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AR ITHMET IC

This chapter discusses arithmetic computa-
tion in assembly language. By the end of 

this chapter, you should be able to translate 
arithmetic expressions and assignment state-

ments from high-level languages like Pascal and C/C++ 
into x86-64 assembly language.

6.1	� x86-64 Integer Arithmetic Instructions
Before describing how to encode arithmetic expressions in assembly lan-
guage, it would be a good idea to first discuss the remaining arithmetic 
instructions in the x86-64 instruction set. Previous chapters have covered 
most of the arithmetic and logical instructions, so this section covers the 
few remaining instructions you’ll need.
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288   Chapter 6

6.1.1	 Sign- and Zero-Extension Instructions
Several arithmetic operations require sign- or zero-extended values before 
the operation. So let’s first consider the sign- and zero-extension instruc-
tions. The x86-64 provides several instructions to sign- or zero-extend a 
smaller number to a larger number. Table 6-1 lists a group of instructions 
that will sign-extend the AL, AX, EAX, and RAX registers.

Table 6-1: Instructions for Extending AL, AX, EAX, and RAX

Instruction Explanation

cbw Converts the byte in AL to a word in AX via sign extension

cwd Converts the word in AX to a double word in DX:AX via sign extension

cdq Converts the double word in EAX to a quad word in EDX:EAX via sign 
extension

cqo Converts the quad word in RAX to an octal word in RDX:RAX via sign 
extension

cwde Converts the word in AX to a double word in EAX via sign extension

cdqe Converts the double word in EAX to a quad word in RAX via sign 
extension

Note that the cwd (convert word to double word) instruction does not sign-
extend the word in AX to a double word in EAX. Instead, it stores the HO word 
of the sign extension into the DX register (the notation DX:AX indicates that 
you have a double-word value, with DX containing the upper 16 bits and AX 
containing the lower 16 bits of the value). If you want the sign extension of AX 
to go into EAX, you should use the cwde (convert word to double word, extended) 
instruction. In a similar fashion, the cdq instruction sign-extends EAX into 
EDX:EAX. Use the cdqe instruction if you want to sign-extend EAX into RAX.

For general sign-extension operations, the x86-64 provides an exten-
sion of the mov instruction, movsx (move with sign extension), that copies data 
and sign-extends the data while copying it. The movsx instruction’s syntax is 
similar to that of mov:

movsxd dest, source ;If dest is 64 bits and source is 32 bits
movsx  dest, source ;For all other operand combinations

The big difference in syntax between these instructions and the mov 
instruction is that the destination operand must usually be larger than the 
source operand.1 For example, if the source operand is a byte, the destina-
tion operand must be a word, dword, or qword. The destination operand 
must also be a register; the source operand, however, can be a memory 
location.2 The movsx instruction does not allow constant operands.

1. � �In two special cases, the operands are the same size. Those two instructions, however, 
aren’t especially useful.

2. � �This doesn’t turn out to be much of a limitation because sign extension almost always pre-
cedes an arithmetic operation that must take place in a register.
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For whatever reason, MASM requires a different instruction mnemonic 
(instruction name) when sign-extending a 32-bit operand into a 64-bit reg-
ister (movsxd rather than movsx).

To zero-extend a value, you can use the movzx instruction. It does not 
have the restrictions of movsx; as long as the destination operand is larger 
than the source operand, the instruction works fine. It allows 8 to 16, 32, or 
64 bits, and 16 to 32 or 64 bits. There is no 32- to 64-bit version (it turns out 
this is unnecessary).

The x86-64 CPUs, for historical reasons, will always zero-extend a regis-
ter from 32 bits to 64 bits when performing 32-bit operations. Therefore, to 
zero-extend a 32-bit register into a 64-bit register, you need only move the 
(32-bit) register into itself; for example:

mov eax, eax  ;zero-extends EAX into RAX

Zero-extending certain 8-bit registers (AL, BL, CL, and DL) into their 
corresponding 16-bit registers is easily accomplished without using movzx by 
loading the complementary HO register (AH, BH, CH, or DH) with 0. To 
zero-extend AX into DX:AX or EAX into EDX:EAX, all you need to do is 
load DX or EDX with 0.3

Because of instruction-encoding limitations, the x86-64 does not allow 
you to zero- or sign-extend the AH, BH, CH, or DH registers into any of the 
64-bit registers.

6.1.2	 The mul and imul Instructions
You’ve already seen a subset of the imul instructions available in the x86-64 
instruction set (see “The imul Instruction” in Chapter 4). This section presents 
the extended-precision version of imul along with the unsigned mul instruction.

The multiplication instructions provide you with another taste of 
irregularity in the x86-64’s instruction set. Instructions like add, sub, and 
many others in the x86-64 instruction set support two operands, just like 
the mov instruction. Unfortunately, there weren’t enough bits in the origi-
nal 8086 opcode byte to support all instructions, so the x86-64 treats 
the mul (unsigned multiply) and imul (signed integer multiply) instructions as 
single-operand instructions, just like the inc, dec, and neg instructions.  
Of course, multiplication is a two-operand function. To work around this 
fact, the x86-64 always assumes the accumulator (AL, AX, EAX, or RAX) 
is the destination operand.

Another problem with the mul and imul instructions is that you cannot 
use them to multiply the accumulator by a constant. Intel quickly discovered 
the need to support multiplication by a constant and added the more gen-
eral versions of the imul instruction to overcome this problem. Nevertheless, 
you must be aware that the basic mul and imul instructions do not support the 
full range of operands as the imul appearing in Chapter 4.

3. � �Zero-extending into DX:AX or EDX:EAX is just as necessary as the cwd and cdq instruc-
tions, as you will eventually see.
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290   Chapter 6

The multiply instruction has two forms: unsigned multiplication (mul) 
and signed multiplication (imul). Unlike addition and subtraction, you need 
separate instructions for signed and unsigned operations.

The single-operand multiply instructions take the following forms:
Unsigned multiplication:

mul reg8   ;returns AX
mul reg16  ; returns DX:AX
mul reg32  ; returns EDX:EAX
mul reg64  ; returns RDX:RAX

mul mem8   ; returns AX
mul mem16  ; returns DX:AX
mul mem32  ; returns EDX:EAX
mul mem64  ; returns RDX:RAX

Signed (integer) multiplication:

imul reg8      ; returns AX
imul reg16     ; returns DX:AX
imul reg32     ; returns EDX:EAX
imul reg64     ; returns RDX:RAX

imul mem8      ; returns AX
imul mem16     ; returns DX:AX
imul mem32     ; returns EDX:EAX
imul mem64     ; returns RDX:RAX

When multiplying two n -bit values, the result may require as many as 
2 × n bits. Therefore, if the operand is an 8-bit quantity, the result could 
require 16 bits. Likewise, a 16-bit operand produces a 32-bit result, a 32-bit 
operand produces 64 bits, and a 64-bit operand requires as many as 128 bits 
to hold the result. Table 6-2 lists the various computations.

Table 6-2: mul and imul Operations

Instruction Computes

mul operand8 AX = AL × operand8 (unsigned)

imul operand8 AX = AL × operand8 (signed)

mul operand16 DX:AX = AX × operand16 (unsigned)

imul operand16 DX:AX = AX × operand16 (signed)

mul operand32 EDX:EAX = EAX × operand32 (unsigned)

imul operand32 EDX:EAX = EAX × operand32 (signed)

mul operand64 RDX:RAX = RAX × operand64 (unsigned)

imul operand64 RDX:RAX = RAX × operand64 (signed)

If an 8×8-, 16×16-, 32×32-, or 64×64-bit product requires more than 8, 
16, 32, or 64 bits (respectively), the mul and imul instructions set the carry 
and overflow flags. mul and imul scramble the sign and zero flags.
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NO T E 	 The sign and zero flags do not contain meaningful values after the execution of these 
two instructions.

You’ll use the single-operand mul and imul instructions quite a lot 
when you learn about extended-precision arithmetic in Chapter 8. Unless 
you’re doing multiprecision work, however, you’ll probably want to use the 
more generic multi-operand version of the imul instruction in place of the 
extended-precision mul or imul. However, the generic imul (see Chapter 4) 
is not a complete replacement for these two instructions; in addition to the 
number of operands, several differences exist. The following rules apply 
specifically to the generic (multi-operand) imul instruction:

•	 There isn’t an 8×8-bit multi-operand imul instruction available.

•	 The generic imul instruction does not produce a 2n-bit result, but trun-
cates the result to n bits. That is, a 16×16bit multiplication produces a 
16-bit result. Likewise, a 32×32-bit multiplication produces a 32-bit result. 
These instructions set the carry and overflow flags if the result does not 
fit into the destination register.

6.1.3	 The div and idiv Instructions
The x86-64 divide instructions perform a 128/64-bit division, a 64/32-bit 
division, a 32/16-bit division, or a 16/8-bit division. These instructions take 
the following forms:

div reg8
div reg16
div reg32
div reg64

div mem8
div mem16
div mem32
div mem64

idiv reg8
idiv reg16
idiv reg32
idiv reg64

idiv mem8
idiv mem16
idiv mem32
idiv mem64

The div instruction is an unsigned division operation. If the operand 
is an 8-bit operand, div divides the AX register by the operand, leaving 
the quotient in AL and the remainder (modulo) in AH. If the operand is a 
16-bit quantity, the div instruction divides the 32-bit quantity in DX:AX by 
the operand, leaving the quotient in AX and the remainder in DX. With 
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32-bit operands, div divides the 64-bit value in EDX:EAX by the operand, 
leaving the quotient in EAX and the remainder in EDX. Finally, with 64-bit 
operands, div divides the 128-bit value in RDX:RAX by the operand, leav-
ing the quotient in RAX and the remainder in RDX.

There is no variant of the div or idiv instructions that allows you to 
divide a value by a constant. If you want to divide a value by a constant, you 
need to create a memory object (preferably in the .const section) that is ini-
tialized with the constant, and then use that memory value as the div/idiv 
operand. For example:

        .const
ten     dword   10
          .
          .
          .
         div    ten ;Divides EDX:EAX by 10

The idiv instruction computes a signed quotient and remainder. The 
syntax for the idiv instruction is identical to div (except for the use of the 
idiv mnemonic), though creating signed operands for idiv may require a 
different sequence of instructions prior to executing idiv than for div.

You cannot, on the x86-64, simply divide one unsigned 8-bit value by 
another. If the denominator is an 8-bit value, the numerator must be a 
16-bit value. If you need to divide one unsigned 8-bit value by another, you 
must zero-extend the numerator to 16 bits by loading the numerator into 
the AL register and then moving 0 into the AH register. Failing to zero-extend 
AL before executing div may cause the x86-64 to produce incorrect results! When 
you need to divide two 16-bit unsigned values, you must zero-extend the 
AX register (which contains the numerator) into the DX register. To do 
this, just load 0 into the DX register. If you need to divide one 32-bit value 
by another, you must zero-extend the EAX register into EDX (by loading 
a 0 into EDX) before the division. Finally, to divide one 64-bit number by 
another, you must zero-extend RAX into RDX (for example, using an xor 
rdx, rdx instruction) prior to the division.

When dealing with signed integer values, you will need to sign-extend 
AL into AX, AX into DX, EAX into EDX, or RAX into RDX before execut-
ing idiv. To do so, use the cbw, cwd, cdq, or cqo instructions.4 Failure to do so 
may produce incorrect results.

The x86-64’s divide instructions have one other issue: you can get a fatal 
error when using this instruction. First, of course, you can attempt to divide 
a value by 0. Another problem is that the quotient may be too large to fit 
into the RAX, EAX, AX, or AL register. For example, the 16/8-bit division 
8000h/2 produces the quotient 4000h with a remainder of 0. 4000h will 
not fit into 8 bits. If this happens, or you attempt to divide by 0, the x86-64 
will generate a division exception or integer overflow exception. This usu-
ally means your program will crash. If this happens to you, chances are you 

4. � You could also use movsx to sign-extend AL into AX.
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didn’t sign- or zero-extend your numerator before executing the division 
operation. Because this error may cause your program to crash, you should 
be very careful about the values you select when using division.

The x86-64 leaves the carry, overflow, sign, and zero flags undefined 
after a division operation. Therefore, you cannot test for problems after a 
division operation by checking the flag bits.

6.1.4	 The cmp Instruction, Revisited
As noted in “The cmp Instruction and Corresponding Conditional Jumps” 
in Chapter 2, the cmp instruction updates the x86-64’s flags according to the 
result of the subtraction operation (leftOperand - rightOperand). The x86-64 
sets the flags in an appropriate fashion so that we can read this instruction 
as “compare leftOperand to rightOperand.” You can test the result of the com-
parison by using the conditional set instructions to check the appropriate 
flags in the flags register (see “The setcc Instructions” on page xx) or the 
conditional jump instructions (Chapter 2 or Chapter 7).

Probably the first place to start when exploring the cmp instruction 
is to look at exactly how it affects the flags. Consider the following cmp 
instruction:

cmp ax, bx

This instruction performs the computation AX – BX and sets the flags 
depending on the result of the computation. The flags are set as follows 
(also see Table 6-3):

ZF

The zero flag is set if and only if AX = BX. This is the only time AX 
– BX produces a 0 result. Hence, you can use the zero flag to test for 
equality or inequality.

SF

The sign flag is set to 1 if the result is negative. At first glance, you might 
think that this flag would be set if AX is less than BX, but this isn’t always 
the case. If AX = 7FFFh and BX = –1 (0FFFFh), then subtracting AX 
from BX produces 8000h, which is negative (and so the sign flag will be 
set). So, for signed comparisons anyway, the sign flag doesn’t contain 
the proper status. For unsigned operands, consider AX = 0FFFFh and 
BX = 1. Here, AX is greater than BX but their difference is 0FFFEh, 
which is still negative. As it turns out, the sign flag and the overflow flag, 
taken together, can be used for comparing two signed values.

OF

The overflow flag is set after a cmp operation if the difference of AX and 
BX produced an overflow or underflow. As mentioned previously, the sign 
and overflow flags are both used when performing signed comparisons.
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CF

The carry flag is set after a cmp operation if subtracting BX from AX 
requires a borrow. This occurs only when AX is less than BX, where AX 
and BX are both unsigned values.

Table 6-3: Condition Code Settings After cmp

Unsigned operands Signed operands

ZF: Equality/inequality ZF: Equality/inequality

CF: Left < Right (C = 1)
       Left  >= Right (C = 0)

CF: No meaning 

SF: No meaning SF: See discussion in this section

OF: No meaning O:F See discussion in this section

Given that the cmp instruction sets the flags in this fashion, you can test 
the comparison of the two operands with the following flags:

cmp Left, Right

For signed comparisons, the SF (sign) and OF (overflow) flags, taken 
together, have the following meanings:

•	 If [(SF = 0) and (OF = 1)] or [(SF = 1) and (OF = 0)], then Left < Right for 
a signed comparison.

•	 If [(SF = 0) and (OF = 0)] or [(SF = 1) and (OF = 1)], then Left >= Right 
for a signed comparison.

Note that (SF xor OF) is 1 if the left operand is less than the right oper-
and. Conversely, (SF xor OF) is 0 if the left operand is greater or equal to 
the right operand.

To understand why these flags are set in this manner, consider the 
examples in Table 6-4.

Table 6-4: Sign and Overflow Flag Settings After Subtraction

Left Minus Right SF OF

0FFFFh (–1) – 0FFFEh (–2) 0 0

8000h (–32,768) – 0001h 0 1

0FFFEh (–2) – 0FFFFh (–1) 1 0

7FFFh (32767) – 0FFFFh (–1) 1 1

Remember, the cmp operation is really a subtraction; therefore, the first 
example in Table 6-4 computes (–1) – (–2), which is (+1). The result is posi-
tive and an overflow did not occur, so both the S and O flags are 0. Because 
(SF xor OF) is 0, Left is greater than or equal to Right.
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In the second example, the cmp instruction would compute (–32,768) 
– (+1), which is (–32,769). Because a 16-bit signed integer cannot represent 
this value, the value wraps around to 7FFFh (+32,767) and sets the overflow 
flag. The result is positive (at least as a 16-bit value), so the CPU clears the 
sign flag. (SF xor OF) is 1 here, so Left is less than Right.

In the third example, cmp computes (–2) – (–1), which produces (–1). 
No overflow occurred, so the OF is 0, the result is negative, so the SF is 1. 
Because (SF xor OF) is 1, Left is less than Right.

In the fourth (and final) example, cmp computes (+32,767) – (–1). This 
produces (+32,768), setting the overflow flag. Furthermore, the value wraps 
around to 8000h (–32,768), so the sign flag is set as well. Because (SF xor 
OF) is 0, Left is greater than or equal to Right.

6.1.5	 The setcc Instructions
The setcc (set on condition) instructions set a single-byte operand (register or 
memory) to 0 or 1 depending on the values in the flags register. The gen-
eral formats for the setcc instructions are as follows:

setcc reg8
setcc mem8

setcc represents a mnemonic appearing in Tables 6-5, 6-6, and 6-7. 
These instructions store a 0 in the corresponding operand if the condition 
is false, and they store a 1 in the 8-bit operand if the condition is true.

Table 6-5: setcc Instructions That Test Flags

Instruction Description Condition Comments

setc Set if carry Carry = 1 Same as setb, 
setnae

setnc Set if no carry Carry = 0 Same as setnb, 
setae

setz Set if zero Zero = 1 Same as sete

setnz Set if not zero Zero = 0 Same as setne

sets Set if sign Sign = 1

setns Set if no sign Sign = 0

seto Set if overflow Overflow = 1

setno Set if no overflow Overflow = 0

setp Set if parity Parity = 1 Same as setpe

setpe Set if parity even Parity = 1 Same as setp

setnp Set if no parity Parity = 0 Same as setpo

setpo Set if parity odd Parity = 0 Same as setnp
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The setcc instructions in Table 6-5 simply test the flags without any 
other meaning attached to the operation. You could, for example, use setc 
to check the carry flag after a shift, rotate, bit test, or arithmetic operation.

The setp/setpe and setnp/setpo instructions check the parity flag. These 
instructions appear here for completeness, but this book will not spend 
much time discussing the parity flag; in modern code, it’s typically used 
only to check for an FPU not-a-number (NaN) condition.

The cmp instruction works synergistically with the setcc instructions. 
Immediately after a cmp operation, the processor flags provide information 
concerning the relative values of those operands. They allow you to see if 
one operand is less than, equal to, or greater than the other.

Two additional groups of setcc instructions are useful after a cmp operation. 
The first group deals with the result of an unsigned comparison (Table 6-6); 
the second group deals with the result of a signed comparison (Table 6-7).

Table 6-6: setcc Instructions for Unsigned Comparisons

Instruction Description Condition Comments

seta Set if above (>) Carry = 0, Zero = 0 Same as setnbe

setnbe Set if not below or 
equal (not <=)

Carry = 0, Zero = 0 Same as seta

setae Set if above or 
equal (>=)

Carry = 0 Same as setnc, 
setnb

setnb Set if not below 
(not <)

Carry = 0 Same as setnc, 
setae

setb Set if below (<) Carry = 1 Same as setc, 
setnae

setnae Set if not above or 
equal (not >=)

Carry = 1 Same as setc, setb

setbe Set if below or 
equal (<=)

Carry = 1 or Zero 
= 1

Same as setna

setna Set if not above 
(not >)

Carry = 1 or Zero 
= 1

Same as setbe

sete Set if equal (==) Zero = 1 Same as setz

setne Set if not equal (!=) Zero = 0 Same as setnz

Table 6-7: setcc Instructions for Signed Comparisons

Instruction Description Condition Comments

setg Set if greater (>) Sign == Overflow 
and 
Zero == 0

Same as setnle

setnle Set if not less than 
or equal (not <=)

Sign == Overflow 
or 
Zero == 0

Same as setg
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Instruction Description Condition Comments

setge Set if greater than 
or equal (>=)

Sign == Overflow Same as setnl

setnl Set if not less than 
(not <)

Sign == Overflow Same as setge

setl Set if less than (<) Sign != Overflow Same as setnge

setnge Set if not greater or 
equal (not >=)

Sign != Overflow Same as setl

setle Set if less than or 
equal (<=)

Sign != Overflow or 
Zero == 1

Same as setng

setng Set if not greater 
than (not >)

Sign != Overflow or 
Zero == 1

Same as setle

sete Set if equal (=) Zero == 1 Same as setz

setne Set if not equal (!=) Zero == 0 Same as setnz

The setcc instructions are particularly valuable because they can con-
vert the result of a comparison to a Boolean value (false/true or 0/1). This 
is especially important when translating statements from a high-level lan-
guage like Swift or C/C++ into assembly language. The following example 
shows how to use these instructions in this manner:

; bool = a <= b

          mov eax, a
          cmp eax, b
          setle bool    ; bool is a byte variable.

