
6
AR ITHMET IC

This chapter discusses arithmetic computa-
tion in assembly language. By the end of

this chapter, you should be able to translate
arithmetic expressions and assignment state-

ments from high-level languages like Pascal and C/C++
into x86-64 assembly language.

6.1	� x86-64 Integer Arithmetic Instructions
Before describing how to encode arithmetic expressions in assembly lan-
guage, it would be a good idea to first discuss the remaining arithmetic
instructions in the x86-64 instruction set. Previous chapters have covered
most of the arithmetic and logical instructions, so this section covers the
few remaining instructions you’ll need.

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

288 Chapter 6

6.1.1	 Sign- and Zero-Extension Instructions
Several arithmetic operations require sign- or zero-extended values before
the operation. So let’s first consider the sign- and zero-extension instruc-
tions. The x86-64 provides several instructions to sign- or zero-extend a
smaller number to a larger number. Table 6-1 lists a group of instructions
that will sign-extend the AL, AX, EAX, and RAX registers.

Table 6-1: Instructions for Extending AL, AX, EAX, and RAX

Instruction Explanation

cbw Converts the byte in AL to a word in AX via sign extension

cwd Converts the word in AX to a double word in DX:AX via sign extension

cdq Converts the double word in EAX to a quad word in EDX:EAX via sign
extension

cqo Converts the quad word in RAX to an octal word in RDX:RAX via sign
extension

cwde Converts the word in AX to a double word in EAX via sign extension

cdqe Converts the double word in EAX to a quad word in RAX via sign
extension

Note that the cwd (convert word to double word) instruction does not sign-
extend the word in AX to a double word in EAX. Instead, it stores the HO word
of the sign extension into the DX register (the notation DX:AX indicates that
you have a double-word value, with DX containing the upper 16 bits and AX
containing the lower 16 bits of the value). If you want the sign extension of AX
to go into EAX, you should use the cwde (convert word to double word, extended)
instruction. In a similar fashion, the cdq instruction sign-extends EAX into
EDX:EAX. Use the cdqe instruction if you want to sign-extend EAX into RAX.

For general sign-extension operations, the x86-64 provides an exten-
sion of the mov instruction, movsx (move with sign extension), that copies data
and sign-extends the data while copying it. The movsx instruction’s syntax is
similar to that of mov:

movsxd dest, source ;If dest is 64 bits and source is 32 bits
movsx dest, source ;For all other operand combinations

The big difference in syntax between these instructions and the mov
instruction is that the destination operand must usually be larger than the
source operand.1 For example, if the source operand is a byte, the destina-
tion operand must be a word, dword, or qword. The destination operand
must also be a register; the source operand, however, can be a memory
location.2 The movsx instruction does not allow constant operands.

1. � �In two special cases, the operands are the same size. Those two instructions, however,
aren’t especially useful.

2. � �This doesn’t turn out to be much of a limitation because sign extension almost always pre-
cedes an arithmetic operation that must take place in a register.

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

Arithmetic 289

For whatever reason, MASM requires a different instruction mnemonic
(instruction name) when sign-extending a 32-bit operand into a 64-bit reg-
ister (movsxd rather than movsx).

To zero-extend a value, you can use the movzx instruction. It does not
have the restrictions of movsx; as long as the destination operand is larger
than the source operand, the instruction works fine. It allows 8 to 16, 32, or
64 bits, and 16 to 32 or 64 bits. There is no 32- to 64-bit version (it turns out
this is unnecessary).

The x86-64 CPUs, for historical reasons, will always zero-extend a regis-
ter from 32 bits to 64 bits when performing 32-bit operations. Therefore, to
zero-extend a 32-bit register into a 64-bit register, you need only move the
(32-bit) register into itself; for example:

mov eax, eax ;zero-extends EAX into RAX

Zero-extending certain 8-bit registers (AL, BL, CL, and DL) into their
corresponding 16-bit registers is easily accomplished without using movzx by
loading the complementary HO register (AH, BH, CH, or DH) with 0. To
zero-extend AX into DX:AX or EAX into EDX:EAX, all you need to do is
load DX or EDX with 0.3

Because of instruction-encoding limitations, the x86-64 does not allow
you to zero- or sign-extend the AH, BH, CH, or DH registers into any of the
64-bit registers.

6.1.2	 The mul and imul Instructions
You’ve already seen a subset of the imul instructions available in the x86-64
instruction set (see “The imul Instruction” in Chapter 4). This section presents
the extended-precision version of imul along with the unsigned mul instruction.

The multiplication instructions provide you with another taste of
irregularity in the x86-64’s instruction set. Instructions like add, sub, and
many others in the x86-64 instruction set support two operands, just like
the mov instruction. Unfortunately, there weren’t enough bits in the origi-
nal 8086 opcode byte to support all instructions, so the x86-64 treats
the mul (unsigned multiply) and imul (signed integer multiply) instructions as
single-operand instructions, just like the inc, dec, and neg instructions.
Of course, multiplication is a two-operand function. To work around this
fact, the x86-64 always assumes the accumulator (AL, AX, EAX, or RAX)
is the destination operand.

Another problem with the mul and imul instructions is that you cannot
use them to multiply the accumulator by a constant. Intel quickly discovered
the need to support multiplication by a constant and added the more gen-
eral versions of the imul instruction to overcome this problem. Nevertheless,
you must be aware that the basic mul and imul instructions do not support the
full range of operands as the imul appearing in Chapter 4.

3. � �Zero-extending into DX:AX or EDX:EAX is just as necessary as the cwd and cdq instruc-
tions, as you will eventually see.

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

290 Chapter 6

The multiply instruction has two forms: unsigned multiplication (mul)
and signed multiplication (imul). Unlike addition and subtraction, you need
separate instructions for signed and unsigned operations.

The single-operand multiply instructions take the following forms:
Unsigned multiplication:

mul reg8 ;returns AX
mul reg16 ; returns DX:AX
mul reg32 ; returns EDX:EAX
mul reg64 ; returns RDX:RAX

mul mem8 ; returns AX
mul mem16 ; returns DX:AX
mul mem32 ; returns EDX:EAX
mul mem64 ; returns RDX:RAX

Signed (integer) multiplication:

imul reg8 ; returns AX
imul reg16 ; returns DX:AX
imul reg32 ; returns EDX:EAX
imul reg64 ; returns RDX:RAX

imul mem8 ; returns AX
imul mem16 ; returns DX:AX
imul mem32 ; returns EDX:EAX
imul mem64 ; returns RDX:RAX

When multiplying two n -bit values, the result may require as many as
2 × n bits. Therefore, if the operand is an 8-bit quantity, the result could
require 16 bits. Likewise, a 16-bit operand produces a 32-bit result, a 32-bit
operand produces 64 bits, and a 64-bit operand requires as many as 128 bits
to hold the result. Table 6-2 lists the various computations.

