-code flags and then test the result of these
condition codes by using conditional jump instructions. A common way to
translate an HLL if() statement into assembly language is to test the oppo-
site condition (i <> j) and then jump over the statements that would be
executed if the original condition (i = j) evaluates to true. For example,
here’s a translation of the former Pascal if() statement into HLA (using
pure assembly language—that is, no HLL-like constructs):

 mov(i, eax); // Get i's value into eax register
 cmp(eax, j); // Compare eax to j's value

16 Chapter 2

 jne skipIfBody; // Skip body of if statement if i <> j

 << code to print string >>

skipIfBody:

As the Boolean expressions in the HLL control structures increase
in complexity, the number of corresponding machine instructions also
increases. But the process remains the same. Later, we’ll take a look at how
compilers translate HLL control structures into assembly language (see
Chapters 13 and 14).

Passing parameters to a procedure or function, accessing those param-
eters, and then accessing other data local to that procedure or function is
another area where assembly language is quite a bit more complex than
typical HLLs. This is an important subject, but it’s beyond the scope of this
chapter, so we’ll revisit it in Chapter 15.

The bottom line is that when converting an algorithm from a high-level
language, you have to break down the problem into much smaller pieces
in order to code it in assembly language. As noted earlier, the good news is
that you don’t have to figure out which machine instructions to use when all
you’re doing is reading assembly code—the compiler (or assembly program-
mer) that originally created the code will have already done this for you.
All you have to do is draw a correspondence between the HLL code and the
assembly code. How you accomplish that is the subject of much of the rest
of this book.

2.7  For More Information
Bartlett, Jonathan. Programming from the Ground Up. Edited by Dominick

Bruno, Jr. Self-published, 2004. An older, free version of this book,
which teaches assembly language programming using Gas, can be
found online at http://www.plantation-productions.com/AssemblyLanguage​
/ProgrammingGroundUp-1-0-booksize.pdf.

Blum, Richard. Professional Assembly Language. Indianapolis: Wiley, 2005.

Carter, Paul. PC Assembly Language. Self-published, 2019. http://pacman128​
.github.io/static/pcasm-book.pdf.

Duntemann, Jeff. Assembly Language Step-by-Step. 3rd ed. Indianapolis:
Wiley, 2009.

Hyde, Randall. The Art of Assembly Language. 2nd ed. San Francisco:
No Starch Press, 2010.

———. “Webster: The Place on the Internet to Learn Assembly.”
http://plantation-productions.com/Webster/index.html.