Because the setcc instructions always produce 0 or 1, you can use the 
results with the and and or instructions to compute complex Boolean values:

; bool = ((a <= b) && (d == e))

          mov   eax, a
          cmp   eax, b
          setle bl
          mov   eax, d
          cmp   eax, e
          sete  bh
          and   bh, bl
          mov   bool, bh

6.1.6	 The test Instruction
The x86-64 test instruction is to the and instruction what the cmp instruction 
is to sub. That is, the test instruction computes the logical AND of its two 
operands and sets the condition code flags based on the result; it does not, 
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however, store the result of the logical AND back into the destination oper-
and. The syntax for the test instruction is similar to and:

test operand1, operand2

The test instruction sets the zero flag if the result of the logical AND 
operation is 0. It sets the sign flag if the HO bit of the result contains a 1. 
The test instruction always clears the carry and overflow flags.

The primary use of the test instruction is to check whether an indi-
vidual bit contains a 0 or a 1. Consider the instruction test al, 1. This 
instruction logically ANDs AL with the value 1; if bit 1 of AL contains 0, the 
result will be 0 (setting the zero flag) because all the other bits in the con-
stant 1 are 0. Conversely, if bit 1 of AL contains 1, then the result is not 0, so 
test clears the zero flag. Therefore, you can test the zero flag after this test 
instruction to see if bit 0 contains a 0 or a 1 (for example, using setz or setnz 
instructions, or the jz/jnz instructions).

The test instruction can also check whether all the bits in a specified 
set of bits contain 0. The instruction test al, 0fh sets the zero flag if and 
only if the LO 4 bits of AL all contain 0.

One important use of the test instruction is to check whether a register 
contains 0. The instruction test reg, reg, where both operands are the same 
register, will logically AND that register with itself. If the register contains 
0, the result is 0 and the CPU will set the zero flag. However, if the register 
contains a nonzero value, logically ANDing that value with itself produces 
that same nonzero value, so the CPU clears the zero flag. Therefore, you 
can check the zero flag immediately after the execution of this instruction 
(for example, using the setz or setnz instructions or the jz and jnz instruc-
tions) to see if the register contains 0. Here are some examples:

          test eax, eax
          setz bl          ; bl is set to 1 if EAX contains 0.
               .
               .
               .
          test bl, bl
          jz   bxIs0

     Do something if bl != 0

bxIs0:

One major failing of the test instruction is that immediate (constant) 
operands can be no larger than 32 bits (as is the case with most instruc-
tions), which makes it difficult to use this instruction to test for set bits 
beyond bit position 31. For testing individual bits, you can use the bt (bit 
test) instruction (see “Instructions That Manipulate Bits” in Chapter 12). 
Otherwise, you’ll have to move the 64-bit constant into a register (the mov 
instruction does support 64-bit immediate operands) and then test your 
target register against the 64-bit constant value in the newly loaded register.

The Art of 64-Bit  Assembly  (Sample Chapter) © 6/15/21 by Randall Hyde

T H E  A R T  O F  6 4 - B I T  
A S S E M B LY 

R A N D A L L  H Y D E

6/15/21



Arithmetic   299

	 6.2	� Arithmetic Expressions
Probably the biggest shock to beginners facing assembly language for the first 
time is the lack of familiar arithmetic expressions. Arithmetic expressions, in most 
high-level languages, look similar to their algebraic equivalents. For example:

x = y * z;

In assembly language, you’ll need several statements to accomplish this 
same task:

mov  eax, y
imul eax, z
mov  x, eax

Obviously, the HLL version is much easier to type, read, and understand. 
Although a lot of typing is involved, converting an arithmetic expression into 
assembly language isn’t difficult at all. By attacking the problem in steps, 
the same way you would solve the problem by hand, you can easily break any 
arithmetic expression into an equivalent sequence of assembly language 
statements.

6.2.1	 Simple Assignments
The easiest expressions to convert to assembly language are simple assign-
ments. Simple assignments copy a single value into a variable and take one of 
two forms:

variable = constant

or

var1 = var2

Converting the first form to assembly language is simple—just use this 
assembly language statement:

mov variable, constant

This mov instruction copies the constant into the variable.
The second assignment is slightly more complicated because the x86-64 

doesn’t provide a memory-to-memory mov instruction. Therefore, to copy 
one memory variable into another, you must move the data through a reg-
ister. By convention (and for slight efficiency reasons), most programmers 
tend to favor AL/AX/EAX/RAX for this purpose. For example:

var1 = var2;

becomes

mov eax, var2
mov var1, eax
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assuming that var1 and var2 are 32-bit variables. Use AL if they are 8-bit 
variables; use AX if they are 16-bit variables, or use RAX if they are 64-bit 
variables.

Of course, if you’re already using AL, AX, EAX, or RAX for something 
else, one of the other registers will suffice. Regardless, you will generally 
use a register to transfer one memory location to another.

6.2.2	 Simple Expressions
The next level of complexity is a simple expression. A simple expression takes 
the following form:

var1 = term1 op term2;

var1 is a variable, term1 and term2 are variables or constants, and op is an 
arithmetic operator (addition, subtraction, multiplication, and so on). Most 
expressions take this form. It should come as no surprise, then, that the 
x86-64 architecture was optimized for just this type of expression.

A typical conversion for this type of expression takes the following 
form:

mov eax, term1
op  eax, term2
mov var1, eax

op is the mnemonic that corresponds to the specified operation (for 
example, + is add, – is sub, and so forth).

Note that the simple expression var1 = const1 op const2; is easily handled 
with a compile-time expression and a single mov instruction. For example, to 
compute var1 = 5 + 3;,use the single instruction mov var1, 5 + 3.

You need to be aware of a few inconsistencies. When dealing with the (i)
mul and (i)div instructions on the x86-64, you must use the AL/AX/EAX/ 
RAX and AH/DX/EDX/RDX registers. You cannot use arbitrary registers as 
you can with other operations. Also, don’t forget the sign-extension instruc-
tions if you’re performing a division operation to divide one 16/32/64-bit 
number by another. Finally, don’t forget that some instructions may cause 
overflow. You may want to check for an overflow (or underflow) condition 
after an arithmetic operation.

Here are examples of common simple expressions:

;x = y + z;

          mov eax, y
          add eax, z
          mov x, eax

;x = y - z;

          mov eax, y
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          sub eax, z
          mov x, eax

;x = y * z; {unsigned}

          mov eax, y
          mul z        ; Don't forget this wipes out EDX.
          mov x, eax

;x = y * z; {signed}

          mov  eax, y
          imul eax, z   ; Does not affect EDX!
          mov x, eax

;x = y div z; {unsigned div}

          mov eax, y
          xor edx, edx       ; Zero-extend EAX into EDX.
          div z
          mov x, eax

;x = y idiv z; {signed div}

          mov eax, y
          cdq                ; Sign-extend EAX into EDX.
          idiv z
          mov x, eax

;x = y % z; {unsigned remainder}

          mov  eax, y
          xor  edx, edx       ; Zero-extend EAX into EDX.
          div  z
          mov  x, edx         ; Note that remainder is in EDX.

;x = y % z; {signed remainder}

          mov  eax, y
          cdq                ; Sign-extend EAX into EDX.
          idiv z
          mov  x, edx        ; Remainder is in EDX.

Certain unary operations also qualify as simple expressions, producing 
additional inconsistencies to the general rule. A good example of a unary 
operation is negation. In a high-level language, negation takes one of two 
possible forms:

var = –var

or

var1 = –var2
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Note that var = –constant is really a simple assignment, not a simple 
expression. You can specify a negative constant as an operand to the mov 
instruction:

mov var, -14

To handle var1 = –var1, use this single assembly language statement:

; var1 = -var1;

neg var1

If two different variables are involved, use the following:

; var1 = -var2;

mov eax, var2
neg eax
mov var1, eax

6.2.3	 Complex Expressions
A complex expression is any arithmetic expression involving more than two 
terms and one operator. Such expressions are commonly found in programs 
written in a high-level language. Complex expressions may include paren-
theses to override operator precedence, function calls, array accesses, and so 
on. This section outlines the rules for converting such expressions.

A complex expression that is easy to convert to assembly language is 
one that involves three terms and two operators. For example:

w = w - y - z;

Clearly the straightforward assembly language conversion of this state-
ment requires two sub instructions. However, even with an expression as 
simple as this, the conversion is not trivial. There are actually two ways to 
convert the preceding statement into assembly language:

mov eax, w
sub eax, y
sub eax, z
mov w, eax

and

mov eax, y
sub eax, z
sub w, eax

The second conversion, because it is shorter, looks better. However, it 
produces an incorrect result (assuming C-like semantics for the original state-
ment). Associativity is the problem. The second sequence in the preceding 
example computes w = w – (y – z), which is not the same as w = (w – y) – z. 
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How we place the parentheses around the subexpressions can affect the 
result. Note that if you are interested in a shorter form, you can use the fol-
lowing sequence:

mov eax, y
add eax, z
sub w, eax

This computes w = w – (y + z), equivalent to w = (w – y) – z.
Precedence is another issue. Consider this expression:

x = w * y + z;

Once again, we can evaluate this expression in two ways:

x = (w * y) + z;

or

x = w * (y + z);

By now, you’re probably thinking that this explanation is crazy. Everyone 
knows the correct way to evaluate these expressions is by the former form. 
However, you’d be wrong. The APL programming language, for example, 
evaluates expressions solely from right to left and does not give one operator 
precedence over another. Which way is “correct” depends entirely on how 
you define precedence in your arithmetic system.

Consider this expression:

x op1 y op2 z

If op1 takes precedence over op2, then this evaluates to (x op1 y) op2 z. 
Otherwise, if op2 takes precedence over op1, this evaluates to x op1 (y op2 z). 
Depending on the operators and operands involved, these two computa-
tions could produce different results.

Most high-level languages use a fixed set of precedence rules to describe 
the order of evaluation in an expression involving two or more different 
operators. Such programming languages usually compute multiplication 
and division before addition and subtraction. Those that support exponen-
tiation (for example, FORTRAN and BASIC) usually compute that before 
multiplication and division. These rules are intuitive because almost every-
one learns them before high school.

When converting expressions into assembly language, you must be sure 
to compute the subexpression with the highest precedence first. The follow-
ing example demonstrates this technique:

; w = x + y * z;

          mov ebx, x
          mov eax, y     ; Must compute y * z first because "*"
          imul eax, z    ; has higher precedence than "+".
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          add eax, ebx
          mov w, eax

If two operators appearing within an expression have the same pre-
cedence, you determine the order of evaluation by using associativity rules. 
Most operators are left-associative, meaning that they evaluate from left to right. 
Addition, subtraction, multiplication, and division are all left-associative. A 
right-associative operator evaluates from right to left. The exponentiation oper-
ator in FORTRAN is a good example of a right-associative operator:

2**2**3

is equal to

2**(2**3)

not

(2**2)**3

The precedence and associativity rules determine the order of evaluation. 
Indirectly, these rules tell you where to place parentheses in an expression to 
determine the order of evaluation. Of course, you can always use parentheses 
to override the default precedence and associativity. However, the ultimate 
point is that your assembly code must complete certain operations before 
others to correctly compute the value of a given expression. The following 
examples demonstrate this principle:

; w = x - y - z

          mov eax, x     ; All the same operator precedence,
          sub eax, y     ; so we need to evaluate from left
          sub eax, z     ; to right because they are left-
          mov w, eax     ; associative.

; w = x + y * z

          mov  eax, y    ; Must compute y * z first because
          imul eax, z    ; multiplication has a higher
          add eax, x     ; precedence than addition.
          mov w, eax

; w = x / y - z

          mov  eax, x    ; Here we need to compute division
          cdq            ; first because it has the highest
          idiv y         ; precedence.
          sub eax, z
          mov w, eax

; w = x * y * z
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          mov  eax, y     ; Addition and multiplication are
          imul eax, z     ; commutative; therefore, the order
          imul eax, x     ; of evaluation does not matter.
          mov  w, eax

The associativity rule has one exception: if an expression involves mul-
tiplication and division, it is generally better to perform the multiplication 
first. For example, given an expression of the form

w = x / y * z      ; Note: This is (x * z) / y, not x / (y * z).

it is usually better to compute x * z and then divide the result by y rather 
than divide x by y and multiply the quotient by z.

This approach is better for two reasons. First, remember that the imul 
instruction always produces a 64-bit result (assuming 32-bit operands). By 
doing the multiplication first, you automatically sign-extend the product 
into the EDX register so you do not have to sign-extend EAX prior to the 
division.

A second reason for doing the multiplication first is to increase the 
accuracy of the computation. Remember, (integer) division often produces an 
inexact result. For example, if you compute 5 / 2, you will get the value 2, not 
2.5. Computing (5 / 2) × 3 produces 6. However, if you compute (5 × 3) / 2, 
you get the value 7, which is a little closer to the real quotient (7.5). Therefore, 
if you encounter an expression of the form

w = x / y * z;

you can usually convert it to the following assembly code:

mov eax, x
imul z      ; Note the use of extended imul!
idiv y
mov w, eax

If the algorithm you’re encoding depends on the truncation effect of 
the division operation, you cannot use this trick to improve the algorithm. 
Moral of the story: always make sure you fully understand any expression 
you are converting to assembly language. If the semantics dictate that you 
must perform the division first, then do so.

Consider the following statement:

w = x – y * x;

 Because subtraction is not commutative, you cannot compute y * x and 
then subtract x from this result. Rather than use a straightforward multipli-
cation-and-addition sequence, you’ll have to load x into a register, multiply 
y and x, leaving their product in a different register, and then subtract this 
product from x. For example:

mov  ecx, x
mov  eax, y
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imul eax, x
sub  ecx, eax
mov  w, ecx 

This trivial example demonstrates the need for temporary variables in 
an expression. The code uses the ECX register to temporarily hold a copy 
of x until it computes the product of y and x. As your expressions increase 
in complexity, the need for temporaries grows. Consider the following C 
statement:

w = (a + b) * (y + z);

Following the normal rules of algebraic evaluation, you compute the 
subexpressions inside the parentheses first (that is, the two subexpressions 
with the highest precedence) and set their values aside. When you’ve com-
puted the values for both subexpressions, you can compute their product. 
One way to deal with a complex expression like this is to reduce it to a 
sequence of simple expressions whose results wind up in temporary vari-
ables. For example, you can convert the preceding single expression into 
the following sequence:

temp1 = a + b;
temp2 = y + z;
w = temp1 * temp2;

Because converting simple expressions to assembly language is quite 
easy, it’s now a snap to compute the former complex expression in assembly. 
The code is shown here:

mov  eax, a
add  eax, b
mov  temp1, eax
mov  eax, y
add  eax, z
mov  temp2, eax
mov  eax, temp1
imul eax, temp2
mov  w, eax

This code is grossly inefficient and requires that you declare a couple 
of temporary variables in your data segment. However, it is easy to optimize 
this code by keeping temporary variables, as much as possible, in x86-64 
registers. By using x86-64 registers to hold the temporary results, this code 
becomes the following:

mov  eax, a
add  eax, b
mov  ebx, y
add  ebx, z
imul eax, ebx
mov  w, eax
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Here’s yet another example:

x = (y + z) * (a - b) / 10;

This can be converted to a set of four simple expressions:

temp1 = (y + z)
temp2 = (a - b)
temp1 = temp1 * temp2
x = temp1 / 10

You can convert these four simple expressions into the following assem-
bly language statements:

          .const
ten       dword   10
           .
           .
           .
          mov eax, y        ; Compute EAX = y + z
          add eax, z
          mov ebx, a        ; Compute EBX = a - b
          sub ebx, b
          imul ebx          ; This sign-extends EAX into EDX.
          idiv ten
          mov x, eax

The most important thing to keep in mind is that you should keep tem-
porary values in registers for efficiency. Use memory locations to hold tempo-
raries only if you’ve run out of registers.

Ultimately, converting a complex expression to assembly language is 
a little different from solving the expression by hand. Instead of actually 
computing the result at each stage of the computation, you simply write the 
assembly code that computes the result.

6.2.4	 Commutative Operators
If op represents an operator, that operator is commutative if the following 
relationship is always true:

(A op B) = (B op A)

As you saw in the previous section, commutative operators are nice 
because the order of their operands is immaterial, and this lets you rear-
range a computation, often making it easier or more efficient. Often, 
rearranging a computation allows you to use fewer temporary variables. 
Whenever you encounter a commutative operator in an expression, you 
should always check whether you can use a better sequence to improve 
the size or speed of your code.

Tables 6-8 and 6-9, respectively, list the commutative and noncommuta-
tive operators you typically find in high-level languages.
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Table 6-8: Common Commutative Binary Operators

Pascal C/C++ Description

+ + Addition

* * Multiplication

and && or & Logical or bitwise AND

or || or | Logical or bitwise OR

xor ^ (Logical or) bitwise 
exclusive-OR

= == Equality

<> != Inequality

Table 6-9: Common Noncommutative Binary Operators

Pascal C/C++ Description

- - Subtraction

/ or div / Division

mod % Modulo or remainder

< < Less than

<= <= Less than or equal

> > Greater than

>= >= Greater than or equal

	 6.3	 �Logical (Boolean) Expressions
Consider the following expression from a C/C++ program:

b = ((x == y) && (a <= c)) || ((z - a) != 5);

Here, b is a Boolean variable, and the remaining variables are all 
integers.

Although it takes only a single bit to represent a Boolean value, most 
assembly language programmers allocate a whole byte or word to represent 
Boolean variables. Most programmers (and, indeed, some programming 
languages like C) choose 0 to represent false and anything else to represent 
true. Some people prefer to represent true and false with 1 and 0 (respec-
tively) and not allow any other values. Others select all 1 bits (0FFFF_FFFF_
FFFF_FFFFh, 0FFFF_FFFFh, 0FFFFh, or 0FFh) for true and 0 for false. You 
could also use a positive value for true and a negative value for false. All 
these mechanisms have their advantages and drawbacks.

Using only 0 and 1 to represent false and true offers two big advan-
tages. First, The setcc instructions produce these results, so this scheme is 
compatible with those instructions. Second, the x86-64 logical instructions 
(and, or, xor, and, to a lesser extent, not) operate on these values exactly as 
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you would expect. That is, if you have two Boolean variables a and b, then 
the following instructions perform the basic logical operations on these two 
variables:

; d = a AND b;

     mov al, a
     and al, b
     mov d, al

; d = a || b;

     mov al, a
     or al, b
     mov d, al

; d = a XOR b;

     mov al, a
     xor al, b
     mov d, al

; b = NOT a;

     mov al, a     ; Note that the NOT instruction does not
     not al        ; properly compute al = NOT all by itself.
     and al, 1     ; That is, (NOT 0) does not equal 1. The AND
     mov b, al     ; instruction corrects this problem.

     mov al, a     ; Another way to do b = NOT a;
     xor al, 1     ; Inverts bit 0.
     mov b, al

As pointed out here, the not instruction will not properly compute logi-
cal negation. The bitwise not of 0 is 0FFh, and the bitwise not of 1 is 0FEh. 
Neither result is 0 or 1. However, by ANDing the result with 1, you get the 
proper result. Note that you can implement the not operation more effi-
ciently by using the xor al, 1 instruction because it affects only the LO bit.