Table 6-2: mul and imul Operations

Instruction Computes

mul operand8 AX = AL × operand8 (unsigned)

imul operand8 AX = AL × operand8 (signed)

mul operand16 DX:AX = AX × operand16 (unsigned)

imul operand16 DX:AX = AX × operand16 (signed)

mul operand32 EDX:EAX = EAX × operand32 (unsigned)

imul operand32 EDX:EAX = EAX × operand32 (signed)

mul operand64 RDX:RAX = RAX × operand64 (unsigned)

imul operand64 RDX:RAX = RAX × operand64 (signed)

If an 8×8-, 16×16-, 32×32-, or 64×64-bit product requires more than 8,
16, 32, or 64 bits (respectively), the mul and imul instructions set the carry
and overflow flags. mul and imul scramble the sign and zero flags.

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

Arithmetic 291

NO T E 	 The sign and zero flags do not contain meaningful values after the execution of these
two instructions.

You’ll use the single-operand mul and imul instructions quite a lot
when you learn about extended-precision arithmetic in Chapter 8. Unless
you’re doing multiprecision work, however, you’ll probably want to use the
more generic multi-operand version of the imul instruction in place of the
extended-precision mul or imul. However, the generic imul (see Chapter 4)
is not a complete replacement for these two instructions; in addition to the
number of operands, several differences exist. The following rules apply
specifically to the generic (multi-operand) imul instruction:

•	 There isn’t an 8×8-bit multi-operand imul instruction available.

•	 The generic imul instruction does not produce a 2n-bit result, but trun-
cates the result to n bits. That is, a 16×16bit multiplication produces a
16-bit result. Likewise, a 32×32-bit multiplication produces a 32-bit result.
These instructions set the carry and overflow flags if the result does not
fit into the destination register.

6.1.3	 The div and idiv Instructions
The x86-64 divide instructions perform a 128/64-bit division, a 64/32-bit
division, a 32/16-bit division, or a 16/8-bit division. These instructions take
the following forms:

div reg8
div reg16
div reg32
div reg64

div mem8
div mem16
div mem32
div mem64

idiv reg8
idiv reg16
idiv reg32
idiv reg64

idiv mem8
idiv mem16
idiv mem32
idiv mem64

The div instruction is an unsigned division operation. If the operand
is an 8-bit operand, div divides the AX register by the operand, leaving
the quotient in AL and the remainder (modulo) in AH. If the operand is a
16-bit quantity, the div instruction divides the 32-bit quantity in DX:AX by
the operand, leaving the quotient in AX and the remainder in DX. With

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

292 Chapter 6

32-bit operands, div divides the 64-bit value in EDX:EAX by the operand,
leaving the quotient in EAX and the remainder in EDX. Finally, with 64-bit
operands, div divides the 128-bit value in RDX:RAX by the operand, leav-
ing the quotient in RAX and the remainder in RDX.

There is no variant of the div or idiv instructions that allows you to
divide a value by a constant. If you want to divide a value by a constant, you
need to create a memory object (preferably in the .const section) that is ini-
tialized with the constant, and then use that memory value as the div/idiv
operand. For example:

 .const
ten dword 10
 .
 .
 .
 div ten ;Divides EDX:EAX by 10

The idiv instruction computes a signed quotient and remainder. The
syntax for the idiv instruction is identical to div (except for the use of the
idiv mnemonic), though creating signed operands for idiv may require a
different sequence of instructions prior to executing idiv than for div.

You cannot, on the x86-64, simply divide one unsigned 8-bit value by
another. If the denominator is an 8-bit value, the numerator must be a
16-bit value. If you need to divide one unsigned 8-bit value by another, you
must zero-extend the numerator to 16 bits by loading the numerator into
the AL register and then moving 0 into the AH register. Failing to zero-extend
AL before executing div may cause the x86-64 to produce incorrect results! When
you need to divide two 16-bit unsigned values, you must zero-extend the
AX register (which contains the numerator) into the DX register. To do
this, just load 0 into the DX register. If you need to divide one 32-bit value
by another, you must zero-extend the EAX register into EDX (by loading
a 0 into EDX) before the division. Finally, to divide one 64-bit number by
another, you must zero-extend RAX into RDX (for example, using an xor
rdx, rdx instruction) prior to the division.

When dealing with signed integer values, you will need to sign-extend
AL into AX, AX into DX, EAX into EDX, or RAX into RDX before execut-
ing idiv. To do so, use the cbw, cwd, cdq, or cqo instructions.4 Failure to do so
may produce incorrect results.

The x86-64’s divide instructions have one other issue: you can get a fatal
error when using this instruction. First, of course, you can attempt to divide
a value by 0. Another problem is that the quotient may be too large to fit
into the RAX, EAX, AX, or AL register. For example, the 16/8-bit division
8000h/2 produces the quotient 4000h with a remainder of 0. 4000h will
not fit into 8 bits. If this happens, or you attempt to divide by 0, the x86-64
will generate a division exception or integer overflow exception. This usu-
ally means your program will crash. If this happens to you, chances are you

4. � You could also use movsx to sign-extend AL into AX.

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

Arithmetic 293

didn’t sign- or zero-extend your numerator before executing the division
operation. Because this error may cause your program to crash, you should
be very careful about the values you select when using division.

The x86-64 leaves the carry, overflow, sign, and zero flags undefined
after a division operation. Therefore, you cannot test for problems after a
division operation by checking the flag bits.

6.1.4	 The cmp Instruction, Revisited
As noted in “The cmp Instruction and Corresponding Conditional Jumps”
in Chapter 2, the cmp instruction updates the x86-64’s flags according to the
result of the subtraction operation (leftOperand - rightOperand). The x86-64
sets the flags in an appropriate fashion so that we can read this instruction
as “compare leftOperand to rightOperand.” You can test the result of the com-
parison by using the conditional set instructions to check the appropriate
flags in the flags register (see “The setcc Instructions” on page xx) or the
conditional jump instructions (Chapter 2 or Chapter 7).