As it turns out, using 0 for false and anything else for true has a lot of 
subtle advantages. Specifically, the test for true or false is often implicit 
in the execution of any logical instruction. However, this mechanism suf-
fers from a big disadvantage: you cannot use the x86-64 and, or, xor, and 
not instructions to implement the Boolean operations of the same name. 
Consider the two values 55h and 0AAh. They’re both nonzero so they both 
represent the value true. However, if you logically AND 55h and 0AAh 
together by using the x86-64 and instruction, the result is 0. True AND true 
should produce true, not false. Although you can account for situations like 
this, it usually requires a few extra instructions and is somewhat less effi-
cient when computing Boolean operations.

A system that uses nonzero values to represent true and 0 to represent 
false is an arithmetic logical system. A system that uses two distinct values like 
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0 and 1 to represent false and true is called a Boolean logical system, or simply 
a Boolean system. You can use either system, as convenient. Consider again 
this Boolean expression:

b = ((x == y) and (a <= d)) || ((z - a) != 5);

The resulting simple expressions might be as follows:

mov   eax, x
cmp   eax, y
sete  al       ; al = x == y;

mov   ebx, a
cmp   ebx, d
setle bl       ; bl = a <= d;
and   bl, al   ; bl = (x = y) and (a <= d);

mov   eax, z
sub   eax, a
cmp   eax, 5
setne al
or    al, bl   ; al = ((x == y) && (a <= d)) ||
mov   b, al    ;        ((z - a) != 5);

When working with Boolean expressions, don’t forget that you might 
be able to optimize your code by simplifying them with algebraic transfor-
mations. In Chapter 7, you’ll also see how to use control flow to calculate a 
Boolean result, which is generally quite a bit more efficient than using com-
plete Boolean evaluation as the examples in this section teach.

	 6.4	� Machine and Arithmetic Idioms
An idiom is an idiosyncrasy (a peculiarity). Several arithmetic operations 
and x86-64 instructions have idiosyncrasies that you can take advantage 
of when writing assembly language code. Some people refer to the use of 
machine and arithmetic idioms as tricky programming that you should always 
avoid in well-written programs. While it is wise to avoid tricks just for the 
sake of tricks, many machine and arithmetic idioms are well-known and 
commonly found in assembly language programs. You will see some impor-
tant idioms all the time, so it makes sense to discuss them.

6.4.1	 Multiplying without mul or imul
When multiplying by a constant, you can sometimes write faster code 
by using shifts, additions, and subtractions in place of multiplication 
instructions.

Remember, a shl instruction computes the same result as multiplying 
the specified operand by 2. Shifting to the left two bit positions multiplies 
the operand by 4. Shifting to the left three bit positions multiplies the oper-
and by 8. In general, shifting an operand to the left n bits multiplies it by 
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2n. You can multiply any value by a constant by using a series of shifts and 
additions or shifts and subtractions. For example, to multiply the AX regis-
ter by 10, you need only multiply it by 8 and then add two times the original 
value. That is, 10 × AX = 8 × AX + 2 × AX. The code to accomplish this is as 
follows:

shl ax, 1          ; Multiply AX by 2.
mov bx, ax         ; Save 2 * AX for later.
shl ax, 2          ; Multiply AX by 8 (*4 really,
                   ; but AX contains *2).
add ax, bx         ; Add in AX * 2 to AX * 8 to get AX * 10.

If you look at the instruction timings, the preceding shift and add 
example requires fewer clock cycles on some processors in the 80x86 family 
than the mul instruction. Of course, the code is somewhat larger (by a few 
bytes), but the performance improvement is usually worth it.

You can also use subtraction with shifts to perform a multiplication 
operation. Consider the following multiplication by 7:

mov ebx, eax             ; Save EAX * 1
shl eax, 3               ; EAX = EAX * 8
sub eax, ebx             ; EAX * 8 - EAX * 1 is EAX * 7

A common error that beginning assembly language programmers make 
is subtracting or adding 1 or 2 rather than EAX × 1 or EAX × 2. The follow-
ing does not compute EAX × 7:

shl eax, 3
sub eax, 1

It computes (8 × EAX) – 1, something entirely different (unless, of 
course, EAX = 1). Beware of this pitfall when using shifts, additions, and 
subtractions to perform multiplication operations.

You can also use the lea instruction to compute certain products. The 
trick is to use the scaled-index addressing modes. The following examples 
demonstrate some simple cases:

lea eax, [ecx][ecx]          ; EAX = ECX * 2
lea eax, [eax][eax * 2]      ; EAX = ECX * 3
lea eax, [eax * 4]           ; EAX = ECX * 4
lea eax, [ebx][ebx * 4]      ; EAX = EBX * 5
lea eax, [eax * 8]           ; EAX = EAX * 8
lea eax, [edx][edx * 8]      ; EAX = EDX * 9

As time has progressed, Intel (and AMD) have improved the perfor-
mance of the imul instruction to the point that it rarely makes sense to try 
to improve performance by using strength-reduction optimizations such as sub-
stituting shifts and adds for a multiplication. You should consult the Intel/
AMD documentation (particularly the section on instruction timing) to see 
if a multi-instruction sequence is faster. Generally, a single shift instruction 
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(for multiplication by a power of two) or lea is going to produce better 
results than imul; beyond that, it’s best to measure and see.

6.4.2	 Dividing Without div or idiv
Just as the shl instruction is useful for simulating a multiplication by a 
power of two, the shr and sar instructions can simulate a division by a power 
of two. Unfortunately, you cannot easily use shifts, additions, and subtrac-
tions to perform division by an arbitrary constant. Therefore, this trick is 
useful only when dividing by powers of two. Also, don’t forget that the sar 
instruction rounds toward negative infinity, unlike the idiv instruction, 
which rounds toward 0.

You can also divide by a value by multiplying by its reciprocal. Because 
the multiply instruction is faster than the divide instruction, multiplying by 
a reciprocal is usually faster than division.

To multiply by a reciprocal when dealing with integers, we must cheat. 
If you want to multiply by 1/10, there is no way you can load the value 1/10 
into an x86-64 integer register prior to performing the multiplication. 
However, we could multiply 1/10 by 10, perform the multiplication, and 
then divide the result by 10 to get the final result. Of course, this wouldn’t 
buy you anything; in fact, it would make things worse because you’re now 
doing a multiplication by 10 as well as a division by 10. However, suppose 
you multiply 1/10 by 65,536 (6,554), perform the multiplication, and then 
divide by 65,536. This would still perform the correct operation, and, as it 
turns out, if you set up the problem correctly, you can get the division opera-
tion for free. Consider the following code that divides AX by 10:

mov dx, 6554          ; 6,554 = round(65,536 / 10)
mul dx

This code leaves AX/10 in the DX register.
To understand how this works, consider what happens when you use the 

mul instruction to multiply AX by 65,536 (1_0000h). This moves AX into DX 
and sets AX to 0 (a multiplication by 1_0000h is equivalent to a shift left by 
16 bits). Multiplying by 6,554 (65,536 divided by 10) puts AX divided by 10 
into the DX register. Because mul is faster than div, this technique runs a 
little faster than using division.

Multiplying by a reciprocal works well when you need to divide by a 
constant. You could even use this approach to divide by a variable, but the 
overhead to compute the reciprocal pays off only if you perform the divi-
sion many, many times by the same value.

6.4.3	 Implementing Modulo-N Counters with AND
If you want to implement a counter variable that counts up to 2n – 1 and 
then resets to 0, use the following code:

inc CounterVar
and CounterVar, nBits
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where nBits is a binary value containing n bits of 1s right-justified in the 
number. For example, to create a counter that cycles between 0 and 15  
(24 –1), you could use the following:

inc CounterVar
and CounterVar, 00001111b

	 6.5	� Floating-Point Arithmetic
Integer arithmetic does not let you represent fractional numeric values. 
Therefore, modern CPUs support an approximation of real arithmetic: 
floating-point arithmetic. To represent real numbers, most floating-point for-
mats employ scientific notation and use a certain number of bits to repre-
sent a mantissa and a smaller number of bits to represent an exponent.

For example, in the number 3.456e+12, the mantissa consists of 3.456, 
and the exponent digits are 12. Because the number of bits is fixed in 
computer-based representations, computers can represent only a certain 
number of digits (known as significant digits) in the mantissa. For example, 
if a floating-point representation could handle only three significant 
digits, then the fourth digit in 3.456e+12 (the 6) could not be accurately 
represented with that format, as three significant digits can represent only 
3.45e+12 correctly.

Because computer-based floating-point representations also use a finite 
number of bits to represent the exponent, it also has a limited range of 
values, ranging from 10±38 for the single-precision format to 10±308 for the 
double-precision format (and up to 10±4932 for extended-precision format). 
This is known as the dynamic range of the value.

A big problem with floating-point arithmetic is that it does not follow 
the standard rules of algebra. Normal algebraic rules apply only to infinite-
precision arithmetic.

Consider the simple statement x = x + 1, where x is an integer. On any 
modern computer, this statement follows the normal rules of algebra as 
long as overflow does not occur. That is, this statement is valid only for certain 
values of x (minint <= x < maxint). Most programmers do not have a problem 
with this because they are well aware that integers in a program do not fol-
low the standard algebraic rules (for example, 5 / 2 does not equal 2.5).

Integers do not follow the standard rules of algebra because the com-
puter represents them with a finite number of bits. You cannot represent any 
of the (integer) values above the maximum integer or below the minimum 
integer. Floating-point values suffer from this same problem, only worse. 
After all, integers are a subset of real numbers. Therefore, the floating-point 
values must represent the same infinite set of integers. However, an infinite 
number of real values exist between any two integer values. In addition to 
having to limit your values between a maximum and minimum range, you 
cannot represent all the values between any pair of integers, either.

To demonstrate the impact of limited-precision arithmetic, we will 
adopt a simplified decimal floating-point format for our examples. Our 
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floating-point format will provide a mantissa with three significant digits 
and a decimal exponent with two digits. The mantissa and exponents are 
both signed values, as shown in Figure 6-1.

e ±±

Figure 6-1:  A floating-point format

When adding and subtracting two numbers in scientific notation, we must 
adjust the two values so that their exponents are the same. Multiplication and 
division don’t require the exponents to be the same; instead, the exponent 
after a multiplication is the sum of the two operand exponents, and the expo-
nent after a division is the difference of the dividend and divisor’s exponents.

For example, when adding 1.2e1 and 4.5e0, we must adjust the values 
so they have the same exponent. One way to do this is to convert 4.5e0 
to 0.45e1 and then add. This produces 1.65e1. Because the computation 
and result require only three significant digits, we can compute the cor-
rect result via the representation shown in Figure 6-1. However, suppose we 
want to add the two values 1.23e1 and 4.56e0. Although both values can 
be represented using the three-significant-digit format, the computation 
and result do not fit into three significant digits. That is, 1.23e1 + 0.456e1 
requires four digits of precision in order to compute the correct result of 
1.686, so we must either round or truncate the result to three significant 
digits. Rounding generally produces the most accurate result, so let’s 
round the result to obtain 1.69e1.

In fact, the rounding does not occur after adding the two values together 
(that is, producing the sum 1.686e1 and then rounding this to 1.69e1). The 
rounding actually occurs when converting 4.56e0 to 0.456e1, because the 
value 0.456e1 requires four digits of precision to maintain. Therefore, during 
the conversion, we have to round it to 0.46e1 so that the result fits into three 
significant digits. Then, the sum of 1.23e1 and 0.46e1 produces the final 
(rounded) sum of 1.69e1.

As you can see, the lack of precision (the number of digits or bits we 
maintain in a computation) affects the accuracy (the correctness of the 
computation).

In the addition/subtraction example, we were able to round the result 
because we maintained four significant digits during the calculation (specifi-
cally, when converting 4.56e0 to 0.456e1). If our floating-point calculation 
had been limited to three significant digits during computation, we would 
have had to truncate the last digit of the smaller number, obtaining 0.45e1, 
resulting in a sum of 1.68e1, a value that is even less accurate.

To improve the accuracy of floating-point calculations, it is useful to 
maintain one or more extra digits for use during the calculation (such as 
the extra digit used to convert 4.56e0 to 0.456e1). Extra digits available 
during a computation are known as guard digits (or guard bits in the case 
of a binary format). They greatly enhance accuracy during a long chain of 
computations.

The Art of 64-Bit  Assembly  (Sample Chapter) © 6/15/21 by Randall Hyde

T H E  A R T  O F  6 4 - B I T  
A S S E M B LY 

R A N D A L L  H Y D E

6/15/21



Arithmetic   315

In a sequence of floating-point operations, the error can accumulate 
and greatly affect the computation itself. For example, suppose we were to 
add 1.23e3 to 1.00e0. Adjusting the numbers so their exponents are the 
same before the addition produces 1.23e3 + 0.001e3. The sum of these two 
values, even after rounding, is 1.23e3. This might seem perfectly reasonable 
to you; after all, we can maintain only three significant digits, so adding in 
a small value shouldn’t affect the result at all. However, suppose we were to 
add 1.00e0 to 1.23e3 10 times.5 The first time we add 1.00e0 to 1.23e3, we 
get 1.23e3. Likewise, we get this same result the second, third, fourth . . . 
and tenth times we add 1.00e0 to 1.23e3. On the other hand, had we added 
1.00e0 to itself 10 times, then added the result (1.00e1) to 1.23e3, we would 
have gotten a different result, 1.24e3. This is an important fact to know 
about limited-precision arithmetic:

The order of evaluation can affect the accuracy of the result.

You will get more-accurate results if the relative magnitudes (the expo-
nents) are close to one another when adding and subtracting floating-point 
values. If you are performing a chain calculation involving addition and 
subtraction, you should attempt to group the values appropriately.

Another problem with addition and subtraction is that you can wind up 
with false precision. Consider the computation 1.23e0 – 1.22e0, which pro-
duces 0.01e0. Although the result is mathematically equivalent to 1.00e – 2, 
this latter form suggests that the last two digits are exactly 0. Unfortunately, 
we have only a single significant digit at this time (remember, the original 
result was 0.01e0, and those two leading 0s were significant digits). Indeed, 
some floating-point unit (FPU) or software packages might actually insert 
random digits (or bits) into the LO positions. This brings up a second 
important rule concerning limited-precision arithmetic:

Subtracting two numbers with the same signs (or adding two 
numbers with different signs) can produce high-order significant 
digits (bits) that are 0. This reduces the number of significant 
digits (bits) by a like amount in the final result.

By themselves, multiplication and division do not produce particularly 
poor results. However, they tend to multiply any error that already exists in 
a value. For example, if you multiply 1.23e0 by 2, when you should be mul-
tiplying 1.24e0 by 2, the result is even less accurate. This brings up a third 
important rule when working with limited-precision arithmetic:

When performing a chain of calculations involving addition, sub-
traction, multiplication, and division, try to perform the multipli-
cation and division operations first.

Often, by applying normal algebraic transformations, you can arrange 
a calculation so the multiply and divide operations occur first. For example, 
suppose you want to compute x * (y + z). Normally you would add y and 

5. � �But not in the same calculation, where guard digits could maintain the fourth digit during 
the calculation.
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z together and multiply their sum by x. However, you will get a little more 
accuracy if you transform x * (y + z) to get x * y + x * z and compute the 
result by performing the multiplications first.6

Multiplication and division are not without their own problems. When 
multiplying two very large or very small numbers, it is quite possible for 
overflow or underflow to occur. The same situation occurs when dividing 
a small number by a large number, or dividing a large number by a small 
(fractional) number. This brings up a fourth rule you should attempt to fol-
low when multiplying or dividing values:

When multiplying and dividing sets of numbers, try to arrange 
the multiplications so that they multiply large and small numbers 
together; likewise, try to divide numbers that have the same rela-
tive magnitudes.

Given the inaccuracies present in any computation (including convert-
ing an input string to a floating-point value), you should never compare two 
floating-point values to see if they are equal. In a binary floating-point for-
mat, different computations that produce the same (mathematical) result 
may differ in their least significant bits. For example, 1.31e0 + 1.69e0 should 
produce 3.00e0. Likewise, 1.50e0 + 1.50e0 should produce 3.00e0. However, 
if you were to compare (1.31e0 + 1.69e0) against (1.50e0 + 1.50e0), you 
might find out that these sums are not equal to one another. The test for 
equality succeeds if and only if all bits (or digits) in the two operands are 
exactly the same. Because this is not necessarily true after two different 
floating-point computations that should produce the same result, a straight 
test for equality may not work. Instead, you should use the following test:

if Value1 >= (Value2 - error) and Value1 <= (Value2 + error) then ...

Another common way to handle this same comparison is to use a state-
ment of this form:

if abs(Value1 - Value2) <= error then ...

error should be a value slightly greater than the largest amount of error 
that will creep into your computations. The exact value will depend on the 
particular floating-point format you use. Here is the final rule we will state 
in this section:

When comparing two floating-point numbers, always compare 
one value to see if it is in the range given by the second value plus 
or minus a small error value.

Many other little problems can occur when using floating-point values. 
This book can point out only some of the major problems and make you 
aware that you cannot treat floating-point arithmetic like real arithmetic 

6. � �Of course, the drawback is that you must now perform two multiplications rather than one, 
so the result may be slower.
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because of the inaccuracies present in limited-precision arithmetic. A good 
text on numerical analysis or even scientific computing can help fill in the 
details. If you are going to be working with floating-point arithmetic, in any 
language, you should take the time to study the effects of limited-precision 
arithmetic on your computations.

6.5.2	 Floating-Point on the x86-64
When the 8086 CPU first appeared in the late 1970s, semiconductor tech-
nology was not to the point where Intel could put floating-point instructions 
directly on the 8086 CPU. Therefore, Intel devised a scheme to use a sec-
ond chip to perform the floating-point calculations—the 8087 floating-point 
unit (or x87 FPU).7 By the release of the Intel Pentium chip, semiconductor 
technology had advanced to the point that the FPU was fully integrated 
onto the x86 CPU. Today, the x86-64 still contains the x87 FPU device, but 
it has also expanded the floating-point capabilities by using the SSE, SSE2, 
AVX, and AVX2 instruction sets.

This section describes the x86 FPU instruction set. Later sections (and 
chapters) discuss the more advanced floating-point capabilities of the SSE 
through AVX2 instruction sets.

6.5.3	 FPU Registers
The x87 FPUs add 14 registers to the x86-64: eight floating-point data regis-
ters, a control register, a status register, a tag register, an instruction pointer, 
a data pointer, and an opcode register. The data registers are similar to the 
x86-64’s general-purpose register set insofar as all floating-point calcula-
tions take place in these registers. The control register contains bits that let you 
decide how the FPU handles certain degenerate cases like rounding of inac-
curate computations; it also contains bits that control precision and so on. 
The status register is similar to the x86-64’s flags register; it contains the con-
dition code bits and several other floating-point flags that describe the state 
of the FPU. The tag register contains several groups of bits that determine 
the state of the value in each of the eight floating-point data registers. The 
instruction, data pointer, and opcode registers contain certain state information 
about the last floating-point instruction executed. We do not consider the 
last four registers here; see the Intel documentation for more details.

6.5.3.1	 FPU Data Registers

The FPUs provide eight 80-bit data registers organized as a stack, a signifi-
cant departure from the organization of the general-purpose registers on 
the x86-64 CPU. MASM refers to these registers as ST(0), ST(1), . . . ST(7).8

7. � �Intel has also referred to this device as the Numeric Data Processor (NDP), Numeric Processor 
Extension (NPX), and math coprocessor.

8. � �Often, programmers will create text equates for these register names to use the identifiers 
ST0 to ST7.
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The biggest difference between the FPU register set and the x86-64 
register set is the stack organization. On the x86-64 CPU, the AX register 
is always the AX register, no matter what happens. On the FPU, however, 
the register set is an eight-element stack of 80-bit floating-point values 
(Figure 6-2).

ST(1)
ST(2)
ST(3)
ST(4)
ST(5)
ST(6)
ST(7)

ST(0)
79 63 0

Figure 6-2: FPU floating-point register stack

ST(0) refers to the item on the top of stack, ST(1) refers to the next 
item on the stack, and so on. Many floating-point instructions push and 
pop items on the stack; therefore, ST(1) will refer to the previous contents 
of ST(0) after you push something onto the stack. Getting used to the reg-
ister numbers changing will take some thought and practice, but this is an 
easy problem to overcome.

6.5.3.2	 The FPU Control Register

When Intel designed the 8087 (and, essentially, the IEEE floating-point 
standard), there were no standards in floating-point hardware. Different 
(mainframe and mini) computer manufacturers all had different and 
incompatible floating-point formats. Unfortunately, several applications 
had been written taking into account the idiosyncrasies of these different 
floating-point formats.

Intel wanted to design an FPU that could work with the majority of 
the software out there (keep in mind that the IBM PC was three to four 
years away when Intel began designing the 8087, so Intel couldn’t rely on 
that “mountain” of software available for the PC to make its chip popular). 
Unfortunately, many of the features found in these older floating-point 
formats were mutually incompatible. For example, in some floating-point 
systems, rounding would occur when there was insufficient precision; in 
others, truncation would occur. Some applications would work with one 
floating-point system but not with the other.

Intel wanted as many applications as possible to work with as few changes 
as possible on its 8087 FPUs, so it added a special register, the FPU control 
register, that lets the user choose one of several possible operating modes for 
the FPU. The 80x87 control register contains 16 bits organized as shown in 
Figure 6-3.

Bits 10 and 11 of the FPU control register provide rounding control 
according to the values in Table 6-10.
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Round
00 – To nearest or even
01 – Down
10 – Up
11 – Truncate result

Reserved

Underflow
Precision

Overflow
Zero divide

Denormalized
Invalid operation

00 – 24 bits
01 – Reserved
10 – 53 bits
11 – 64 bits

Precision
control

Rounding
control

Exception masks

0891011 5

Figure 6-3: FPU control register

Table 6-10: Rounding Control

Bits 10 and 11 Function

00 To nearest or even

01 Round down

10 Round up

11 Truncate

The 00 setting is the default. The FPU rounds up values above one-half 
of the least significant bit. It rounds down values below one-half of the least 
significant bit. If the value below the least significant bit is exactly one-half 
of the least significant bit, the FPU rounds the value toward the value whose 
least significant bit is 0. For long strings of computations, this provides a 
reasonable, automatic way to maintain maximum precision.

The round-up and round-down options are present for those computa-
tions requiring accuracy. By setting the rounding control to round down 
and performing the operation, then repeating the operation with the 
rounding control set to round up, you can determine the minimum and 
maximum ranges between which the true result will fall.

The truncate option forces all computations to truncate any excess bits. 
You will rarely use this option if accuracy is important. However, you might 
use this option to help when porting older software to the FPU. This option 
is also extremely useful when converting a floating-point value to an inte-
ger. Because most software expects floating-point-to-integer conversions to 
truncate the result, you will need to use the truncation/rounding mode to 
achieve this.
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Bits 8 and 9 of the control register specify the precision during compu-
tation. This capability is provided to allow compatibility with older software 
as required by the IEEE 754 standard. The precision-control bits use the 
values in Table 6-11.

Table 6-11: Mantissa Precision-Control Bits

Bits 8 and 9 Precision Control

00 24 bits

01 Reserved

10 53 bits

11 64 bits

Some CPUs may operate faster with floating-point values whose preci-
sion is 53 bits (that is, 64-bit floating-point format) rather than 64 bits (that 
is, 80-bit floating-point format). See the documentation for your specific 
processor for details. Generally, the CPU defaults these bits to 11 to select 
the 64-bit mantissa precision.

Bits 0 to 5 are the exception masks. These are similar to the interrupt 
enable bit in the x86-64’s flags register. If these bits contain a 1, the corre-
sponding condition is ignored by the FPU. However, if any bit contains 0s, 
and the corresponding condition occurs, then the FPU immediately gener-
ates an interrupt so the program can handle the degenerate condition.

Bit 0 corresponds to an invalid operation error, which generally occurs 
as the result of a programming error. Situations that raise the invalid 
operation exception include pushing more than eight items onto the stack 
or attempting to pop an item off an empty stack, taking the square root of a 
negative number, or loading a non-empty register.

Bit 1 masks the denormalized interrupt that occurs whenever you try to 
manipulate denormalized values. Denormalized exceptions occur when 
you load arbitrary extended-precision values into the FPU or work with very 
small numbers just beyond the range of the FPU’s capabilities. Normally, 
you would probably not enable this exception. If you enable this exception 
and the FPU generates this interrupt, the Windows runtime system raises 
an exception.

Bit 2 masks the zero-divide exception. If this bit contains 0, the FPU will 
generate an interrupt if you attempt to divide a nonzero value by 0. If you 
do not enable the zero-divide exception, the FPU will produce NaN when-
ever you perform a zero division. It’s probably a good idea to enable this 
exception by programming a 0 into this bit. Note that if your program gen-
erates this interrupt, the Windows runtime system will raise an exception.

Bit 3 masks the overflow exception. The FPU will raise the overflow 
exception if a calculation overflows or if you attempt to store a value that is 
too large to fit into the destination operand (for example, storing a large 
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extended-precision value into a single-precision variable). If you enable this 
exception and the FPU generates this interrupt, the Windows runtime sys-
tem raises an exception.

Bit 4, if set, masks the underflow exception. Underflow occurs when 
the result is too small to fit in the destination operand. Like overflow, this 
exception can occur whenever you store a small extended-precision value 
into a smaller variable (single or double precision) or when the result of a 
computation is too small for extended precision. If you enable this excep-
tion and the FPU generates this interrupt, the Windows runtime system 
raises an exception.

Bit 5 controls whether the precision exception can occur. A precision 
exception occurs whenever the FPU produces an imprecise result, generally 
the result of an internal rounding operation. Although many operations 
will produce an exact result, many more will not. For example, dividing 1 
by 10 will produce an inexact result. Therefore, this bit is usually 1 because 
inexact results are common. If you enable this exception and the FPU gen-
erates this interrupt, the Windows runtime system raises an exception.

Bits 6 and 7, and 12 to 15, in the control register are currently unde-
fined and reserved for future use (bits 7 and 12 were valid on older FPUs 
but are no longer used).

The FPU provides two instructions, fldcw (load control word) and fstcw 
(store control word), that let you load and store the contents of the control reg-
ister, respectively. The single operand to these instructions must be a 16-bit 
memory location. The fldcw instruction loads the control register from the 
specified memory location. fstcw stores the control register into the specified 
memory location. The syntax for these instructions is shown here:

fldcw mem16
fstcw mem16

Here’s some example code that sets the rounding control to truncate 
result and sets the rounding precision to 24 bits:

       .data
fcw16  word   ?
          .
          .
          .
       fstcw fcw16
       mov   ax, fcw16
       and   ax, 0f0ffh ; Clears bits 8-11.
       or    ax, 0c00h  ; Rounding control=%11, Precision = %00.
       mov   fcw16, ax
       fldcw fcw16

6.5.3.3	 The FPU Status Register

The 16-bit FPU status register provides the status of the FPU at the instant 
you read it; its layout appears in Figure 6-4. The fstsw instruction stores the 
16-bit floating-point status register into a word variable.
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Exception flags

Top of stack
pointer

0123456789101112131415

Busy C3 C2 C1 C0

Condition codes

Precision
Underflow

Stack fault
Exception flag

Overflow
Zero divide

Denormalized
Invalid operation

Figure 6-4: The FPU status register

Bits 0 through 5 are the exception flags. These bits appear in the same 
order as the exception masks in the control register. If the corresponding 
condition exists, the bit is set. These bits are independent of the exception 
masks in the control register. The FPU sets and clears these bits regardless 
of the corresponding mask setting.

Bit 6 indicates a stack fault. A stack fault occurs whenever a stack over-
flow or underflow occurs. When this bit is set, the C1 condition code bit 
determines whether there was a stack overflow (C1 = 1) or stack underflow 
(C1 = 0) condition.

Bit 7 of the status register is set if any error condition bit is set. It is the 
logical or of bits 0 through 5. A program can test this bit to quickly deter-
mine if an error condition exists.

Bits 8, 9, 10, and 14 are the coprocessor condition code bits. Various 
instructions set the condition code bits, as shown in Tables 6-12 and 6-13, 
respectively.

Table 6-12: FPU Condition Code Bits (X = “Don’t care”)

Instruction Condition code bits Condition

C3 C2 C1 C0

fcom
fcomp
fcompp
ficom
ficomp

0
0
1
1

0
0
0
1

X
X
X
X

0
1
0
1

ST > source
ST < source
ST = source
ST or source not comparable

ftst 0
0
1
1

0
0
0
1

X
X
X
X

0
1
0
1

ST is positive
ST is negative
ST is 0 (+ or –)
ST is not comparable
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Instruction Condition code bits Condition

C3 C2 C1 C0

fxam 0
0
0
0
1
1
1
1
0
0
0
0
1

0
0
1
1
0
0
1
1
0
0
1
1
0

0
1
0
1
0
1
0
1
0
1
0
1
X

0
0
0
0
0
0
0
0
1
1
1
1
1

Unsupported
Unsupported
+ Normalized
– Normalized
+ 0
– 0
+ Denormalized
– Denormalized
+ NaN
– NaN
+ Infinity
– Infinity
Empty register

fucom
fucomp
fucompp

0
0
1
1

0
0
0
1

X
X
X
X

0
1
0
1

ST > source
ST < source
ST = source
Unordered / not comparable

Table 6-13: FPU Condition Code Bits (X = “Don’t care”)

Instruction Condition code bits

C0 C3 C2 C1

fcom, fcomp, fcompp, 
ftst, fucom, fucomp, 
fucompp, ficom, 
ficomp

Result of com-
parison, see 
Table 6-12.

Result of com-
parison, see 
Table 6-12.

Operands are not 
comparable.

Set to 0.

Fxam See Table 6-12. See Table 6-12. See Table 6-12. Sign of result, or 
stack overflow/
underflow if stack 
exception bit is set.

fprem, fprem1 Bit 2 of quotient Bit 0 of quotient 0—reduction done
1—reduction 
incomplete

Bit 0 of quotient, 
or stack overflow/
underflow if stack 
exception bit is set.

fist, fbstp, frndint, 
fst, fstp, fadd, 
fmul, fdiv, fdivr, 
fsub, fsubr, fscale, 
fsqrt, fpatan, f2xm1, 
fyl2x, fyl2xp1

Undefined Undefined Undefined Rounding direction 
if exception; other-
wise, set to 0.

fptan, fsin, fcos, 
fsincos

Undefined Undefined Set to 1 if within 
range; otherwise, 0.

Round-up occurred 
or stack overflow/
underflow if stack 
exception bit is set. 
Undefined if C2  
is set.

continued
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Instruction Condition code bits

C0 C3 C2 C1

fchs, fabs, fxch, 
fincstp, fdec-
stp, const loads, 
fxtract, fld, fild, 
fbld, fstp (80 bit)

Undefined Undefined Undefined Set to 0 or stack 
overflow/underflow 
if stack exception 
bit is set.

fldenv, frstor Restored from 
memory operand

Restored from 
memory operand

Restored from 
memory operand

Restored from 
memory operand

fldcw, fstenv, 
fstcw, fstsw, fclex

Undefined Undefined Undefined Undefined

finit, fsave Cleared to 0 Cleared to 0 Cleared to 0 Cleared to 0

Bits 11 to 13 of the FPU status register provide the register number of 
the top of stack. During computations, the FPU adds (modulo-8) the logical 
register numbers supplied by the programmer to these 3 bits to determine 
the physical register number at runtime.

Bit 15 of the status register is the busy bit. It is set whenever the FPU is 
busy. This bit is a historical artifact from the days when the FPU was a sepa-
rate chip; most programs will have little reason to access this bit.

6.5.4	 FPU Data Types
The FPU supports seven data types: three integer types, a packed deci-
mal type, and three floating-point types. The integer type supports 16-, 32-, 
and 64-bit integers, although it is often faster to do the integer arithmetic 
by using the integer unit of the CPU. The packed decimal type provides an 
18-digit signed decimal (BCD) integer. The primary purpose of the BCD 
format is to convert between strings and floating-point values. The remain-
ing three data types are the 32-, 64-, and 80-bit floating-point data types. The 
80x87 data types appear in Figures 6-5, 6-6, and 6-7. Just note, for future 
reference, that the largest BCD value the x87 supports is an 18-digit BCD 
value (bits 72 to 78 are unused in this format).

The FPU generally stores values in a normalized format. When a float-
ing-point number is normalized, the HO bit of the mantissa is always 1. In 
the 32- and 64-bit floating-point formats, the FPU does not actually store 
this bit; the FPU always assumes that it is 1. Therefore, 32- and 64-bit float-
ing-point numbers are always normalized. In the extended-precision 80-bit 
floating-point format, the FPU does not assume that the HO bit of the man-
tissa is 1; the HO bit of the mantissa appears as part of the string of bits.

Normalized values provide the greatest precision for a given number of 
bits. However, many non-normalized values cannot be represented with the 
80-bit format. These values are very close to 0 and represent the set of val-
ues whose mantissa HO bit is not 0. The FPUs support a special 80-bit form 
known as denormalized values. Denormalized values allow the FPU to encode 
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very small values it cannot encode using normalized values, but denormal-
ized values offer fewer bits of precision than normalized values. Therefore, 
using denormalized values in a computation may introduce slight inaccu-
racy. Of course, this is always better than underflowing the denormalized 
value to 0 (which could make the computation even less accurate), but you 
must keep in mind that if you work with very small values, you may lose some 
accuracy in your computations. The FPU status register contains a bit you 
can use to detect when the FPU uses a denormalized value in a computation.

31

32-bit single-precision floating-point format

64-bit single-precision floating-point format

80-bit single-precision floating-point format

... ...

... ...

63 52

79 64

23 16 15

078

078

078

Figure 6-5: FPU floating-point formats

16-bit two’s complement integer

32-bit two’s complement integer

64-bit two’s complement integer

07815

078

... ...

151631

07863

Figure 6-6: FPU integer formats

79

Sign Unused d17 d16

80-bit packed-decimal integer (BCD)

d15 d2 d1 d0

72 71 68 63 59
...

8 4 0

Figure 6-7: FPU packed decimal format

6.5.5	 The FPU Instruction Set
The FPU adds many instructions to the x86-64 instruction set. We can 
classify these instructions as data movement instructions, conversions, 
arithmetic instructions, comparisons, constant instructions, transcenden-
tal instructions, and miscellaneous instructions. The following sections 
describe each of the instructions in these categories.
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6.5.6	 FPU Data Movement Instructions
The data movement instructions transfer data between the internal FPU regis-
ters and memory. The instructions in this category are fld, fst, fstp, and fxch. 
The fld instruction always pushes its operand onto the floating-point stack. 
The fstp instruction always pops the top of stack (TOS) after storing it. The 
remaining instructions do not affect the number of items on the stack.

6.5.6.1	 The fld Instruction

The fld instruction loads a 32-, 64-, or 80-bit floating-point value onto the 
stack. This instruction converts 32- and 64-bit operands to an 80-bit extended-
precision value before pushing the value onto the floating-point stack.

The fld instruction first decrements the TOS pointer (bits 11 to 13 of the 
status register) and then stores the 80-bit value in the physical register speci-
fied by the new TOS pointer. If the source operand of the fld instruction is a 
floating-point data register, ST(i), then the actual register that the FPU uses 
for the load operation is the register number before decrementing the TOS 
pointer. Therefore, fld st(0) duplicates the value on the top of stack.

The fld instruction sets the stack fault bit if stack overflow occurs. It sets 
the denormalized exception bit if you load an 80-bit denormalized value. It 
sets the invalid operation bit if you attempt to load an empty floating-point 
register onto the TOS (or perform another invalid operation).

Here are some examples:

fld st(1)
fld real4_variable
fld real8_variable
fld real10_variable
fld real8 ptr [rbx]

There is no way to directly load a 32-bit integer register onto the floating-
point stack, even if that register contains a real4 value. To do so, you must first 
store the integer register into a memory location, and then push that memory 
location onto the FPU stack by using the fld instruction. For example:

mov tempReal4, eax  ; Save real4 value in EAX to memory.
fld tempReal4       ; Push that value onto the FPU stack.

6.5.6.2	 The fst and fstp Instructions

The fst and fstp instructions copy the value on the top of the floating-point 
stack to another floating-point register or to a 32-, 64-, or (fstp only) 80-bit 
memory variable. When copying data to a 32- or 64-bit memory variable, the 
FPU rounds the 80-bit extended-precision value on the TOS to the smaller 
format as specified by the rounding control bits in the FPU control register.

The fstp instruction pops the value off the top of stack when moving it 
to the destination location, by incrementing the TOS pointer in the status 

The Art of 64-Bit  Assembly  (Sample Chapter) © 6/15/21 by Randall Hyde

T H E  A R T  O F  6 4 - B I T  
A S S E M B LY 

R A N D A L L  H Y D E

6/15/21



Arithmetic   327

register after accessing the data in ST(0). If the destination operand is a 
floating-point register, the FPU stores the value at the specified register 
number before popping the data off the top of stack.

Executing an fstp st(0) instruction effectively pops the data off the top 
of stack with no data transfer. Here are some examples:

fst real4_variable
fst real8_variable
fst realArray[rbx * 8]
fst st(2)
fstp st(1)

The last example effectively pops ST(1) while leaving ST(0) on the top 
of stack.

The fst and fstp instructions will set the stack exception bit if a stack 
underflow occurs (attempting to store a value from an empty register stack). 
They will set the precision bit if a loss of precision occurs during the store 
operation (for example, when storing an 80-bit extended-precision value 
into a 32- or 64-bit memory variable and some bits are lost during conver-
sion). They will set the underflow exception bit when storing an 80-bit value 
into a 32- or 64-bit memory variable, but the value is too small to fit into 
the destination operand. Likewise, these instructions will set the overflow 
exception bit if the value on the top of stack is too big to fit into a 32- or 
64-bit memory variable. They set the invalid operation flag if an invalid 
operation (such as storing into an empty register) occurs. Finally, these 
instructions set the C1 condition bit if rounding occurs during the store 
operation (this occurs only when storing into a 32- or 64-bit memory vari-
able and you have to round the mantissa to fit into the destination) or if a 
stack fault occurs.

NO T E 	 Because of an idiosyncrasy in the FPU instruction set related to the encoding of the 
instructions, you cannot use the fst instruction to store data into a real10 memory 
variable. You may, however, store 80-bit data by using the fstp instruction.

6.5.6.3	 The fxch Instruction

The fxch instruction exchanges the value on the top of stack with one of the 
other FPU registers. This instruction takes two forms: one with a single FPU 
register as an operand and the second without any operands. The first form 
exchanges the top of stack with the specified register. The second form of 
fxch swaps the top of stack with ST(1).

Many FPU instructions (for example, fsqrt) operate only on the top of 
the register stack. If you want to perform such an operation on a value that 
is not on top, you can use the fxch instruction to swap that register with TOS, 
perform the desired operation, and then use fxch to swap the TOS with the 
original register. The following example takes the square root of ST(2):

fxch st(2)
fsqrt
fxch st(2)
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The fxch instruction sets the stack exception bit if the stack is empty; 
it sets the invalid operation bit if you specify an empty register as the oper-
and; and, it always clears the C1 condition code bit.