Probably the first place to start when exploring the cmp instruction
is to look at exactly how it affects the flags. Consider the following cmp
instruction:

cmp ax, bx

This instruction performs the computation AX – BX and sets the flags
depending on the result of the computation. The flags are set as follows
(also see Table 6-3):

ZF

The zero flag is set if and only if AX = BX. This is the only time AX
– BX produces a 0 result. Hence, you can use the zero flag to test for
equality or inequality.

SF

The sign flag is set to 1 if the result is negative. At first glance, you might
think that this flag would be set if AX is less than BX, but this isn’t always
the case. If AX = 7FFFh and BX = –1 (0FFFFh), then subtracting AX
from BX produces 8000h, which is negative (and so the sign flag will be
set). So, for signed comparisons anyway, the sign flag doesn’t contain
the proper status. For unsigned operands, consider AX = 0FFFFh and
BX = 1. Here, AX is greater than BX but their difference is 0FFFEh,
which is still negative. As it turns out, the sign flag and the overflow flag,
taken together, can be used for comparing two signed values.

OF

The overflow flag is set after a cmp operation if the difference of AX and
BX produced an overflow or underflow. As mentioned previously, the sign
and overflow flags are both used when performing signed comparisons.

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

294 Chapter 6

CF

The carry flag is set after a cmp operation if subtracting BX from AX
requires a borrow. This occurs only when AX is less than BX, where AX
and BX are both unsigned values.

Table 6-3: Condition Code Settings After cmp

Unsigned operands Signed operands

ZF: Equality/inequality ZF: Equality/inequality

CF: Left < Right (C = 1)
 Left >= Right (C = 0)

CF: No meaning

SF: No meaning SF: See discussion in this section

OF: No meaning O:F See discussion in this section

Given that the cmp instruction sets the flags in this fashion, you can test
the comparison of the two operands with the following flags:

cmp Left, Right

For signed comparisons, the SF (sign) and OF (overflow) flags, taken
together, have the following meanings:

•	 If [(SF = 0) and (OF = 1)] or [(SF = 1) and (OF = 0)], then Left < Right for
a signed comparison.

•	 If [(SF = 0) and (OF = 0)] or [(SF = 1) and (OF = 1)], then Left >= Right
for a signed comparison.

Note that (SF xor OF) is 1 if the left operand is less than the right oper-
and. Conversely, (SF xor OF) is 0 if the left operand is greater or equal to
the right operand.

To understand why these flags are set in this manner, consider the
examples in Table 6-4.

Table 6-4: Sign and Overflow Flag Settings After Subtraction

Left Minus Right SF OF

0FFFFh (–1) – 0FFFEh (–2) 0 0

8000h (–32,768) – 0001h 0 1

0FFFEh (–2) – 0FFFFh (–1) 1 0

7FFFh (32767) – 0FFFFh (–1) 1 1

Remember, the cmp operation is really a subtraction; therefore, the first
example in Table 6-4 computes (–1) – (–2), which is (+1). The result is posi-
tive and an overflow did not occur, so both the S and O flags are 0. Because
(SF xor OF) is 0, Left is greater than or equal to Right.

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

Arithmetic 295

In the second example, the cmp instruction would compute (–32,768)
– (+1), which is (–32,769). Because a 16-bit signed integer cannot represent
this value, the value wraps around to 7FFFh (+32,767) and sets the overflow
flag. The result is positive (at least as a 16-bit value), so the CPU clears the
sign flag. (SF xor OF) is 1 here, so Left is less than Right.

In the third example, cmp computes (–2) – (–1), which produces (–1).
No overflow occurred, so the OF is 0, the result is negative, so the SF is 1.
Because (SF xor OF) is 1, Left is less than Right.

In the fourth (and final) example, cmp computes (+32,767) – (–1). This
produces (+32,768), setting the overflow flag. Furthermore, the value wraps
around to 8000h (–32,768), so the sign flag is set as well. Because (SF xor
OF) is 0, Left is greater than or equal to Right.

6.1.5	 The setcc Instructions
The setcc (set on condition) instructions set a single-byte operand (register or
memory) to 0 or 1 depending on the values in the flags register. The gen-
eral formats for the setcc instructions are as follows:

setcc reg8
setcc mem8

setcc represents a mnemonic appearing in Tables 6-5, 6-6, and 6-7.
These instructions store a 0 in the corresponding operand if the condition
is false, and they store a 1 in the 8-bit operand if the condition is true.

Table 6-5: setcc Instructions That Test Flags

Instruction Description Condition Comments

setc Set if carry Carry = 1 Same as setb,
setnae

setnc Set if no carry Carry = 0 Same as setnb,
setae

setz Set if zero Zero = 1 Same as sete

setnz Set if not zero Zero = 0 Same as setne

sets Set if sign Sign = 1

setns Set if no sign Sign = 0

seto Set if overflow Overflow = 1

setno Set if no overflow Overflow = 0

setp Set if parity Parity = 1 Same as setpe

setpe Set if parity even Parity = 1 Same as setp

setnp Set if no parity Parity = 0 Same as setpo

setpo Set if parity odd Parity = 0 Same as setnp

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

296 Chapter 6

The setcc instructions in Table 6-5 simply test the flags without any
other meaning attached to the operation. You could, for example, use setc
to check the carry flag after a shift, rotate, bit test, or arithmetic operation.

The setp/setpe and setnp/setpo instructions check the parity flag. These
instructions appear here for completeness, but this book will not spend
much time discussing the parity flag; in modern code, it’s typically used
only to check for an FPU not-a-number (NaN) condition.

The cmp instruction works synergistically with the setcc instructions.
Immediately after a cmp operation, the processor flags provide information
concerning the relative values of those operands. They allow you to see if
one operand is less than, equal to, or greater than the other.

Two additional groups of setcc instructions are useful after a cmp operation.
The first group deals with the result of an unsigned comparison (Table 6-6);
the second group deals with the result of a signed comparison (Table 6-7).