6.5.7	 Conversions
The FPU performs all arithmetic operations on 80-bit real quantities. In a 
sense, the fld and fst/fstp instructions are conversion instructions because 
they automatically convert between the internal 80-bit real format and the 
32- and 64-bit memory formats. Nonetheless, we’ll classify them as data 
movement operations, rather than conversions, because they are moving 
real values to and from memory. The FPU provides six other instructions 
that convert to or from integer or BCD format when moving data. These 
instructions are fild, fist, fistp, fisttp, fbld, and fbstp.

6.5.7.1	 The fild Instruction

The fild (integer load) instruction converts a 16-, 32-, or 64-bit two’s comple-
ment integer to the 80-bit extended-precision format and pushes the result 
onto the stack. This instruction always expects a single operand: the address 
of a word, double-word, or quad-word integer variable. You cannot specify 
one of the x86-64’s 16-, 32-, or 64-bit general-purpose registers. If you want 
to push the value of an x86-64 general-purpose register onto the FPU stack, 
you must first store it into a memory variable and then use fild to push that 
memory variable.

The fild instruction sets the stack exception bit and C1 (accordingly) 
if stack overflow occurs while pushing the converted value. Look at these 
examples:

fild word_variable 
fild dword_val[rcx * 4]
fild qword_variable
fild sqword ptr [rbx]

6.5.7.2	 The fist, fistp, and fisttp Instructions

The fist, fistp, and fisttp instructions convert the 80-bit extended-preci-
sion variable on the top of stack to a 16-, 32-, or (fistp/fistpp only) 64-bit 
integer and store the result away into the memory variable specified by the 
single operand. The fist and fistp instructions convert the value on TOS 
to an integer according to the rounding setting in the FPU control register 
(bits 10 and 11). The fisttp instruction always does the conversion using the 
truncation mode. As with the fild instruction, the fist, fistp, and fisttp 
instructions will not let you specify one of the x86-64’s general-purpose 16-, 
32-, or 64-bit registers as the destination operand.

The fist instruction converts the value on the top of stack to an integer 
and then stores the result; it does not otherwise affect the floating-point 
register stack. The fistp and fisttp instructions pop the value off the floating-
point register stack after storing the converted value.

The Art of 64-Bit  Assembly  (Sample Chapter) © 6/15/21 by Randall Hyde

T H E  A R T  O F  6 4 - B I T  
A S S E M B LY 

R A N D A L L  H Y D E

6/15/21



Arithmetic   329

These instructions set the stack exception bit if the floating-point regis-
ter stack is empty (this will also clear C1). They set the precision (imprecise 
operation) and C1 bits if rounding occurs (that is, if the value in ST(0) has 
any fractional component). These instructions set the underflow exception 
bit if the result is too small (less than 1 but greater than 0, or less than 0 but 
greater than –1). Here are some examples:

fist word_var[rbx * 2]
fist dword_var
fisttp dword_var
fistp qword_var

The fist and fistp instructions use the rounding control settings to 
determine how they will convert the floating-point data to an integer during 
the store operation. Be default, the rounding control is usually set to round 
mode; yet most programmers expect fist/fistp to truncate the decimal 
portion during conversion. If you want fist/fistp to truncate floating-point 
values when converting them to an integer, you will need to set the rounding 
control bits appropriately in the floating-point control register (or use the 
fisttp instruction to truncate the result regardless of the rounding control 
bits). Here’s an example:

          .data
fcw16     word    ?
fcw16_2   word    ?
IntResult sdword  ?
          .
          .
          .
    fstcw fcw16
    mov   ax, fcw16
    or    ax, 0c00h     ; Rounding =%11 (truncate).
    mov   fcw16_2, ax   ; Store and reload the ctrl word.
    fldcw fcw16_2

    fistp IntResult     ; Truncate ST(0) and store as int32.

    fldcw fcw16         ; Restore original rounding control.

6.5.7.3	 The fbld and fbstp Instructions

The fbld and fbstp instructions load and store 80-bit BCD values. The fbld 
instruction converts a BCD value to its 80-bit extended-precision equiva-
lent and pushes the result onto the stack. The fbstp instruction pops the 
extended-precision real value on TOS, converts it to an 80-bit BCD value 
(rounding according to the bits in the floating-point control register), and 
stores the converted result at the address specified by the destination mem-
ory operand. There is no fbst instruction.

The fbld instruction sets the stack exception bit and C1 if stack overflow 
occurs. The results are undefined if you attempt to load an invalid BCD 
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value. The fbstp instruction sets the stack exception bit and clears C1 if 
stack underflow occurs (the stack is empty). It sets the underflow flag under 
the same conditions as fist and fistp. Look at these examples:

; Assuming fewer than eight items on the stack, the following
; code sequence is equivalent to an fbst instruction:

          fld   st(0)
          fbstp tbyte_var

; The following example easily converts an 80-bit BCD value to
; a 64-bit integer:

          fbld tbyte_var
          fistp qword_var

These two instructions are especially useful for converting between 
string and floating-point formats. Along with the fild and fist instructions, 
you can use fbld and fbstp to convert between integer and string formats 
(see “Unsigned Decimal to String Conversion” in Chapter 9).

6.5.8	 Arithmetic Instructions
Arithmetic instructions make up a small but important subset of the FPU’s 
instruction set. These instructions fall into two general categories: those 
that operate on real values and those that operate on a real and an integer 
value.

6.5.8.1	 The fadd, faddp, and fiadd Instructions

The fadd, faddp, and fiadd instructions take the following forms:

fadd
faddp
fadd   st(i), st(0)
fadd   st(0), st(i)
faddp  st(i), st(0)
fadd   mem32
fadd   mem64
fiadd  mem16
fiadd  mem32

The fadd instruction, with no operands, is a synonym for faddp. The 
faddp instruction (also with no operands) pops the two values on the top of 
stack, adds them, and pushes their sum back onto the stack.

The next two forms of the fadd instruction, those with two FPU register 
operands, behave like the x86-64’s add instruction. They add the value in 
the source register operand to the value in the destination register oper-
and. One of the register operands must be ST(0).

The faddp instruction with two operands adds ST(0) (which must always 
be the source operand) to the destination operand and then pops ST(0). 
The destination operand must be one of the other FPU registers.
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The last two forms, fadd with a memory operand, adds a 32- or 64-bit 
floating-point variable to the value in ST(0). This instruction will convert 
the 32- or 64-bit operands to an 80-bit extended-precision value before 
performing the addition. Note that this instruction does not allow an 80-bit 
memory operand. There are also instructions for adding 16- and 32-bit inte-
gers in memory to ST(0): fiadd mem16 and fiadd mem32.

These instructions can raise the stack, precision, underflow, overflow, 
denormalized, and illegal operation exceptions, as appropriate. If a stack 
fault exception occurs, C1 denotes stack overflow or underflow, or the 
rounding direction (see Table 6-13).

Listing 6-1 demonstrates the various forms of the fadd instruction.

; Listing 6-1
;
; Demonstration of various forms of fadd

        option  casemap:none

nl          =       10

            .const
ttlStr      byte    "Listing 6-1", 0
fmtSt0St1   byte    "st(0):%f, st(1):%f", nl, 0
fmtAdd1     byte    "fadd: st0:%f", nl, 0
fmtAdd2     byte    "faddp: st0:%f", nl, 0
fmtAdd3     byte    "fadd st(1), st(0): st0:%f, st1:%f", nl, 0
fmtAdd4     byte    "fadd st(0), st(1): st0:%f, st1:%f", nl, 0
fmtAdd5     byte    "faddp st(1), st(0): st0:%f", nl, 0
fmtAdd6     byte    "fadd mem: st0:%f", nl, 0

zero        real8   0.0
one         real8   1.0
two         real8   2.0
minusTwo    real8   -2.0

            .data
st0         real8   0.0
st1         real8   0.0

            .code
            externdef printf:proc

; Return program title to C++ program:

            public  getTitle
getTitle    proc
            lea     rax, ttlStr
            ret
getTitle    endp
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; printFP- Prints values of st0 and (possibly) st1.
;          Caller must pass in ptr to fmtStr in RCX.

printFP     proc
            sub     rsp, 40

; For varargs (for example, printf call), double
; values must appear in RDX and R8 rather
; than XMM1, XMM2.
; Note: if only one double arg in format
; string, printf call will ignore 2nd
; value in R8.

            mov     rdx, qword ptr st0
            mov     r8, qword ptr st1
            call    printf
            add     rsp, 40
            ret
printFP     endp

; Here is the "asmMain" function.

            public  asmMain
asmMain     proc
            push    rbp
            mov     rbp, rsp
            sub     rsp, 48   ;Shadow storage
        
; Demonstrate various fadd instructions:

            mov     rax, qword ptr one
            mov     qword ptr st1, rax
            mov     rax, qword ptr minusTwo
            mov     qword ptr st0, rax
            lea     rcx, fmtSt0St1
            call    printFP

; fadd (same as faddp)
 
            fld     one
            fld     minusTwo
            fadd                    ;Pops st(0)!
            fstp    st0

            lea     rcx, fmtAdd1
            call    printFP
            
; faddp:
 
            fld     one
            fld     minusTwo
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            faddp                   ;Pops st(0)!
            fstp    st0

            lea     rcx, fmtAdd2
            call    printFP

; fadd st(1), st(0)
 
            fld     one
            fld     minusTwo
            fadd    st(1), st(0)
            fstp    st0
            fstp    st1

            lea     rcx, fmtAdd3
            call    printFP

; fadd st(0), st(1)

            fld     one
            fld     minusTwo
            fadd    st(0), st(1)
            fstp    st0
            fstp    st1

            lea     rcx, fmtAdd4
            call    printFP

; faddp st(1), st(0)

            fld     one
            fld     minusTwo
            faddp   st(1), st(0)
            fstp    st0
            
            lea     rcx, fmtAdd5
            call    printFP

; faddp mem64

            fld     one
            fadd    two
            fstp    st0

            lea     rcx, fmtAdd6
            call    printFP

            leave
            ret     ;Returns to caller

asmMain     endp
            end

Listing 6-1: Demonstration of fadd instructions
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Here’s the build command and output for the program in Listing 6-1:

C:\>build listing6-1

C:\>echo off
 Assembling: listing6-1.asm
c.cpp

C:\>listing6-1
Calling Listing 6-1:
st(0):-2.000000, st(1):1.000000
fadd: st0:-1.000000
faddp: st0:-1.000000
fadd st(1), st(0): st0:-2.000000, st1:-1.000000
fadd st(0), st(1): st0:-1.000000, st1:1.000000
faddp st(1), st(0): st0:-1.000000
fadd mem: st0:3.000000
Listing 6-1 terminated

6.5.8.2	 The fsub, fsubp, fsubr, fsubrp, fisub, and fisubr Instructions

These six instructions take the following forms:

fsub
fsubp
fsubr
fsubrp

fsub  st(i), st(0)
fsub  st(0), st(i)
fsubp st(i), st(0)
fsub  mem32
fsub  mem64

fsubr  st(i) , st(0)
fsubr  st(0), st(i)
fsubrp st(i) , st(0)
fsubr  mem32
fsubr  mem64

fisub  mem16
fisub  mem32
fisubr  mem16
fisubr  mem32

With no operands, fsub is the same as fsubp (without operands). With 
no operands, the fsubp instruction pops ST(0) and ST(1) from the register 
stack, computes ST(1) – ST(0), and then pushes the difference back onto 
the stack. The fsubr and fsubrp instructions (reverse subtraction) operate in 
an identical fashion except they compute ST(0) – ST(1).

With two register operands (destination, source), the fsub instruction 
computes destination = destination – source. One of the two registers must be 
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ST(0). With two registers as operands, the fsubp also computes destination = 
destination – source, and then it pops ST(0) off the stack after computing the 
difference. For the fsubp instruction, the source operand must be ST(0).

With two register operands, the fsubr and fsubrp instructions work in 
a similar fashion to fsub and fsubp, except they compute destination = source 
– destination.

The fsub mem32, fsub mem64, fsubr mem32, and fsubr mem64 instructions accept 
a 32- or 64-bit memory operand. They convert the memory operand to 
an 80-bit extended-precision value and subtract this from ST(0) (fsub) or 
subtract ST(0) from this value (fsubr) and store the result back into ST(0). 
There are also instructions for subtracting 16- and 32-bit integers in memory 
from ST(0): fisub mem16 and fisub mem32 (also fisubr mem16 and fisubr mem32).

These instructions can raise the stack, precision, underflow, overflow, 
denormalized, and illegal operation exceptions, as appropriate. If a stack 
fault exception occurs, C1 denotes stack overflow or underflow, or indicates 
the rounding direction (see Table 6-13).

Listing 6-2 demonstrates the fsub/fsubr instructions.

; Listing 6-2
;
; Demonstration of various forms of fsub/fsubrl

        option  casemap:none

nl          =       10

            .const
ttlStr      byte    "Listing 6-2", 0
fmtSt0St1   byte    "st(0):%f, st(1):%f", nl, 0
fmtSub1     byte    "fsub: st0:%f", nl, 0
fmtSub2     byte    "fsubp: st0:%f", nl, 0
fmtSub3     byte    "fsub st(1), st(0): st0:%f, st1:%f", nl, 0
fmtSub4     byte    "fsub st(0), st(1): st0:%f, st1:%f", nl, 0
fmtSub5     byte    "fsubp st(1), st(0): st0:%f", nl, 0
fmtSub6     byte    "fsub mem: st0:%f", nl, 0
fmtSub7     byte    "fsubr st(1), st(0): st0:%f, st1:%f", nl, 0
fmtSub8     byte    "fsubr st(0), st(1): st0:%f, st1:%f", nl, 0
fmtSub9     byte    "fsubrp st(1), st(0): st0:%f", nl, 0
fmtSub10    byte    "fsubr mem: st0:%f", nl, 0

zero        real8   0.0
three       real8   3.0
minusTwo    real8   -2.0

            .data
st0         real8   0.0
st1         real8   0.0

            .code
            externdef printf:proc
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; Return program title to C++ program:

            public  getTitle
getTitle    proc
            lea     rax, ttlStr
            ret
getTitle    endp

; printFP- Prints values of st0 and (possibly) st1.
;          Caller must pass in ptr to fmtStr in RCX.

printFP     proc
            sub     rsp, 40

; For varargs (for example, printf call), double
; values must appear in RDX and R8 rather
; than XMM1, XMM2.
; Note: if only one double arg in format
; string, printf call will ignore 2nd
; value in R8.

            mov     rdx, qword ptr st0
            mov     r8, qword ptr st1
            call    printf
            add     rsp, 40
            ret
printFP     endp

; Here is the "asmMain" function.

            public  asmMain
asmMain     proc
            push    rbp
            mov     rbp, rsp
            sub     rsp, 48   ;Shadow storage

; Demonstrate various fsub instructions:

            mov     rax, qword ptr three
            mov     qword ptr st1, rax
            mov     rax, qword ptr minusTwo
            mov     qword ptr st0, rax
            lea     rcx, fmtSt0St1
            call    printFP

; fsub (same as fsubp)
 
            fld     three
            fld     minusTwo
            fsub                    ;Pops st(0)!
            fstp    st0
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            lea     rcx, fmtSub1
            call    printFP

; fsubp:

            fld     three
            fld     minusTwo
            fsubp                   ;Pops st(0)!
            fstp    st0

            lea     rcx, fmtSub2
            call    printFP

; fsub st(1), st(0)

            fld     three
            fld     minusTwo
            fsub    st(1), st(0)
            fstp    st0
            fstp    st1

            lea     rcx, fmtSub3
            call    printFP

; fsub st(0), st(1)
 
            fld     three
            fld     minusTwo
            fsub    st(0), st(1)
            fstp    st0
            fstp    st1

            lea     rcx, fmtSub4
            call    printFP

; fsubp st(1), st(0)

            fld     three
            fld     minusTwo
            fsubp   st(1), st(0)
            fstp    st0

            lea     rcx, fmtSub5
            call    printFP

; fsub mem64

            fld     three
            fsub    minusTwo
            fstp    st0

            lea     rcx, fmtSub6
            call    printFP

; fsubr st(1), st(0)
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            fld     three
            fld     minusTwo
            fsubr   st(1), st(0)
            fstp    st0
            fstp    st1

            lea     rcx, fmtSub7
            call    printFP

; fsubr st(0), st(1)

            fld     three
            fld     minusTwo
            fsubr   st(0), st(1)
            fstp    st0
            fstp    st1

            lea     rcx, fmtSub8
            call    printFP 

; fsubrp st(1), st(0)

            fld     three
            fld     minusTwo
            fsubrp  st(1), st(0)
            fstp    st0

            lea     rcx, fmtSub9
            call    printFP 

; fsubr mem64

            fld     three
            fsubr   minusTwo
            fstp    st0

            lea     rcx, fmtSub10
            call    printFP

            leave
            ret     ;Returns to caller

asmMain     endp
            end

Listing 6-2: Demonstration of the fsub instructions

Here’s the build command and output for Listing 6-2:

C:\>build listing6-2

C:\>echo off
 Assembling: listing6-2.asm
c.cpp
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C:\>listing6-2
Calling Listing 6-2:
st(0):-2.000000, st(1):3.000000
fsub: st0:5.000000
fsubp: st0:5.000000
fsub st(1), st(0): st0:-2.000000, st1:5.000000
fsub st(0), st(1): st0:-5.000000, st1:3.000000
fsubp st(1), st(0): st0:5.000000
fsub mem: st0:5.000000
fsubr st(1), st(0): st0:-2.000000, st1:-5.000000
fsubr st(0), st(1): st0:5.000000, st1:3.000000
fsubrp st(1), st(0): st0:-5.000000
fsubr mem: st0:-5.000000
Listing 6-2 terminated

6.5.8.3	 The fmul, fmulp, and fimul Instructions

The fmul and fmulp instructions multiply two floating-point values. The fimul 
instruction multiples an integer and a floating-point value. These instruc-
tions allow the following forms:

fmul
fmulp

fmul st(0), st(i)
fmul st(i), st(0)
fmul mem32
fmul mem64

fmulp st(i), st(0)

fimul mem16
fimul mem32

With no operands, fmul is a synonym for fmulp. The fmulp instruction, 
with no operands, will pop ST(0) and ST(1), multiply these values, and push 
their product back onto the stack. The fmul instructions with two register 
operands compute destination = destination × source. One of the registers 
(source or destination) must be ST(0).

The fmulp st(0), st(i) instruction computes ST(i) = ST(i) × ST(0) and 
then pops ST(0). This instruction uses the value for i before popping ST(0). 
The fmul mem32 and fmul mem64 instructions require a 32- or 64-bit memory 
operand, respectively. They convert the specified memory variable to an 
80-bit extended-precision value and then multiply ST(0) by this value. 
There are also instructions for multiplying 16- and 32-bit integers in mem-
ory by ST(0): fimul mem16 and fimul mem32.

These instructions can raise the stack, precision, underflow, overflow, 
denormalized, and illegal operation exceptions, as appropriate. If rounding 
occurs during the computation, these instructions set the C1 condition code 
bit. If a stack fault exception occurs, C1 denotes stack overflow or underflow.
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Listing 6-3 demonstrates the various forms of the fmul instruction.