Table 6-6: setcc Instructions for Unsigned Comparisons

Instruction Description Condition Comments

seta Set if above (>) Carry = 0, Zero = 0 Same as setnbe

setnbe Set if not below or
equal (not <=)

Carry = 0, Zero = 0 Same as seta

setae Set if above or
equal (>=)

Carry = 0 Same as setnc,
setnb

setnb Set if not below
(not <)

Carry = 0 Same as setnc,
setae

setb Set if below (<) Carry = 1 Same as setc,
setnae

setnae Set if not above or
equal (not >=)

Carry = 1 Same as setc, setb

setbe Set if below or
equal (<=)

Carry = 1 or Zero
= 1

Same as setna

setna Set if not above
(not >)

Carry = 1 or Zero
= 1

Same as setbe

sete Set if equal (==) Zero = 1 Same as setz

setne Set if not equal (!=) Zero = 0 Same as setnz

Table 6-7: setcc Instructions for Signed Comparisons

Instruction Description Condition Comments

setg Set if greater (>) Sign == Overflow
and
Zero == 0

Same as setnle

setnle Set if not less than
or equal (not <=)

Sign == Overflow
or
Zero == 0

Same as setg

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

Arithmetic 297

Instruction Description Condition Comments

setge Set if greater than
or equal (>=)

Sign == Overflow Same as setnl

setnl Set if not less than
(not <)

Sign == Overflow Same as setge

setl Set if less than (<) Sign != Overflow Same as setnge

setnge Set if not greater or
equal (not >=)

Sign != Overflow Same as setl

setle Set if less than or
equal (<=)

Sign != Overflow or
Zero == 1

Same as setng

setng Set if not greater
than (not >)

Sign != Overflow or
Zero == 1

Same as setle

sete Set if equal (=) Zero == 1 Same as setz

setne Set if not equal (!=) Zero == 0 Same as setnz

The setcc instructions are particularly valuable because they can con-
vert the result of a comparison to a Boolean value (false/true or 0/1). This
is especially important when translating statements from a high-level lan-
guage like Swift or C/C++ into assembly language. The following example
shows how to use these instructions in this manner:

; bool = a <= b

 mov eax, a
 cmp eax, b
 setle bool ; bool is a byte variable.

Because the setcc instructions always produce 0 or 1, you can use the
results with the and and or instructions to compute complex Boolean values:

; bool = ((a <= b) && (d == e))

 mov eax, a
 cmp eax, b
 setle bl
 mov eax, d
 cmp eax, e
 sete bh
 and bh, bl
 mov bool, bh

6.1.6	 The test Instruction
The x86-64 test instruction is to the and instruction what the cmp instruction
is to sub. That is, the test instruction computes the logical AND of its two
operands and sets the condition code flags based on the result; it does not,

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

298 Chapter 6

however, store the result of the logical AND back into the destination oper-
and. The syntax for the test instruction is similar to and:

test operand1, operand2

The test instruction sets the zero flag if the result of the logical AND
operation is 0. It sets the sign flag if the HO bit of the result contains a 1.
The test instruction always clears the carry and overflow flags.

The primary use of the test instruction is to check whether an indi-
vidual bit contains a 0 or a 1. Consider the instruction test al, 1. This
instruction logically ANDs AL with the value 1; if bit 1 of AL contains 0, the
result will be 0 (setting the zero flag) because all the other bits in the con-
stant 1 are 0. Conversely, if bit 1 of AL contains 1, then the result is not 0, so
test clears the zero flag. Therefore, you can test the zero flag after this test
instruction to see if bit 0 contains a 0 or a 1 (for example, using setz or setnz
instructions, or the jz/jnz instructions).

The test instruction can also check whether all the bits in a specified
set of bits contain 0. The instruction test al, 0fh sets the zero flag if and
only if the LO 4 bits of AL all contain 0.

One important use of the test instruction is to check whether a register
contains 0. The instruction test reg, reg, where both operands are the same
register, will logically AND that register with itself. If the register contains
0, the result is 0 and the CPU will set the zero flag. However, if the register
contains a nonzero value, logically ANDing that value with itself produces
that same nonzero value, so the CPU clears the zero flag. Therefore, you
can check the zero flag immediately after the execution of this instruction
(for example, using the setz or setnz instructions or the jz and jnz instruc-
tions) to see if the register contains 0. Here are some examples:

 test eax, eax
 setz bl ; bl is set to 1 if EAX contains 0.
 .
 .
 .
 test bl, bl
 jz bxIs0

 Do something if bl != 0

bxIs0:

One major failing of the test instruction is that immediate (constant)
operands can be no larger than 32 bits (as is the case with most instruc-
tions), which makes it difficult to use this instruction to test for set bits
beyond bit position 31. For testing individual bits, you can use the bt (bit
test) instruction (see “Instructions That Manipulate Bits” in Chapter 12).
Otherwise, you’ll have to move the 64-bit constant into a register (the mov
instruction does support 64-bit immediate operands) and then test your
target register against the 64-bit constant value in the newly loaded register.

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

Arithmetic 299

	 6.2	� Arithmetic Expressions
Probably the biggest shock to beginners facing assembly language for the first
time is the lack of familiar arithmetic expressions. Arithmetic expressions, in most
high-level languages, look similar to their algebraic equivalents. For example:

x = y * z;

In assembly language, you’ll need several statements to accomplish this
same task:

mov eax, y
imul eax, z
mov x, eax

Obviously, the HLL version is much easier to type, read, and understand.
Although a lot of typing is involved, converting an arithmetic expression into
assembly language isn’t difficult at all. By attacking the problem in steps,
the same way you would solve the problem by hand, you can easily break any
arithmetic expression into an equivalent sequence of assembly language
statements.

6.2.1	 Simple Assignments
The easiest expressions to convert to assembly language are simple assign-
ments. Simple assignments copy a single value into a variable and take one of
two forms:

variable = constant

or

var1 = var2

Converting the first form to assembly language is simple—just use this
assembly language statement:

mov variable, constant

This mov instruction copies the constant into the variable.
The second assignment is slightly more complicated because the x86-64

doesn’t provide a memory-to-memory mov instruction. Therefore, to copy
one memory variable into another, you must move the data through a reg-
ister. By convention (and for slight efficiency reasons), most programmers
tend to favor AL/AX/EAX/RAX for this purpose. For example:

var1 = var2;

becomes

mov eax, var2
mov var1, eax

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

300 Chapter 6

assuming that var1 and var2 are 32-bit variables. Use AL if they are 8-bit
variables; use AX if they are 16-bit variables, or use RAX if they are 64-bit
variables.