; Listing 6-3
;
; Demonstration of various forms of fmul

        option  casemap:none

nl          =       10

            .const
ttlStr      byte    "Listing 6-3", 0
fmtSt0St1   byte    "st(0):%f, st(1):%f", nl, 0
fmtMul1     byte    "fmul: st0:%f", nl, 0
fmtMul2     byte    "fmulp: st0:%f", nl, 0
fmtMul3     byte    "fmul st(1), st(0): st0:%f, st1:%f", nl, 0
fmtMul4     byte    "fmul st(0), st(1): st0:%f, st1:%f", nl, 0
fmtMul5     byte    "fmulp st(1), st(0): st0:%f", nl, 0
fmtMul6     byte    "fmul mem: st0:%f", nl, 0

zero        real8   0.0
three       real8   3.0
minusTwo    real8   -2.0

            .data
st0         real8   0.0
st1         real8   0.0

            .code
            externdef printf:proc

; Return program title to C++ program:

            public  getTitle
getTitle    proc
            lea     rax, ttlStr
            ret
getTitle    endp

; printFP- Prints values of st0 and (possibly) st1.
;          Caller must pass in ptr to fmtStr in RCX.

printFP     proc
            sub     rsp, 40

; For varargs (for example, printf call), double
; values must appear in RDX and R8 rather
; than XMM1, XMM2.
; Note: if only one double arg in format
; string, printf call will ignore 2nd
; value in R8.

            mov     rdx, qword ptr st0
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            mov     r8, qword ptr st1
            call    printf
            add     rsp, 40
            ret
printFP     endp

; Here is the "asmMain" function.

            public  asmMain
asmMain     proc
            push    rbp
            mov     rbp, rsp
            sub     rsp, 48   ;Shadow storage

; Demonstrate various fmul instructions:

            mov     rax, qword ptr three
            mov     qword ptr st1, rax
            mov     rax, qword ptr minusTwo
            mov     qword ptr st0, rax
            lea     rcx, fmtSt0St1
            call    printFP

; fmul (same as fmulp)

            fld     three
            fld     minusTwo
            fmul                    ;Pops st(0)!
            fstp    st0

            lea     rcx, fmtMul1
            call    printFP

; fmulp:

            fld     three
            fld     minusTwo
            fmulp                   ;Pops st(0)!
            fstp    st0

            lea     rcx, fmtMul2
            call    printFP

; fmul st(1), st(0)

            fld     three
            fld     minusTwo
            fmul    st(1), st(0)
            fstp    st0
            fstp    st1

            lea     rcx, fmtMul3
            call    printFP
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; fmul st(0), st(1)

            fld     three
            fld     minusTwo
            fmul    st(0), st(1)
            fstp    st0
            fstp    st1

            lea     rcx, fmtMul4
            call    printFP

; fmulp st(1), st(0)

            fld     three
            fld     minusTwo
            fmulp   st(1), st(0)
            fstp    st0

            lea     rcx, fmtMul5
            call    printFP

; fmulp mem64

            fld     three
            fmul    minusTwo
            fstp    st0

            lea     rcx, fmtMul6
            call    printFP

            leave
            ret     ;Returns to caller

asmMain     endp
            end

Listing 6-3: Demonstration of the fmul instruction

Here is the build command and output for Listing 6-3:

C:\>build listing6-3

C:\>echo off
 Assembling: listing6-3.asm
c.cpp

C:\>listing6-3
Calling Listing 6-3:
st(0):-2.000000, st(1):3.000000
fmul: st0:-6.000000
fmulp: st0:-6.000000
fmul st(1), st(0): st0:-2.000000, st1:-6.000000
fmul st(0), st(1): st0:-6.000000, st1:3.000000
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fmulp st(1), st(0): st0:-6.000000
fmul mem: st0:-6.000000
Listing 6-3 terminated

6.5.8.4	 The fdiv, fdivp, fdivr, fdivrp, fidiv, and fidivr Instructions

These four instructions allow the following forms:

fdiv
fdivp
fdivr
fdivrp

fdiv st(0), st(i)
fdiv st(i), st(0)
fdivp st(i), st(0)

fdivr st(0), st(i)
fdivr st(i), st(0)
fdivrp st(i), st(0)

fdiv mem32
fdiv mem64
fdivr mem32
fdivr mem64

fidiv mem16
fidiv mem32
fidivr mem16
fidivr mem32

With no operands, the fdiv instruction is a synonym for fdivp. The fdivp 
instruction with no operands computes ST(1) = ST(1) / ST(0). The fdivr 
and fdivrp instructions work in a similar fashion to fdiv and fdivp except 
that they compute ST(0) / ST(1) rather than ST(1) / ST(0).

With two register operands, these instructions compute the following 
quotients:

fdiv   st(0), st(i)    ; st(0) = st(0)/st(i)
fdiv   st(i), st(0)    ; st(i) = st(i)/st(0)
fdivp  st(i), st(0)    ; st(i) = st(i)/st(0) then pop st0
fdivr  st(0), st(i)    ; st(0) = st(i)/st(0)
fdivr  st(i), st(0)    ; st(i) = st(0)/st(i)
fdivrp st(i), st(0)    ; st(i) = st(0)/st(i) then pop st0

The fdivp and fdivrp instructions also pop ST(0) after performing the 
division operation. The value for i in these two instructions is computed 
before popping ST(0).

These instructions can raise the stack, precision, underflow, overflow, 
denormalized, zero divide, and illegal operation exceptions, as appropriate. 
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If rounding occurs during the computation, these instructions set the C1 
condition code bit. If a stack fault exception occurs, C1 denotes stack over-
flow or underflow.

Listing 6-4 provides a demonstration of the fdiv/fdivr instructions.

; Listing 6-4
;
; Demonstration of various forms of fsub/fsubrl

        option  casemap:none

nl          =       10

            .const
ttlStr      byte    "Listing 6-4", 0
fmtSt0St1   byte    "st(0):%f, st(1):%f", nl, 0
fmtDiv1     byte    "fdiv: st0:%f", nl, 0
fmtDiv2     byte    "fdivp: st0:%f", nl, 0
fmtDiv3     byte    "fdiv st(1), st(0): st0:%f, st1:%f", nl, 0
fmtDiv4     byte    "fdiv st(0), st(1): st0:%f, st1:%f", nl, 0
fmtDiv5     byte    "fdivp st(1), st(0): st0:%f", nl, 0
fmtDiv6     byte    "fdiv mem: st0:%f", nl, 0
fmtDiv7     byte    "fdivr st(1), st(0): st0:%f, st1:%f", nl, 0
fmtDiv8     byte    "fdivr st(0), st(1): st0:%f, st1:%f", nl, 0
fmtDiv9     byte    "fdivrp st(1), st(0): st0:%f", nl, 0
fmtDiv10    byte    "fdivr mem: st0:%f", nl, 0

three       real8   3.0
minusTwo    real8   -2.0

            .data
st0         real8   0.0
st1         real8   0.0

            .code
            externdef printf:proc

; Return program title to C++ program:

            public  getTitle
getTitle    proc
            lea     rax, ttlStr
            ret
getTitle    endp

; printFP- Prints values of st0 and (possibly) st1.
;          Caller must pass in ptr to fmtStr in RCX.

printFP     proc
            sub     rsp, 40

; For varargs (for example, printf call), double
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; values must appear in RDX and R8 rather
; than XMM1, XMM2.
; Note: if only one double arg in format
; string, printf call will ignore 2nd
; value in R8.

            mov     rdx, qword ptr st0
            mov     r8, qword ptr st1
            call    printf
            add     rsp, 40
            ret
printFP     endp

; Here is the "asmMain" function.

            public  asmMain
asmMain     proc
            push    rbp
            mov     rbp, rsp
            sub     rsp, 48   ;Shadow storage

; Demonstrate various fdiv instructions:

            mov     rax, qword ptr three
            mov     qword ptr st1, rax
            mov     rax, qword ptr minusTwo
            mov     qword ptr st0, rax
            lea     rcx, fmtSt0St1
            call    printFP

; fdiv (same as fdivp)

            fld     three
            fld     minusTwo
            fdiv                    ;Pops st(0)!
            fstp    st0

            lea     rcx, fmtDiv1
            call    printFP

; fdivp:
 
            fld     three
            fld     minusTwo
            fdivp                   ;Pops st(0)!
            fstp    st0

            lea     rcx, fmtDiv2
            call    printFP

; fdiv st(1), st(0)

            fld     three
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            fld     minusTwo
            fdiv    st(1), st(0)
            fstp    st0
            fstp    st1

            lea     rcx, fmtDiv3
            call    printFP

; fdiv st(0), st(1)

            fld     three
            fld     minusTwo
            fdiv    st(0), st(1)
            fstp    st0
            fstp    st1

            lea     rcx, fmtDiv4
            call    printFP 

; fdivp st(1), st(0)

            fld     three
            fld     minusTwo
            fdivp   st(1), st(0)
            fstp    st0

            lea     rcx, fmtDiv5
            call    printFP

; fdiv mem64
 
            fld     three
            fdiv    minusTwo
            fstp    st0

            lea     rcx, fmtDiv6
            call    printFP

; fdivr st(1), st(0)

            fld     three
            fld     minusTwo
            fdivr   st(1), st(0)
            fstp    st0
            fstp    st1

            lea     rcx, fmtDiv7
            call    printFP

; fdivr st(0), st(1)

            fld     three
            fld     minusTwo
            fdivr   st(0), st(1)
            fstp    st0
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            fstp    st1

            lea     rcx, fmtDiv8
            call    printFP

; fdivrp st(1), st(0)

            fld     three
            fld     minusTwo
            fdivrp  st(1), st(0)
            fstp    st0
            
            lea     rcx, fmtDiv9
            call    printFP 

; fdivr mem64

            fld     three
            fdivr   minusTwo
            fstp    st0

            lea     rcx, fmtDiv10
            call    printFP

            leave
            ret     ; Returns to caller

asmMain     endp
            end

Listing 6-4: Demonstration of the fdiv/fdivr instructions

Here’s the build command and sample output for Listing 6-4:

C:\>build listing6-4

C:\>echo off
 Assembling: listing6-4.asm
c.cpp

C:\>listing6-4
Calling Listing 6-4:
st(0):-2.000000, st(1):3.000000
fdiv: st0:-1.500000
fdivp: st0:-1.500000
fdiv st(1), st(0): st0:-2.000000, st1:-1.500000
fdiv st(0), st(1): st0:-0.666667, st1:3.000000
fdivp st(1), st(0): st0:-1.500000
fdiv mem: st0:-1.500000
fdivr st(1), st(0): st0:-2.000000, st1:-0.666667
fdivr st(0), st(1): st0:-1.500000, st1:3.000000
fdivrp st(1), st(0): st0:-0.666667
fdivr mem: st0:-0.666667
Listing 6-4 terminated
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6.5.8.5	 The fsqrt Instruction  

The fsqrt routine does not allow any operands. It computes the square root 
of the value on TOS and replaces ST(0) with this result. The value on TOS 
must be 0 or positive; otherwise, fsqrt will generate an invalid operation 
exception.

This instruction can raise the stack, precision, denormalized, and 
invalid operation exceptions, as appropriate. If rounding occurs during the 
computation, fsqrt sets the C1 condition code bit. If a stack fault exception 
occurs, C1 denotes stack overflow or underflow.

Here’s an example:

; Compute z = sqrt(x**2 + y**2);

          fld x                  ; Load x.
          fld st(0)              ; Duplicate x on TOS.
          fmulp                  ; Compute x**2.

          fld y                  ; Load y.
          fld st(0)              ; Duplicate y.
          fmul                   ; Compute y**2.

          faddp                  ; Compute x**2 + y**2.
          fsqrt                  ; Compute sqrt( x**2 + y**2 ).
          fstp z                 ; Store result away into z.

6.5.8.6	 The fprem and fprem1 Instructions 

The fprem and fprem1 instructions compute a partial remainder (a value that 
may require additional computation to produce the actual remainder). 
Intel designed the fprem instruction before the IEEE finalized its floating-
point standard. In the final draft of that standard, the definition of fprem 
was a little different from Intel’s original design. To maintain compatibility 
with the existing software that used the fprem instruction, Intel designed a 
new version to handle the IEEE partial remainder operation, fprem1. You 
should always use fprem1 in new software; therefore, we will discuss only 
fprem1 here, although you use fprem in an identical fashion.

fprem1 computes the partial remainder of ST(0) / ST(1). If the differ-
ence between the exponents of ST(0) and ST(1) is less than 64, fprem1 can 
compute the exact remainder in one operation. Otherwise, you will have to 
execute fprem1 two or more times to get the correct remainder value. The 
C2 condition code bit determines when the computation is complete. Note 
that fprem1 does not pop the two operands off the stack; it leaves the partial 
remainder in ST(0) and the original divisor in ST(1) in case you need to 
compute another partial product to complete the result.

The fprem1 instruction sets the stack exception flag if there aren’t two 
values on the top of stack. It sets the underflow and denormal exception 
bits if the result is too small. It sets the invalid operation bit if the values 
on TOS are inappropriate for this operation. It sets the C2 condition code 
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bit if the partial remainder operation is not complete (or on stack under-
flow). Finally, it loads C1, C2, and C0 with bits 0, 1, and 2 of the quotient, 
respectively.

An example follows:

; Compute z = x % y

          fld y
          fld x
repeatLp:

          fprem1
          fstsw ax        ; Get condition code bits into AX.
          and   ah, 1     ; See if C2 is set.
          jnz   repeatLp  ; Repeat until C2 is clear.
          fstp z          ; Store away the remainder.
          fstp st(0)      ; Pop old y value.

6.5.8.7	 The frndint Instruction

The frndint instruction rounds the value on TOS to the nearest integer by 
using the rounding algorithm specified in the control register.

This instruction sets the stack exception flag if there is no value on the 
TOS (it will also clear C1 in this case). It sets the precision and denormal 
exception bits if a loss of precision occurred. It sets the invalid operation 
flag if the value on the TOS is not a valid number. Note that the result on 
the TOS is still a floating-point value; it simply does not have a fractional 
component.

6.5.8.8	 The fabs Instruction

fabs computes the absolute value of ST(0) by clearing the mantissa sign bit 
of ST(0). It sets the stack exception bit and invalid operation bits if the stack 
is empty.

Here’s an example:

; Compute x = sqrt(abs(x));

          fld   x
          fabs
          fsqrt
          fstp  x

6.5.8.9	 The fchs Instruction 

fchs changes the sign of ST(0)’s value by inverting the mantissa sign bit (this 
is the floating-point negation instruction). It sets the stack exception bit and 
invalid operation bits if the stack is empty.

Look at this example:

; Compute x = -x if x is positive, x = x if x is negative.
; That is, force x to be a negative value.
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          fld  x
          fabs
          fchs
          fstp x

6.5.9	 Comparison Instructions
The FPU provides several instructions for comparing real values. The fcom, 
fcomp, and fcompp instructions compare the two values on the top of stack 
and set the condition codes appropriately. The ftst instruction compares 
the value on the top of stack with 0.

Generally, most programs test the condition code bits immediately after 
a comparison. Unfortunately, no instructions test the FPU condition codes. 
Instead, you use the fstsw instruction to copy the floating-point status reg-
ister into the AX register, then the sahf instruction to copy the AH register 
into the x86-64’s condition code bits. Then you can test the standard x86-
64 flags to check for a condition. This technique copies C0 into the carry 
flag, C2 into the parity flag, and C3 into the zero flag. The sahf instruction 
does not copy C1 into any of the x86-64’s flag bits.

Because sahf does not copy any FPU status bits into the sign or overflow 
flags, you cannot use signed comparison instructions. Instead, use unsigned 
operations (for example, seta, setb, ja, jb) when testing the results of a float-
ing-point comparison. Yes, these instructions normally test unsigned values, 
and floating-point numbers are signed values. However, use the unsigned opera-
tions anyway; the fstsw and sahf instructions set the x86-64 flags register as 
though you had compared unsigned values with the cmp instruction.

The x86-64 processors provide an extra set of floating-point compari-
son instructions that directly affect the x86-64 condition code flags. These 
instructions circumvent having to use fstsw and sahf to copy the FPU status 
into the x86-64 condition codes. These instructions include fcomi and fcomip. 
You use them just like the fcom and fcomp instructions, except, of course, you 
do not have to manually copy the status bits to the FLAGS register.

6.5.9.1	 The fcom, fcomp, and fcompp Instructions

The fcom, fcomp, and fcompp instructions compare ST(0) to the specified oper-
and and set the corresponding FPU condition code bits based on the result 
of the comparison. The legal forms for these instructions are as follows:

fcom
fcomp
fcompp

fcom st(i)
fcomp st(i)

fcom mem32
fcom mem64
fcomp mem32
fcomp mem64
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With no operands, fcom, fcomp, and fcompp compare ST(0) against ST(1) 
and set the FPU flags accordingly. In addition, fcomp pops ST(0) off the 
stack, and fcompp pops both ST(0) and ST(1) off the stack.

With a single-register operand, fcom and fcomp compare ST(0) against 
the specified register. fcomp also pops ST(0) after the comparison.

With a 32- or 64-bit memory operand, the fcom and fcomp instructions 
convert the memory variable to an 80-bit extended-precision value and then 
compare ST(0) against this value, setting the condition code bits accord-
ingly. fcomp also pops ST(0) after the comparison.

These instructions set C2 (which winds up in the parity flag when using 
sahf) if the two operands are not comparable (for example, NaN). If it is 
possible for an illegal floating-point value to wind up in a comparison, you 
should check the parity flag for an error before checking the desired condi-
tion (for example, with the setp/setnp or jp/jnp instructions).

These instructions set the stack fault bit if there aren’t two items on the 
top of the register stack. They set the denormalized exception bit if either 
or both operands are denormalized. They set the invalid operation flag if 
either or both operands are NaNs. These instructions always clear the C1 
condition code.

Let’s look at an example of a floating-point comparison:

          fcompp
          fstsw ax
          sahf
          setb al    ; al = true if st(0) < st(1).
               .
               .
               .
          fcompp
          fstsw ax
          sahf
          jnb st1GEst0

   ; Code that executes if st(0) < st(1)

st1GEst0:

Because all x86-64 64-bit CPUs support the fcomi and fcomip instructions 
(described in the next section), you should consider using those instructions 
as they spare you from having to store the FPU status word into AX and then 
copy AH into the flags register before testing the condition. On the other 
hand, fcomi and fcomip support only a limited number of operand forms (the 
fcom and fcomp instructions are more general).

Listing 6-5 is a sample program that demonstrates the use of the vari-
ous fcom instructions.

; Listing 6-5
;
; Demonstration of fcom instructions

        option  casemap:none
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nl          =       10

            .const
ttlStr      byte    "Listing 6-5", 0
fcomFmt     byte    "fcom %f < %f is %d", nl, 0
fcomFmt2    byte    "fcom(2) %f < %f is %d", nl, 0
fcomFmt3    byte    "fcom st(1) %f < %f is %d", nl, 0
fcomFmt4    byte    "fcom st(1) (2) %f < %f is %d", nl, 0
fcomFmt5    byte    "fcom mem %f < %f is %d", nl, 0
fcomFmt6    byte    "fcom mem %f (2) < %f is %d", nl, 0
fcompFmt    byte    "fcomp %f < %f is %d", nl, 0
fcompFmt2   byte    "fcomp (2) %f < %f is %d", nl, 0
fcompFmt3   byte    "fcomp st(1) %f < %f is %d", nl, 0
fcompFmt4   byte    "fcomp st(1) (2) %f < %f is %d", nl, 0
fcompFmt5   byte    "fcomp mem %f < %f is %d", nl, 0
fcompFmt6   byte    "fcomp mem (2) %f < %f is %d", nl, 0
fcomppFmt   byte    "fcompp %f < %f is %d", nl, 0
fcomppFmt2  byte    "fcompp (2) %f < %f is %d", nl, 0

three       real8   3.0
zero        real8   0.0
minusTwo    real8   -2.0

            .data
st0         real8   ?
st1         real8   ?