Of course, if you’re already using AL, AX, EAX, or RAX for something
else, one of the other registers will suffice. Regardless, you will generally
use a register to transfer one memory location to another.

6.2.2	 Simple Expressions
The next level of complexity is a simple expression. A simple expression takes
the following form:

var1 = term1 op term2;

var1 is a variable, term1 and term2 are variables or constants, and op is an
arithmetic operator (addition, subtraction, multiplication, and so on). Most
expressions take this form. It should come as no surprise, then, that the
x86-64 architecture was optimized for just this type of expression.

A typical conversion for this type of expression takes the following
form:

mov eax, term1
op eax, term2
mov var1, eax

op is the mnemonic that corresponds to the specified operation (for
example, + is add, – is sub, and so forth).

Note that the simple expression var1 = const1 op const2; is easily handled
with a compile-time expression and a single mov instruction. For example, to
compute var1 = 5 + 3;,use the single instruction mov var1, 5 + 3.

You need to be aware of a few inconsistencies. When dealing with the (i)
mul and (i)div instructions on the x86-64, you must use the AL/AX/EAX/
RAX and AH/DX/EDX/RDX registers. You cannot use arbitrary registers as
you can with other operations. Also, don’t forget the sign-extension instruc-
tions if you’re performing a division operation to divide one 16/32/64-bit
number by another. Finally, don’t forget that some instructions may cause
overflow. You may want to check for an overflow (or underflow) condition
after an arithmetic operation.

Here are examples of common simple expressions:

;x = y + z;

 mov eax, y
 add eax, z
 mov x, eax

;x = y - z;

 mov eax, y

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

Arithmetic 301

 sub eax, z
 mov x, eax

;x = y * z; {unsigned}

 mov eax, y
 mul z ; Don't forget this wipes out EDX.
 mov x, eax

;x = y * z; {signed}

 mov eax, y
 imul eax, z ; Does not affect EDX!
 mov x, eax

;x = y div z; {unsigned div}

 mov eax, y
 xor edx, edx ; Zero-extend EAX into EDX.
 div z
 mov x, eax

;x = y idiv z; {signed div}

 mov eax, y
 cdq ; Sign-extend EAX into EDX.
 idiv z
 mov x, eax

;x = y % z; {unsigned remainder}

 mov eax, y
 xor edx, edx ; Zero-extend EAX into EDX.
 div z
 mov x, edx ; Note that remainder is in EDX.

;x = y % z; {signed remainder}

 mov eax, y
 cdq ; Sign-extend EAX into EDX.
 idiv z
 mov x, edx ; Remainder is in EDX.

Certain unary operations also qualify as simple expressions, producing
additional inconsistencies to the general rule. A good example of a unary
operation is negation. In a high-level language, negation takes one of two
possible forms:

var = –var

or

var1 = –var2

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

302 Chapter 6

Note that var = –constant is really a simple assignment, not a simple
expression. You can specify a negative constant as an operand to the mov
instruction:

mov var, -14

To handle var1 = –var1, use this single assembly language statement:

; var1 = -var1;

neg var1

If two different variables are involved, use the following:

; var1 = -var2;

mov eax, var2
neg eax
mov var1, eax

6.2.3	 Complex Expressions
A complex expression is any arithmetic expression involving more than two
terms and one operator. Such expressions are commonly found in programs
written in a high-level language. Complex expressions may include paren-
theses to override operator precedence, function calls, array accesses, and so
on. This section outlines the rules for converting such expressions.

A complex expression that is easy to convert to assembly language is
one that involves three terms and two operators. For example:

w = w - y - z;

Clearly the straightforward assembly language conversion of this state-
ment requires two sub instructions. However, even with an expression as
simple as this, the conversion is not trivial. There are actually two ways to
convert the preceding statement into assembly language:

mov eax, w
sub eax, y
sub eax, z
mov w, eax

and

mov eax, y
sub eax, z
sub w, eax

The second conversion, because it is shorter, looks better. However, it
produces an incorrect result (assuming C-like semantics for the original state-
ment). Associativity is the problem. The second sequence in the preceding
example computes w = w – (y – z), which is not the same as w = (w – y) – z.

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

Arithmetic 303

How we place the parentheses around the subexpressions can affect the
result. Note that if you are interested in a shorter form, you can use the fol-
lowing sequence:

mov eax, y
add eax, z
sub w, eax

This computes w = w – (y + z), equivalent to w = (w – y) – z.
Precedence is another issue. Consider this expression:

x = w * y + z;

Once again, we can evaluate this expression in two ways:

x = (w * y) + z;

or

x = w * (y + z);

By now, you’re probably thinking that this explanation is crazy. Everyone
knows the correct way to evaluate these expressions is by the former form.
However, you’d be wrong. The APL programming language, for example,
evaluates expressions solely from right to left and does not give one operator
precedence over another. Which way is “correct” depends entirely on how
you define precedence in your arithmetic system.

Consider this expression:

x op1 y op2 z

If op1 takes precedence over op2, then this evaluates to (x op1 y) op2 z.
Otherwise, if op2 takes precedence over op1, this evaluates to x op1 (y op2 z).
Depending on the operators and operands involved, these two computa-
tions could produce different results.

Most high-level languages use a fixed set of precedence rules to describe
the order of evaluation in an expression involving two or more different
operators. Such programming languages usually compute multiplication
and division before addition and subtraction. Those that support exponen-
tiation (for example, FORTRAN and BASIC) usually compute that before
multiplication and division. These rules are intuitive because almost every-
one learns them before high school.

When converting expressions into assembly language, you must be sure
to compute the subexpression with the highest precedence first. The follow-
ing example demonstrates this technique:

; w = x + y * z;

 mov ebx, x
 mov eax, y ; Must compute y * z first because "*"
 imul eax, z ; has higher precedence than "+".

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

304 Chapter 6

 add eax, ebx
 mov w, eax

If two operators appearing within an expression have the same pre-
cedence, you determine the order of evaluation by using associativity rules.
Most operators are left-associative, meaning that they evaluate from left to right.
Addition, subtraction, multiplication, and division are all left-associative. A
right-associative operator evaluates from right to left. The exponentiation oper-
ator in FORTRAN is a good example of a right-associative operator:

2**2**3

is equal to

2**(2**3)

not

(2**2)**3

The precedence and associativity rules determine the order of evaluation.
Indirectly, these rules tell you where to place parentheses in an expression to
determine the order of evaluation. Of course, you can always use parentheses
to override the default precedence and associativity. However, the ultimate
point is that your assembly code must complete certain operations before
others to correctly compute the value of a given expression. The following
examples demonstrate this principle:

; w = x - y - z

 mov eax, x ; All the same operator precedence,
 sub eax, y ; so we need to evaluate from left
 sub eax, z ; to right because they are left-
 mov w, eax ; associative.

; w = x + y * z

 mov eax, y ; Must compute y * z first because
 imul eax, z ; multiplication has a higher
 add eax, x ; precedence than addition.
 mov w, eax

; w = x / y - z

 mov eax, x ; Here we need to compute division
 cdq ; first because it has the highest
 idiv y ; precedence.
 sub eax, z
 mov w, eax

; w = x * y * z

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

Arithmetic 305

 mov eax, y ; Addition and multiplication are
 imul eax, z ; commutative; therefore, the order
 imul eax, x ; of evaluation does not matter.
 mov w, eax

The associativity rule has one exception: if an expression involves mul-
tiplication and division, it is generally better to perform the multiplication
first. For example, given an expression of the form

w = x / y * z ; Note: This is (x * z) / y, not x / (y * z).

it is usually better to compute x * z and then divide the result by y rather
than divide x by y and multiply the quotient by z.

This approach is better for two reasons. First, remember that the imul
instruction always produces a 64-bit result (assuming 32-bit operands). By
doing the multiplication first, you automatically sign-extend the product
into the EDX register so you do not have to sign-extend EAX prior to the
division.

A second reason for doing the multiplication first is to increase the
accuracy of the computation. Remember, (integer) division often produces an
inexact result. For example, if you compute 5 / 2, you will get the value 2, not
2.5. Computing (5 / 2) × 3 produces 6. However, if you compute (5 × 3) / 2,
you get the value 7, which is a little closer to the real quotient (7.5). Therefore,
if you encounter an expression of the form

w = x / y * z;

you can usually convert it to the following assembly code:

mov eax, x
imul z ; Note the use of extended imul!
idiv y
mov w, eax

If the algorithm you’re encoding depends on the truncation effect of
the division operation, you cannot use this trick to improve the algorithm.
Moral of the story: always make sure you fully understand any expression
you are converting to assembly language. If the semantics dictate that you
must perform the division first, then do so.

Consider the following statement:

w = x – y * x;

 Because subtraction is not commutative, you cannot compute y * x and
then subtract x from this result. Rather than use a straightforward multipli-
cation-and-addition sequence, you’ll have to load x into a register, multiply
y and x, leaving their product in a different register, and then subtract this
product from x. For example:

mov ecx, x
mov eax, y

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

306 Chapter 6

imul eax, x
sub ecx, eax
mov w, ecx

This trivial example demonstrates the need for temporary variables in
an expression. The code uses the ECX register to temporarily hold a copy
of x until it computes the product of y and x. As your expressions increase
in complexity, the need for temporaries grows. Consider the following C
statement:

w = (a + b) * (y + z);

Following the normal rules of algebraic evaluation, you compute the
subexpressions inside the parentheses first (that is, the two subexpressions
with the highest precedence) and set their values aside. When you’ve com-
puted the values for both subexpressions, you can compute their product.
One way to deal with a complex expression like this is to reduce it to a
sequence of simple expressions whose results wind up in temporary vari-
ables. For example, you can convert the preceding single expression into
the following sequence:

temp1 = a + b;
temp2 = y + z;
w = temp1 * temp2;

Because converting simple expressions to assembly language is quite
easy, it’s now a snap to compute the former complex expression in assembly.
The code is shown here:

mov eax, a
add eax, b
mov temp1, eax
mov eax, y
add eax, z
mov temp2, eax
mov eax, temp1
imul eax, temp2
mov w, eax

This code is grossly inefficient and requires that you declare a couple
of temporary variables in your data segment. However, it is easy to optimize
this code by keeping temporary variables, as much as possible, in x86-64
registers. By using x86-64 registers to hold the temporary results, this code
becomes the following:

mov eax, a
add eax, b
mov ebx, y
add ebx, z
imul eax, ebx
mov w, eax

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

Arithmetic 307

Here’s yet another example:

x = (y + z) * (a - b) / 10;

This can be converted to a set of four simple expressions:

temp1 = (y + z)
temp2 = (a - b)
temp1 = temp1 * temp2
x = temp1 / 10

You can convert these four simple expressions into the following assem-
bly language statements:

 .const
ten dword 10
 .
 .
 .
 mov eax, y ; Compute EAX = y + z
 add eax, z
 mov ebx, a ; Compute EBX = a - b
 sub ebx, b
 imul ebx ; This sign-extends EAX into EDX.
 idiv ten
 mov x, eax

The most important thing to keep in mind is that you should keep tem-
porary values in registers for efficiency. Use memory locations to hold tempo-
raries only if you’ve run out of registers.

Ultimately, converting a complex expression to assembly language is
a little different from solving the expression by hand. Instead of actually
computing the result at each stage of the computation, you simply write the
assembly code that computes the result.

6.2.4	 Commutative Operators
If op represents an operator, that operator is commutative if the following
relationship is always true:

(A op B) = (B op A)

As you saw in the previous section, commutative operators are nice
because the order of their operands is immaterial, and this lets you rear-
range a computation, often making it easier or more efficient. Often,
rearranging a computation allows you to use fewer temporary variables.
Whenever you encounter a commutative operator in an expression, you
should always check whether you can use a better sequence to improve
the size or speed of your code.

Tables 6-8 and 6-9, respectively, list the commutative and noncommuta-
tive operators you typically find in high-level languages.

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

308 Chapter 6

Table 6-8: Common Commutative Binary Operators

Pascal C/C++ Description

+ + Addition

* * Multiplication

and && or & Logical or bitwise AND

or || or | Logical or bitwise OR

xor ^ (Logical or) bitwise
exclusive-OR

= == Equality

<> != Inequality

Table 6-9: Common Noncommutative Binary Operators

Pascal C/C++ Description

- - Subtraction

/ or div / Division

mod % Modulo or remainder

< < Less than

<= <= Less than or equal

> > Greater than

>= >= Greater than or equal

	 6.3	 �Logical (Boolean) Expressions
Consider the following expression from a C/C++ program:

b = ((x == y) && (a <= c)) || ((z - a) != 5);

Here, b is a Boolean variable, and the remaining variables are all
integers.