            .code
            externdef printf:proc

; Return program title to C++ program:

            public  getTitle
getTitle    proc
            lea     rax, ttlStr
            ret
getTitle    endp

; printFP- Prints values of st0 and (possibly) st1.
;          Caller must pass in ptr to fmtStr in RCX.

printFP     proc
            sub     rsp, 40

; For varargs (for example, printf call), double
; values must appear in RDX and R8 rather
; than XMM1, XMM2.
; Note: if only one double arg in format
; string, printf call will ignore 2nd
; value in R8.

            mov     rdx, qword ptr st0
            mov     r8, qword ptr st1

The Art of 64-Bit  Assembly  (Sample Chapter) © 6/15/21 by Randall Hyde

T H E  A R T  O F  6 4 - B I T  
A S S E M B LY 

R A N D A L L  H Y D E

6/15/21



Arithmetic   353

            movzx   r9, al
            call    printf
            add     rsp, 40
            ret
printFP     endp

; Here is the "asmMain" function.

            public  asmMain
asmMain     proc
            push    rbp
            mov     rbp, rsp
            sub     rsp, 48   ;Shadow storage

; fcom demo

            xor     eax, eax
            fld     three
            fld     zero
            fcom
            fstsw   ax
            sahf
            setb    al
            fstp    st0
            fstp    st1
            lea     rcx, fcomFmt
            call    printFP

; fcom demo 2

            xor     eax, eax
            fld     zero
            fld     three
            fcom
            fstsw   ax
            sahf
            setb    al
            fstp    st0
            fstp    st1
            lea     rcx, fcomFmt2
            call    printFP

; fcom st(i) demo

            xor     eax, eax
            fld     three
            fld     zero
            fcom    st(1)
            fstsw   ax
            sahf
            setb    al
            fstp    st0
            fstp    st1
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            lea     rcx, fcomFmt3
            call    printFP

; fcom st(i) demo 2

            xor     eax, eax
            fld     zero
            fld     three
            fcom    st(1)
            fstsw   ax
            sahf
            setb    al
            fstp    st0
            fstp    st1
            lea     rcx, fcomFmt4
            call    printFP

; fcom mem64 demo

            xor     eax, eax
            fld     three           ;Never on stack so
            fstp    st1             ; copy for output
            fld     zero
            fcom    three
            fstsw   ax
            sahf
            setb    al
            fstp    st0
            lea     rcx, fcomFmt5
            call    printFP

; fcom mem64 demo 2

            xor     eax, eax
            fld     zero            ;Never on stack so
            fstp    st1             ; copy for output
            fld     three
            fcom    zero
            fstsw   ax
            sahf
            setb    al
            fstp    st0
            lea     rcx, fcomFmt6
            call    printFP

; fcomp demo

            xor     eax, eax
            fld     zero
            fld     three
            fst     st0            ; Because this gets popped
            fcomp
            fstsw   ax
            sahf
            setb    al
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            fstp    st1
            lea     rcx, fcompFmt
            call    printFP
                        
; fcomp demo 2

            xor     eax, eax
            fld     three
            fld     zero
            fst     st0            ; Because this gets popped
            fcomp
            fstsw   ax
            sahf
            setb    al
            fstp    st1
            lea     rcx, fcompFmt2
            call    printFP

; fcomp demo 3

            xor     eax, eax
            fld     zero
            fld     three
            fst     st0            ; Because this gets popped
            fcomp   st(1)
            fstsw   ax
            sahf
            setb    al
            fstp    st1
            lea     rcx, fcompFmt3
            call    printFP

; fcomp demo 4

            xor     eax, eax
            fld     three
            fld     zero
            fst     st0            ; Because this gets popped
            fcomp   st(1)
            fstsw   ax
            sahf
            setb    al
            fstp    st1
            lea     rcx, fcompFmt4
            call    printFP

; fcomp demo 5

            xor     eax, eax
            fld     three
            fstp    st1
            fld     zero
            fst     st0            ; Because this gets popped
            fcomp   three
            fstsw   ax
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            sahf
            setb    al
            lea     rcx, fcompFmt5
            call    printFP

; fcomp demo 6

            xor     eax, eax
            fld     zero
            fstp    st1
            fld     three
            fst     st0            ; Because this gets popped
            fcomp   zero
            fstsw   ax
            sahf
            setb    al
            lea     rcx, fcompFmt6
            call    printFP

; fcompp demo

            xor     eax, eax
            fld     zero
            fst     st1            ; Because this gets popped
            fld     three
            fst     st0            ; Because this gets popped
            fcompp  
            fstsw   ax
            sahf
            setb    al
            lea     rcx, fcomppFmt
            call    printFP

; fcompp demo 2

            xor     eax, eax
            fld     three
            fst     st1            ; Because this gets popped
            fld     zero
            fst     st0            ; Because this gets popped
            fcompp  
            fstsw   ax
            sahf
            setb    al
            lea     rcx, fcomppFmt2
            call    printFP

            leave
            ret     ;Returns to caller

asmMain     endp
            end

Listing 6-5: Program that demonstrates the fcom instructions

The Art of 64-Bit  Assembly  (Sample Chapter) © 6/15/21 by Randall Hyde

T H E  A R T  O F  6 4 - B I T  
A S S E M B LY 

R A N D A L L  H Y D E

6/15/21



Arithmetic   357

Here’s the build command and output for the program in Listing 6-5:

C:\>build listing6-5

C:\>echo off
 Assembling: listing6-5.asm
c.cpp

C:\>listing6-5
Calling Listing 6-5:
fcom 0.000000 < 3.000000 is 1
fcom(2) 3.000000 < 0.000000 is 0
fcom st(1) 0.000000 < 3.000000 is 1
fcom st(1) (2) 3.000000 < 0.000000 is 0
fcom mem 0.000000 < 3.000000 is 1
fcom mem 3.000000 (2) < 0.000000 is 0
fcomp 3.000000 < 0.000000 is 0
fcomp (2) 0.000000 < 3.000000 is 1
fcomp st(1) 3.000000 < 0.000000 is 0
fcomp st(1) (2) 0.000000 < 3.000000 is 1
fcomp mem 0.000000 < 3.000000 is 1
fcomp mem (2) 3.000000 < 0.000000 is 0
fcompp 3.000000 < 0.000000 is 0
fcompp (2) 0.000000 < 3.000000 is 1
Listing 6-5 terminated

NO T E 	 The x87 FPU also provides instructions that do unordered comparisons: fucom, 
fucomp, and fucompp. These are functionally equivalent to fcom, fcomp, and fcompp 
except they raise an exception under different conditions. See the Intel documentation 
for more details.

6.5.9.2	 The fcomi and fcomip Instructions

The fcomi and fcomip instructions compare ST(0) to the specified operand 
and set the corresponding EFLAGS condition code bits based on the result 
of the comparison. You use these instructions in a similar manner to fcom 
and fcomp except you can test the CPU’s flag bits directly after the execu-
tion of these instructions without first moving the FPU status bits into the 
EFLAGS register. The legal forms for these instructions are as follows:

fcomi st(0), st(i)
fcomip  st(0), st(i)

Note that a pop-pop version (fcomipp) does not exist. If all you want to do 
is compare the top two items on the FPU stack, you will have to explicitly 
pop that item yourself (for example, by using the fstp st(0) instruction).

Listing 6-6 is a sample program that demonstrates the operation of the 
fcomi and fcomip instructions.

; Listing 6-6
;
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; Demonstration of fcomi and fcomip instructions

        option  casemap:none

nl          =       10

            .const
ttlStr      byte    "Listing 6-6", 0
fcomiFmt    byte    "fcomi %f < %f is %d", nl, 0
fcomiFmt2   byte    "fcomi(2) %f < %f is %d", nl, 0
fcomipFmt   byte    "fcomip %f < %f is %d", nl, 0
fcomipFmt2  byte    "fcomip (2) %f < %f is %d", nl, 0

three       real8   3.0
zero        real8   0.0
minusTwo    real8   -2.0

            .data
st0         real8   ?
st1         real8   ?

            .code
            externdef printf:proc

; Return program title to C++ program:

            public  getTitle
getTitle    proc
            lea     rax, ttlStr
            ret
getTitle    endp

; printFP- Prints values of st0 and (possibly) st1.
;          Caller must pass in ptr to fmtStr in RCX.

printFP     proc
            sub     rsp, 40

; For varargs (for example, printf call), double
; values must appear in RDX and R8 rather
; than XMM1, XMM2.
; Note: if only one double arg in format
; string, printf call will ignore 2nd
; value in R8.

            mov     rdx, qword ptr st0
            mov     r8, qword ptr st1
            movzx   r9, al
            call    printf
            add     rsp, 40
            ret
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printFP     endp

; Here is the "asmMain" function.

            public  asmMain
asmMain     proc
            push    rbp
            mov     rbp, rsp
            sub     rsp, 48    ; Shadow storage

; Test to see if 0 < 3
; Note: ST(0) contains 0, ST(1) contains 3

            xor     eax, eax
            fld     three
            fld     zero
            fcomi   st(0), st(1)
            setb    al
            fstp    st0
            fstp    st1
            lea     rcx, fcomiFmt
            call    printFP

; Test to see if 3 < 0
; Note: ST(0) contains 0, ST(1) contains 3

            xor     eax, eax
            fld     zero
            fld     three
            fcomi   st(0), st(1)
            setb    al
            fstp    st0
            fstp    st1
            lea     rcx, fcomiFmt2
            call    printFP
                        
; Test to see if 3 < 0
; Note: ST(0) contains 0, ST(1) contains 3

            xor     eax, eax
            fld     zero
            fld     three
            fst     st0            ; Because this gets popped
            fcomip  st(0), st(1)
            setb    al
            fstp    st1
            lea     rcx, fcomipFmt
            call    printFP

; Test to see if 0 < 3
; Note: ST(0) contains 0, ST(1) contains 3
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            xor     eax, eax
            fld     three
            fld     zero
            fst     st0            ; Because this gets popped
            fcomip  st(0), st(1)
            setb    al
            fstp    st1
            lea     rcx, fcomipFmt2
            call    printFP

            leave
            ret    ; Returns to caller

asmMain     endp
            end

Listing 6-6: Sample program demonstrating floating-point comparisons

Here’s the build command and output for the program in Listing 6-6:

C:\>build listing6-6

C:\>echo off
 Assembling: listing6-6.asm
c.cpp

C:\>listing6-6
Calling Listing 6-6:
fcomi 0.000000 < 3.000000 is 1
fcomi(2) 3.000000 < 0.000000 is 0
fcomip 3.000000 < 0.000000 is 0
fcomip (2) 0.000000 < 3.000000 is 1
Listing 6-6 terminated

NO T E 	 The x87 FPU also provides two instructions that do unordered comparisons: 
fucomi and fucomip. These are functionally equivalent to fcomi and fcomip except 
they raise an exception under different conditions. See the Intel documentation for 
more details.

6.5.9.3	 The ftst Instruction 

The ftst instruction compares the value in ST(0) against 0.0. It behaves just 
like the fcom instruction would if ST(1) contained 0.0. This instruction does 
not differentiate –0.0 from +0.0. If the value in ST(0) is either of these val-
ues, ftst will set C3 to denote equality (or unordered). This instruction does 
not pop ST(0) off the stack.

Here’s an example:

ftst
fstsw ax 
sahf
sete al       ; Set al to 1 if TOS = 0.0
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6.5.10	 Constant Instructions
The FPU provides several instructions that let you load commonly used con-
stants onto the FPU’s register stack. These instructions set the stack fault, 
invalid operation, and C1 flags if a stack overflow occurs; they do not other-
wise affect the FPU flags. The specific instructions in this category include 
the following:

fldz               ; Pushes +0.0.
fld1               ; Pushes +1.0.
fldpi              ; Pushes pi (3.15159...)
fldl2t             ; Pushes log2(10).
fldl2e             ; Pushes log2(e).
fldlg2             ; Pushes log10(2).
fldln2             ; Pushes ln(2).

6.5.11	 Transcendental Instructions
The FPU provides eight transcendental (logarithmic and trigonometric) 
instructions to compute sine, cosine, partial tangent, partial arctangent, 
2x – 1, y × log2(x), and y × log2(x + 1). Using various algebraic identities, it 
is easy to compute most of the other common transcendental functions 
by using these instructions.

6.5.11.1	 The f2xm1 Instruction

f2xm1 computes 2ST(0) – 1. The value in ST(0) must be in the range –1.0 to 
+1.0. If ST(0) is out of range, f2xm1 generates an undefined result but raises 
no exceptions. The computed value replaces the value in ST(0).

Here’s an example computing 10i using the identity 10i = 2i×log2(10). This 
is useful for only a small range of i that doesn’t put ST(0) outside the previ-
ously mentioned valid range:

fld i
fldl2t
fmul
f2xm1
fld1
fadd

Because f2xm1 computes 2x – 1, the preceding code adds 1.0 to the result 
at the end of the computation.

6.5.11.2	 The fsin, fcos, and fsincos Instructions

These instructions pop the value off the top of the register stack and com-
pute the sine, cosine, or both, and push the result(s) back onto the stack. 
The fsincos instruction pushes the sine followed by the cosine of the origi-
nal operand; hence it leaves cos(ST(0)) in ST(0) and sin(ST(0)) in ST(1).

These instructions assume ST(0) specifies an angle in radians, and this 
angle must be in the range –263 < ST(0) < +263. If the original operand is out 
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of range, these instructions set the C2 flag and leave ST(0) unchanged. You 
can use the fprem1 instruction, with a divisor of 2π, to reduce the operand to 
a reasonable range.

These instructions set the stack fault (or rounding)/C1, precision, 
underflow, denormalized, and invalid operation flags according to the 
result of the computation.

6.5.11.3	 The fptan Instruction

fptan computes the tangent of ST(0), replaces ST(0) with this value, and 
then pushes 1.0 onto the stack. Like the fsin and fcos instructions, the value 
of ST(0) must be in radians and in the range –263 < ST(0) < +263. If the 
value is outside this range, fptan sets C2 to indicate that the conversion did 
not take place. As with the fsin, fcos, and fsincos instructions, you can use 
the fprem1 instruction to reduce this operand to a reasonable range by using  
a divisor of 2π.

If the argument is invalid (that is, 0 or π radians, which causes a divi-
sion by 0), the result is undefined and this instruction raises no exceptions. 
fptan will set the stack fault/rounding, precision, underflow, denormal, 
invalid operation, C2, and C1 bits as required by the operation.

6.5.11.4	 The fpatan Instruction

fpatan expects two values on the top of stack. It pops them and computes 
ST(0) = tan-1(ST(1) / ST(0)). The resulting value is the arctangent of the 
ratio on the stack expressed in radians. If you want to compute the arctan-
gent of a particular value, use fld1 to create the appropriate ratio and then 
execute the fpatan instruction.

This instruction affects the stack fault/C1, precision, underflow, denor-
mal, and invalid operation bits if a problem occurs during the computation. 
It sets the C1 condition code bit if it has to round the result.

6.5.11.5	 The fyl2x Instruction

The fyl2x instruction computes ST(0) = ST(1) × log2(ST(0)). The instruction 
itself has no operands, but expects two operands on the FPU stack in ST(1) 
and ST(0), thus using the following syntax:

fyl2x

To compute the log of any other base, you can use the following arith-
metic identity:

logn(x) = log2(x) / log2(n)
So if you first compute log2(n) and put its reciprocal on the stack, then 

push x onto the stack and execute fyl2x, you wind up with logn(x).
The fyl2x instruction sets the C1 condition code bit if it has to round 

up the value. It clears C1 if no rounding occurs or if a stack overflow occurs. 
The remaining floating-point condition codes are undefined after the exe-
cution of this instruction. fyl2x can raise the following floating-point excep-
tions: invalid operation, denormal result, overflow, underflow, and inexact 
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result. Note that the fldl2t and fldl2e instructions turn out to be quite 
handy when using the fyl2x instruction (for computing log10 and ln).

6.5.11.6	 The fyl2xp1 Instruction

fyl2xp1 computes ST(0) = ST(1) × log2(ST(0) + 1.0), from two operands on 
the FPU stack. The syntax for this instruction is as follows:

fyl2xp1

Otherwise, the instruction is identical to fyl2x.

6.5.12	 Miscellaneous Instructions
The FPU includes several additional instructions that control the FPU, syn-
chronize operations, and let you test or set various status bits: finit/fninit, 
fldcw, fstcw, fclex/fnclex, and fstsw.

6.5.12.1	 The finit and fninit Instructions

The finit and fninit instructions initialize the FPU for proper operation. 
Your code should execute one of these instructions before executing any 
other FPU instructions. They initialize the control register to 37Fh, the 
status register to 0, and the tag word to 0FFFFh. The other registers are 
unaffected.

Here are some examples:

finit
fninit

The difference between finit and fninit is that finit first checks for any 
pending floating-point exceptions before initializing the FPU; fninit does not.

6.5.12.2	 The fldcw and fstcw Instructions 

The fldcw and fstcw instructions require a single 16-bit memory operand:

fldcw mem16
fstcw mem16

These two instructions load the control word from a memory location 
(fldcw) or store the control word to a 16-bit memory location (fstcw).

When using fldcw to turn on one of the exceptions, if the corresponding 
exception flag is set when you enable that exception, the FPU will gener-
ate an immediate interrupt before the CPU executes the next instruction. 
Therefore, you should use fclex to clear any pending interrupts before 
changing the FPU exception enable bits.

6.5.12.3	 The fclex and fnclex Instructions 

The fclex and fnclex instructions clear all exception bits, the stack fault bit, 
and the busy flag in the FPU status register.
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Here are examples:

fclex
fnclex

The difference between these instructions is the same as between finit 
and fninit: fclex first checks for pending floating-point exceptions.

6.5.12.4	 The fstsw and fnstsw Instructions  

These instructions store the FPU status word into a 16-bit memory location 
or the AX register:

fstsw ax
fnstsw ax
fstsw mem16
fnstsw mem16

These instructions are unusual in the sense that they can copy an FPU 
value into one of the x86-64 general-purpose registers (specifically, AX). 
The purpose is to allow the CPU to easily test the condition code register 
with the sahf instruction. The difference between fstsw and fnstsw is the 
same as for fclex and fnclex.

	 6.6	� Converting Floating-Point Expressions to Assembly 
Language
Because the FPU register organization is different from the x86-64 integer 
register set, translating arithmetic expressions involving floating-point oper-
ands is a little different from translating integer expressions. Therefore, it 
makes sense to spend some time discussing how to manually translate float-
ing-point expressions into assembly language.

The FPU uses postfix notation (also called reverse Polish notation, or RPN), 
for arithmetic operations. Once you get used to using postfix notation, it’s 
actually a bit more convenient for translating expressions because you don’t 
have to worry about allocating temporary variables—they always wind up on 
the FPU stack. Postfix notation, as opposed to standard infix notation, places 
the operands before the operator. Table 6-14 provides simple examples of 
infix notation and the corresponding postfix notation.

Table 6-14: Infix-to-Postfix Translation

Infix notation Postfix notation

5 + 6 5 6 +

7 – 2 7 2 –

x × y x y ×

a / b a b /
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A postfix expression like 5 6 + says, “Push 5 onto the stack, push 6 onto 
the stack, and then pop the value off the top of stack (6) and add it to the new 
top of stack.” Sound familiar? This is exactly what the fld and fadd instructions 
do. In fact, you can calculate the result by using the following code:

fld five   ; Declared somewhere as  five real8 5.0 (or real4/real10)
fld six    ; Declared somewhere as six real8 6.0 (or real4/real10)
fadd       ; 11.0 is now on the top of the FPU stack.

As you can see, postfix is a convenient notation because it’s easy to 
translate this code into FPU instructions.

Another advantage to postfix notation is that it doesn’t require any 
parentheses. The examples in Table 6-15 demonstrate some slightly more 
complex infix-to-postfix conversions.