Although it takes only a single bit to represent a Boolean value, most
assembly language programmers allocate a whole byte or word to represent
Boolean variables. Most programmers (and, indeed, some programming
languages like C) choose 0 to represent false and anything else to represent
true. Some people prefer to represent true and false with 1 and 0 (respec-
tively) and not allow any other values. Others select all 1 bits (0FFFF_FFFF_
FFFF_FFFFh, 0FFFF_FFFFh, 0FFFFh, or 0FFh) for true and 0 for false. You
could also use a positive value for true and a negative value for false. All
these mechanisms have their advantages and drawbacks.

Using only 0 and 1 to represent false and true offers two big advan-
tages. First, The setcc instructions produce these results, so this scheme is
compatible with those instructions. Second, the x86-64 logical instructions
(and, or, xor, and, to a lesser extent, not) operate on these values exactly as

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

Arithmetic 309

you would expect. That is, if you have two Boolean variables a and b, then
the following instructions perform the basic logical operations on these two
variables:

; d = a AND b;

 mov al, a
 and al, b
 mov d, al

; d = a || b;

 mov al, a
 or al, b
 mov d, al

; d = a XOR b;

 mov al, a
 xor al, b
 mov d, al

; b = NOT a;

 mov al, a ; Note that the NOT instruction does not
 not al ; properly compute al = NOT all by itself.
 and al, 1 ; That is, (NOT 0) does not equal 1. The AND
 mov b, al ; instruction corrects this problem.

 mov al, a ; Another way to do b = NOT a;
 xor al, 1 ; Inverts bit 0.
 mov b, al

As pointed out here, the not instruction will not properly compute logi-
cal negation. The bitwise not of 0 is 0FFh, and the bitwise not of 1 is 0FEh.
Neither result is 0 or 1. However, by ANDing the result with 1, you get the
proper result. Note that you can implement the not operation more effi-
ciently by using the xor al, 1 instruction because it affects only the LO bit.

As it turns out, using 0 for false and anything else for true has a lot of
subtle advantages. Specifically, the test for true or false is often implicit
in the execution of any logical instruction. However, this mechanism suf-
fers from a big disadvantage: you cannot use the x86-64 and, or, xor, and
not instructions to implement the Boolean operations of the same name.
Consider the two values 55h and 0AAh. They’re both nonzero so they both
represent the value true. However, if you logically AND 55h and 0AAh
together by using the x86-64 and instruction, the result is 0. True AND true
should produce true, not false. Although you can account for situations like
this, it usually requires a few extra instructions and is somewhat less effi-
cient when computing Boolean operations.

A system that uses nonzero values to represent true and 0 to represent
false is an arithmetic logical system. A system that uses two distinct values like

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

310 Chapter 6

0 and 1 to represent false and true is called a Boolean logical system, or simply
a Boolean system. You can use either system, as convenient. Consider again
this Boolean expression:

b = ((x == y) and (a <= d)) || ((z - a) != 5);

The resulting simple expressions might be as follows:

mov eax, x
cmp eax, y
sete al ; al = x == y;

mov ebx, a
cmp ebx, d
setle bl ; bl = a <= d;
and bl, al ; bl = (x = y) and (a <= d);

mov eax, z
sub eax, a
cmp eax, 5
setne al
or al, bl ; al = ((x == y) && (a <= d)) ||
mov b, al ; ((z - a) != 5);

When working with Boolean expressions, don’t forget that you might
be able to optimize your code by simplifying them with algebraic transfor-
mations. In Chapter 7, you’ll also see how to use control flow to calculate a
Boolean result, which is generally quite a bit more efficient than using com-
plete Boolean evaluation as the examples in this section teach.

	 6.4	� Machine and Arithmetic Idioms
An idiom is an idiosyncrasy (a peculiarity). Several arithmetic operations
and x86-64 instructions have idiosyncrasies that you can take advantage
of when writing assembly language code. Some people refer to the use of
machine and arithmetic idioms as tricky programming that you should always
avoid in well-written programs. While it is wise to avoid tricks just for the
sake of tricks, many machine and arithmetic idioms are well-known and
commonly found in assembly language programs. You will see some impor-
tant idioms all the time, so it makes sense to discuss them.

6.4.1	 Multiplying without mul or imul
When multiplying by a constant, you can sometimes write faster code
by using shifts, additions, and subtractions in place of multiplication
instructions.

Remember, a shl instruction computes the same result as multiplying
the specified operand by 2. Shifting to the left two bit positions multiplies
the operand by 4. Shifting to the left three bit positions multiplies the oper-
and by 8. In general, shifting an operand to the left n bits multiplies it by

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

Arithmetic 311

2n. You can multiply any value by a constant by using a series of shifts and
additions or shifts and subtractions. For example, to multiply the AX regis-
ter by 10, you need only multiply it by 8 and then add two times the original
value. That is, 10 × AX = 8 × AX + 2 × AX. The code to accomplish this is as
follows:

shl ax, 1 ; Multiply AX by 2.
mov bx, ax ; Save 2 * AX for later.
shl ax, 2 ; Multiply AX by 8 (*4 really,
 ; but AX contains *2).
add ax, bx ; Add in AX * 2 to AX * 8 to get AX * 10.

If you look at the instruction timings, the preceding shift and add
example requires fewer clock cycles on some processors in the 80x86 family
than the mul instruction. Of course, the code is somewhat larger (by a few
bytes), but the performance improvement is usually worth it.

You can also use subtraction with shifts to perform a multiplication
operation. Consider the following multiplication by 7:

mov ebx, eax ; Save EAX * 1
shl eax, 3 ; EAX = EAX * 8
sub eax, ebx ; EAX * 8 - EAX * 1 is EAX * 7

A common error that beginning assembly language programmers make
is subtracting or adding 1 or 2 rather than EAX × 1 or EAX × 2. The follow-
ing does not compute EAX × 7:

shl eax, 3
sub eax, 1

It computes (8 × EAX) – 1, something entirely different (unless, of
course, EAX = 1). Beware of this pitfall when using shifts, additions, and
subtractions to perform multiplication operations.