Table 6-15: More-Complex Infix-to-Postfix  
Translations

Infix notation Postfix notation

(x + y) × 2 x y + 2 ×

x × 2 – (a + b) x 2 × a b + –

(a + b) × (c + d) a b + c d + ×

The postfix expression x y + 2 × says, “Push x, then push y; next, add 
those values on the stack (producing x + y on the stack). Next, push 2 and 
then multiply the two values (2 and x + y) on the stack to produce two times 
the quantity x + y.” Once again, we can translate these postfix expressions 
directly into assembly language. The following code demonstrates the con-
version for each of the preceding expressions:

;  x y + 2 *

          fld x
          fld y
          fadd
          fld const2   ;const2 real8 2.0 in .data section
          fmul

;  x 2 * a b + -

          fld x
          fld const2   ;const2 real8 2.0 in .data section
          fmul
          fld a
          fld b
          fadd
          fsub

;  a b + c d + *
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          fld a
          fld b
          fadd
          fld c
          fld d
          fadd
          fmul

6.6.2	 Converting Arithmetic Expressions to Postfix Notation
For simple expressions, those involving two operands and a single expression, 
the translation from infix to postfix notation is trivial: simply move the opera-
tor from the infix position to the postfix position (that is, move the operator 
from between the operands to after the second operand). For example, 5 + 
6 becomes 5 6 +. Other than separating your operands so you don’t confuse 
them (that is, is it 5 and 6 or 56?), converting simple infix expressions into 
postfix notation is straightforward.

For complex expressions, the idea is to convert the simple subexpres-
sions into postfix notation and then treat each converted subexpression as 
a single operand in the remaining expression. The following discussion sur-
rounds completed conversions with square brackets so it is easy to see which 
text needs to be treated as a single operand in the conversion.

As for integer expression conversion, the best place to start is in the 
innermost parenthetical subexpression and then work your way outward, 
considering precedence, associativity, and other parenthetical subexpres-
sions. As a concrete working example, consider the following expression:

x = ((y – z) * a) – ( a + b * c ) / 3.14159

A possible first translation is to convert the subexpression (y - z) into 
postfix notation:

x = ([y z -] * a) - ( a + b * c ) / 3.14159

Square brackets surround the converted postfix code just to separate it 
from the infix code, for readability. Remember, for the purposes of conver-
sion, we will treat the text inside the square brackets as a single operand. 
Therefore, you would treat [y z -] as though it were a single variable name 
or constant.

The next step is to translate the subexpression ([y z -] * a ) into post-
fix form. This yields the following:

x = [y z - a *] - ( a + b * c ) / 3.14159

Next, we work on the parenthetical expression ( a + b * c ). Because 
multiplication has higher precedence than addition, we convert b * c first:

x = [y z - a *] - ( a + [b c *]) / 3.14159
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After converting b * c, we finish the parenthetical expression:

x = [y z - a *] - [a b c * +] / 3.14159

This leaves only two infix operators: subtraction and division. Because 
division has the higher precedence, we’ll convert that first:

x = [y z - a *] - [a b c * + 3.14159 /]

Finally, we convert the entire expression into postfix notation by deal-
ing with the last infix operation, subtraction:

x = [y z - a *] [a b c * + 3.14159 /] -

Removing the square brackets yields the following postfix expression:

x = y z - a * a b c * + 3.14159 / -

The following steps demonstrate another infix-to-postfix conversion for 
this expression:

a = (x * y - z + t) / 2.0

1.	 Work inside the parentheses. Because multiplication has the highest 
precedence, convert that first:

a = ( [x y *] - z + t) / 2.0

2.	 Still working inside the parentheses, we note that addition and subtrac-
tion have the same precedence, so we rely on associativity to determine 
what to do next. These operators are left-associative, so we must translate 
the expressions from left to right. This means translate the subtraction 
operator first:

a = ( [x y * z -] + t) / 2.0

3.	 Now translate the addition operator inside the parentheses. Because 
this finishes the parenthetical operators, we can drop the parentheses:

a = [x y * z - t +] / 2.0

4.	 Translate the final infix operator (division). This yields the following:

a = [x y * z - t + 2.0 / ]

5.	 Drop the square brackets and we’re done:

a = x y * z - t + 2.0 /
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6.6.3	 Converting Postfix Notation to Assembly Language
Once you’ve translated an arithmetic expression into postfix notation, 
finishing the conversion to assembly language is easy. All you have to do is 
issue an fld instruction whenever you encounter an operand and issue an 
appropriate arithmetic instruction when you encounter an operator. This 
section uses the completed examples from the previous section to demon-
strate how little there is to this process.

x = y z - a * a b c * + 3.14159 / -

1.	 Convert y to fld y.

2.	 Convert z to fld z.

3.	 Convert - to fsub.

4.	 Convert a to fld a.

5.	 Convert * to fmul.

6.	 Continuing in a left-to-right fashion, generate the following code for 
the expression:

fld   y
fld   z
fsub
fld   a
fmul
fld   a
fld   b
fld   c
fmul
fadd
fldpi       ; Loads pi (3.14159)
fdiv
fsub

fstp   x    ; Store result away into x.

Here’s the translation for the second example in the previous section:

a = x y * z - t + 2.0 /
          fld   x
          fld   y
          fmul
          fld   z
          fsub
          fld   t
          fadd
          fld   const2    ;const2 real8 2.0 in .data section
          fdiv

          fstp  a         ; Store result away into a.
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As you can see, the translation is fairly simple once you’ve converted the 
infix notation to postfix notation. Also note that, unlike integer expression 
conversion, you don’t need any explicit temporaries. It turns out that the 
FPU stack provides the temporaries for you.9 For these reasons, converting 
floating-point expressions into assembly language is actually easier than 
converting integer expressions.

	 6.7	� SSE Floating-Point Arithmetic
Although the x87 FPU is relatively easy to use, the stack-based design of 
the FPU created performance bottlenecks as CPUs became more powerful. 
After introducing the Streaming SIMD Extensions (SSE) in its Pentium III  
CPUs (way back in 1999), Intel decided to resolve the FPU performance 
bottleneck and added scalar (non-vector) floating-point instructions to 
the SSE instruction set that could use the XMM registers. Most modern 
programs favor the use of the SSE (and later) registers and instructions for 
floating-point operations over the x87 FPU, using only those x87 operations 
available exclusively on the x87.

The SSE instruction set supports two floating-point data types: 32-bit 
single-precision (Intel calls these scalar single operations) and 64-bit dou-
ble-precision values (Intel calls these scalar double operations).10 The SSE 
does not support the 80-bit extended-precision floating-point data types 
of the x87 FPU. If you need the extended-precision format, you’ll have to 
use the x87 FPU.

6.7.1	 SSE MXCSR Register
The SSE MXCSR register is a 32-bit status and control register that controls 
SSE floating-point operations. Bits 16 to 32 are reserved and currently have 
no meaning. Table 6-16 lists the functions of the LO 16 bits.

Table 6-16: SSE MXCSR Register

Bit Name Function

0 IE Invalid operation exception flag. Set if an invalid operation was 
attempted.

1 DE Denormal exception flag. Set if operations produced a denormalized 
value.

2 ZE Zero exception flag. Set if an attempt to divide by 0 was made.

3 OE Overflow exception flag. Set if there was an overflow.

9. � �This assumes, of course, that your calculations aren’t so complex that you exceed the eight-
element limitation of the FPU stack.

10. � �This book has typically used scalar to denote atomic (noncomposite) data types that were 
not floating-point (chars, Booleans, integers, and so forth). In fact, floating-point values 
(that are not part of a larger composite data type) are also scalars. Intel uses scalar as 
opposed to vector (the SSE also supports vector operations).

continued
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Bit Name Function

4 UE Underflow exception flag. Set if there was an underflow.

5 PE Precision exception flag. Set if there was a precision exception.

6 DAZ Denormals are 0. If set, treat denormalized values as 0.

7 IM Invalid operation mask. If set, ignore invalid operation exceptions.

8 DM Denormal mask. If set, ignore denormal exceptions.

9 ZM Divide-by-zero mask. If set, ignore division-by-zero exceptions.

10 OM Overflow mask. If set, ignore overflow exceptions.

11 UM Underflow mask. If set, ignore underflow exceptions.

12 PM Precision mask. If set, ignore precision exceptions.

13 Rounding
Control

00: Round to nearest          01: Round toward –infinity
10: Round toward +infinity  11: Round toward 0 (truncate)

14

15 FTZ Flush to zero. When set, all underflow conditions set the register to 0.

Access to the SSE MXCSR register is via the following two instructions:

ldmxcsr mem32
stmxcsr mem32

The ldmxcsr instruction loads the MXCSR register from the specified 
32-bit memory location. The stmxcsr instruction stores the current contents 
of the MXCSR register to the specified memory location.

By far, the most common use of these two instructions is to set the round-
ing mode. In typical programs using the SSE floating-point instructions, it 
is common to switch between the round-to-nearest and round-to-zero (trun-
cate) modes.

6.7.2	 SSE Floating-Point Move Instructions
The SSE instruction set provides two instructions to move floating-point 
values between XMM registers and memory: movss (move scalar single) and 
movsd (move scalar double). Here is their syntax:

movss xmmn, mem32
movss mem32, xmmn
movsd xmmn, mem64
movsd mem64, xmmn

As for the standard general-purpose registers, the movss and movsd 
instructions move data between an appropriate memory location (contain-
ing a 32- or 64-bit floating-point value) and one of the 16 XMM registers 
(XMM0 to XMM15).
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For maximum performance, movss memory operands should appear at a 
double-word-aligned memory address, and movsd memory operands should 
appear at a quad-word-aligned memory address. Though these instructions 
will function properly if the memory operands are not properly aligned in 
memory, there is a performance hit for misaligned accesses.

In addition to the movss and movsd instructions that move floating-point 
values between XMM registers or XMM registers and memory, you’ll find a 
couple of other SSE move instructions useful that move data between XMM 
and general-purpose registers, movd and movq:

movd  reg32, xmmn
movd  xmmn, reg32
movq  reg64, xmmn
movq  xmmn, reg64

These instructions also have a form that allows a source memory oper-
and. However, you should use movss and movsd to move floating-point variables 
into XMM registers.

The movq and movd instructions are especially useful for copying XMM 
registers into 64-bit general-purpose registers prior to a call to printf() 
(when printing floating-point values). As you’ll see in a few sections, these 
instructions are also useful for floating-point comparisons on the SSE.

6.7.3	 SSE Floating-Point Arithmetic Instructions
The Intel SSE instruction set adds the following floating-point arithmetic 
instructions:

addss xmmn, xmmn
addss xmmn, mem32
addsd xmmn, xmmn
addsd xmmn, mem64

subss xmmn, xmmn
subss xmmn, mem32
subsd xmmn, xmmn
subsd xmmn, mem64

mulss xmmn, xmmn
mulss xmmn, mem32
mulsd xmmn, xmmn
mulsd xmmn, mem64

divss xmmn, xmmn
divss xmmn, mem32
divsd xmmn, xmmn
divsd xmmn, mem64

minss xmmn, xmmn
minss xmmn, mem32
minsd xmmn, xmmn
minsd xmmn, mem64
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maxss xmmn, xmmn
maxss xmmn, mem32
maxsd xmmn, xmmn
maxsd xmmn, mem64

sqrtss xmmn, xmmn
sqrtss xmmn, mem32
sqrtsd xmmn, xmmn
sqrtsd xmmn, mem64

rcpss xmmn, xmmn
rcpss xmmn, mem32

rsqrtss xmmn, xmmn
rsqrtss xmmn, mem32

The addsx, subsx, mulsx, and divsx instructions perform the expected 
floating-point arithmetic operations. The minsx instructions compute the 
minimum value of the two operands, storing the minimum value into 
the destination (first) operand. The maxsx instructions do the same thing, 
but compute the maximum of the two operands. The sqrtsx instructions 
compute the square root of the source (second) operand and store the 
result into the destination (first) operand. The rcpsx instructions compute 
the reciprocal of the source, storing the result into the destination.11 The 
rsqrtsx instructions compute the reciprocal of the square root.12

The operand syntax is somewhat limited for the SSE instructions (com-
pared with the generic integer instructions): the destination operand must 
always be an XMM register.

6.7.4	 SSE Floating-Point Comparisons
The SSE floating-point comparisons work quite a bit differently from the inte-
ger and x87 FPU compare instructions. Rather than having a single generic 
instruction that sets flags (to be tested by setcc or jcc instructions), the SSE 
provides a set of condition-specific comparison instructions that store true 
(all 1 bits) or false (all 0 bits) into the destination operand. You can then test 
the result value for true or false. Here are the instructions:

cmpss xmmn, xmmm/mem32, imm8
cmpsd xmmn, xmmm/mem64, imm8

cmpeqss     xmmn, xmmm/mem32
cmpltss     xmmn, xmmm/mem32
cmpless     xmmn, xmmm/mem32
cmpunordss  xmmn, xmmm/mem32
cmpne	 qss  xmmn, xmmm/mem32

11. � �Intel’s documentation claims that the reciprocal operation is just an approximation. 
Then again, by definition, the square root operation is also an approximation because it 
produces irrational results.

12. � �Also an approximation.
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cmpnltss    xmmn, xmmm/mem32
cmpnless    xmmn, xmmm/mem32
cmpordss    xmmn, xmmm/mem32

cmpeqsd     xmmn, xmmm/mem64
cmpltsd     xmmn, xmmm/mem64
cmplesd     xmmn, xmmm/mem64
cmpunordsd  xmmn, xmmm/mem64
cmpneqsd    xmmn, xmmm/mem64
cmpnltsd    xmmn, xmmm/mem64
cmpnlesd    xmmn, xmmm/mem64
cmpordsd    xmmn, xmmm/mem64

The immediate constant is a value in the range 0 to 7 and represents 
one of the comparisons in Table 6-17.

Table 6-17: SSE Compare Immediate Operand

imm8 Comparison

0 First operand == second operand

1 First operand < second operand

2 First operand <= second operand

3 First operand unordered second operand

4 First operand != second operand

5 First operand not less than second operand (>=)

6 First operand not less than or equal to second operand (>)

7 First operand ordered second operand

The instructions without the third (immediate) operand are special 
pseudo-ops MASM provides that automatically supply the appropriate third 
operand. You can use the nlt form for ge and nle form for gt, assuming the 
operands are ordered.

The unordered comparison returns true if either (or both) operands 
are unordered (typically, NaN values). Likewise, the ordered comparison 
returns true if both operands are ordered.

As noted, these instructions leave 0 or all 1 bits in the destination 
register to represent false or true. If you want to branch based on these 
conditions, you should move the destination XMM register into a general-
purpose register and test that register for zero/not zero. You can use the 
movq or movd instructions to accomplish this:

  cmpeqsd xmm0, xmm1
  movd    eax, xmm0    ;move true/false to EAX
  test    eax, eax     ;Test for true/false
  jnz     xmm0EQxmm1   ;Branch if xmm0 == xmm1

; code to execute if xmm0 != xmm1
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6.7.5	 SSE Floating-Point Conversions
The x86-64 provides several floating-point conversion instructions that 
convert between floating-point and integer formats. Table 6-18 lists these 
instructions and their syntax.

Table 6-18: SSE Conversion Instructions

Instruction syntax Description

cvtsd2si reg32/64, xmmn/mem64 Converts scalar double-precision FP to 32-, or 64-bit integer. Uses the 
current rounding mode in the MXCSR to determine how to deal with 
fractional components. Result is stored in a general-purpose 32- or 
64-bit register.

cvtsd2ss xmmn, xmmn/mem64 Converts scalar double-precision FP (in an XMM register or memory) 
to scalar single-precision FP and leaves the result in the destination 
XMM register. Uses the current rounding mode in the MXCSR to deter-
mine how to deal with inexact conversions.

cvtsi2sd xmmn, reg32/64/mem32/64 Converts a 32- or 64-bit integer in an integer register or memory to 
a double-precision floating-point value, leaving the result in an XMM 
register.

cvtsi2ss xmmn, reg32/64/mem32/64 Converts a 32- or 64-bit integer in an integer register or memory to 
a single-precision floating-point value, leaving the result in an XMM 
register.

cvtss2sd xmmn, xmmn/mem32 Converts a single-precision floating-point value in an XMM register or 
memory to a double-precision value, leaving the result in the destina-
tion XMM register.

cvtss2si reg32/64, xmmn/mem32 Converts a single-precision floating-point value in an XMM register or 
memory to an integer and leaves the result in a general-purpose 32- 
or 64-bit register. Uses the current rounding mode in the MXCSR to 
determine how to deal with inexact conversions.

cvttsd2si reg32/64, xmmn/mem64 Converts scalar double-precision FP to a 32-, or 64-bit integer. 
Conversion is done using truncation (does not use the rounding control 
setting in the MXCSR). Result is stored in a general-purpose 32- or 
64-bit register.

cvttss2si reg32/64, xmmn/mem32 Converts scalar single-precision FP to a 32-, or 64-bit integer. 
Conversion is done using truncation (does not use the rounding control 
setting in the MXCSR). Result is stored in a general-purpose 32- or 
64-bit register.

	 6.8	� For More Information
The Intel/AMD processor manuals fully describe the operation of each of 
the integer and floating-point arithmetic instructions, including a detailed 
description of how these instructions affect the condition code bits and 
other flags in the RFLAGS and FPU status registers. To write the best pos-
sible assembly language code, you need to be intimately familiar with how 
the arithmetic instructions affect the execution environment, so spending 
time with the Intel/AMD manuals is a good idea.
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Chapter 8 discusses multiprecision integer arithmetic. See that chapter 
for details on handling integer operands that are greater than 64 bits in size.

The x86-64 SSE instruction set found on later iterations of the CPU 
provides support for floating-point arithmetic using the AVX register set. 
Consult the Intel/AMD documentation for details concerning the AVX 
floating-point instruction set.

	 6.9	� Test Yourself
1.	 What are the implied operands for the single-operand imul and mul 

instructions?

2.	 What is the result size for an 8-bit mul operation? A 16-bit mul operation? 
A 32-bit mul operation? A 64-bit mul operation? Where does the CPU put 
the products?

3.	 What result(s) does an x86 div instruction produce?

4.	 When performing a signed 16-bit by 16-bit division using idiv, what 
must you do before executing the idiv instruction?

5.	 When performing an unsigned 32-bit by 32-bit division using div, what 
must you do before executing the div instruction?

6.	 What are the two conditions that will cause a div instruction to produce 
an exception?

7.	 How do the mul and imul instructions indicate overflow?

8.	 How do the mul and imul instructions affect the zero flag?

9.	 What is the difference between the extended-precision (single operand) 
imul instruction and the more generic (multi-operand) imul instruction?

10.	 What instructions would you normally use to sign-extend the accumula-
tor prior to executing an idiv instruction?

11.	 How do the div and idiv instructions affect the carry, zero, overflow, 
and sign flags?

12.	 How does the cmp instruction affect the zero flag?

13.	 How does the cmp instruction affect the carry flag (with respect to an 
unsigned comparison)?

14.	 How does the cmp instruction affect the sign and overflow flags (with 
respect to a signed comparison)?

15.	 What operands do the setcc instructions take?

16.	 What do the setcc instructions do to their operand?

17.	 What is the difference between the test instruction and the and 
instruction?

18.	 What are the similarities between the test instruction and the and 
instruction?

19.	 Explain how you would use the test instruction to see if an individual 
bit is 1 or 0 in an operand?
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20.	 Convert the following expressions to assembly language (assume all 
variables are signed 32-bit integers):

x = x + y
x = y – z
x = y * z
x = y + z * t
x = (y + z) * t
x = -((x * y) / z)
x = (y == z) && (t != 0)

21.	 Compute the following expressions without using an imul or mul instruc-
tion (assume all variables are signed 32-bit integers):

x = x * 2
x = y * 5
x = y * 8

22.	Compute the following expressions without using a div or idiv instruc-
tion (assume all variables are unsigned 16-bit integers):

x = x / 2
x = y / 8
x = z / 10

23.	 Convert the following expressions to assembly language by using the 
FPU (assume all variables are real8 floating-point values):

x = x + y
x = y – z
x = y * z
x = y + z * t
x = (y + z) * t
x = -((x * y) / z)

24.	 Convert the following expressions to assembly language by using SSE 
instructions (assume all variables are real4 floating-point values):

x = x + y
x = y – z
x = y * z
x = y + z * t

25.	 Convert the following expressions to assembly language by using FPU 
instructions; assume b is a one-byte Boolean variable and x, y, and z are 
real8 floating-point variables:

b = x < y
b = x >= y && x < z
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