You can also use the lea instruction to compute certain products. The
trick is to use the scaled-index addressing modes. The following examples
demonstrate some simple cases:

lea eax, [ecx][ecx] ; EAX = ECX * 2
lea eax, [eax][eax * 2] ; EAX = ECX * 3
lea eax, [eax * 4] ; EAX = ECX * 4
lea eax, [ebx][ebx * 4] ; EAX = EBX * 5
lea eax, [eax * 8] ; EAX = EAX * 8
lea eax, [edx][edx * 8] ; EAX = EDX * 9

As time has progressed, Intel (and AMD) have improved the perfor-
mance of the imul instruction to the point that it rarely makes sense to try
to improve performance by using strength-reduction optimizations such as sub-
stituting shifts and adds for a multiplication. You should consult the Intel/
AMD documentation (particularly the section on instruction timing) to see
if a multi-instruction sequence is faster. Generally, a single shift instruction

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

312 Chapter 6

(for multiplication by a power of two) or lea is going to produce better
results than imul; beyond that, it’s best to measure and see.

6.4.2	 Dividing Without div or idiv
Just as the shl instruction is useful for simulating a multiplication by a
power of two, the shr and sar instructions can simulate a division by a power
of two. Unfortunately, you cannot easily use shifts, additions, and subtrac-
tions to perform division by an arbitrary constant. Therefore, this trick is
useful only when dividing by powers of two. Also, don’t forget that the sar
instruction rounds toward negative infinity, unlike the idiv instruction,
which rounds toward 0.

You can also divide by a value by multiplying by its reciprocal. Because
the multiply instruction is faster than the divide instruction, multiplying by
a reciprocal is usually faster than division.

To multiply by a reciprocal when dealing with integers, we must cheat.
If you want to multiply by 1/10, there is no way you can load the value 1/10
into an x86-64 integer register prior to performing the multiplication.
However, we could multiply 1/10 by 10, perform the multiplication, and
then divide the result by 10 to get the final result. Of course, this wouldn’t
buy you anything; in fact, it would make things worse because you’re now
doing a multiplication by 10 as well as a division by 10. However, suppose
you multiply 1/10 by 65,536 (6,554), perform the multiplication, and then
divide by 65,536. This would still perform the correct operation, and, as it
turns out, if you set up the problem correctly, you can get the division opera-
tion for free. Consider the following code that divides AX by 10:

mov dx, 6554 ; 6,554 = round(65,536 / 10)
mul dx

This code leaves AX/10 in the DX register.
To understand how this works, consider what happens when you use the

mul instruction to multiply AX by 65,536 (1_0000h). This moves AX into DX
and sets AX to 0 (a multiplication by 1_0000h is equivalent to a shift left by
16 bits). Multiplying by 6,554 (65,536 divided by 10) puts AX divided by 10
into the DX register. Because mul is faster than div, this technique runs a
little faster than using division.

Multiplying by a reciprocal works well when you need to divide by a
constant. You could even use this approach to divide by a variable, but the
overhead to compute the reciprocal pays off only if you perform the divi-
sion many, many times by the same value.

6.4.3	 Implementing Modulo-N Counters with AND
If you want to implement a counter variable that counts up to 2n – 1 and
then resets to 0, use the following code:

inc CounterVar
and CounterVar, nBits

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

Arithmetic 313

where nBits is a binary value containing n bits of 1s right-justified in the
number. For example, to create a counter that cycles between 0 and 15
(24 –1), you could use the following:

inc CounterVar
and CounterVar, 00001111b

	 6.5	� Floating-Point Arithmetic
Integer arithmetic does not let you represent fractional numeric values.
Therefore, modern CPUs support an approximation of real arithmetic:
floating-point arithmetic. To represent real numbers, most floating-point for-
mats employ scientific notation and use a certain number of bits to repre-
sent a mantissa and a smaller number of bits to represent an exponent.

For example, in the number 3.456e+12, the mantissa consists of 3.456,
and the exponent digits are 12. Because the number of bits is fixed in
computer-based representations, computers can represent only a certain
number of digits (known as significant digits) in the mantissa. For example,
if a floating-point representation could handle only three significant
digits, then the fourth digit in 3.456e+12 (the 6) could not be accurately
represented with that format, as three significant digits can represent only
3.45e+12 correctly.

Because computer-based floating-point representations also use a finite
number of bits to represent the exponent, it also has a limited range of
values, ranging from 10±38 for the single-precision format to 10±308 for the
double-precision format (and up to 10±4932 for extended-precision format).
This is known as the dynamic range of the value.

A big problem with floating-point arithmetic is that it does not follow
the standard rules of algebra. Normal algebraic rules apply only to infinite-
precision arithmetic.

Consider the simple statement x = x + 1, where x is an integer. On any
modern computer, this statement follows the normal rules of algebra as
long as overflow does not occur. That is, this statement is valid only for certain
values of x (minint <= x < maxint). Most programmers do not have a problem
with this because they are well aware that integers in a program do not fol-
low the standard algebraic rules (for example, 5 / 2 does not equal 2.5).

Integers do not follow the standard rules of algebra because the com-
puter represents them with a finite number of bits. You cannot represent any
of the (integer) values above the maximum integer or below the minimum
integer. Floating-point values suffer from this same problem, only worse.
After all, integers are a subset of real numbers. Therefore, the floating-point
values must represent the same infinite set of integers. However, an infinite
number of real values exist between any two integer values. In addition to
having to limit your values between a maximum and minimum range, you
cannot represent all the values between any pair of integers, either.

To demonstrate the impact of limited-precision arithmetic, we will
adopt a simplified decimal floating-point format for our examples. Our

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

314 Chapter 6

floating-point format will provide a mantissa with three significant digits
and a decimal exponent with two digits. The mantissa and exponents are
both signed values, as shown in Figure 6-1.

e ±±

Figure 6-1: A floating-point format

When adding and subtracting two numbers in scientific notation, we must
adjust the two values so that their exponents are the same. Multiplication and
division don’t require the exponents to be the same; instead, the exponent
after a multiplication is the sum of the two operand exponents, and the expo-
nent after a division is the difference of the dividend and divisor’s exponents.

For example, when adding 1.2e1 and 4.5e0, we must adjust the values
so they have the same exponent. One way to do this is to convert 4.5e0
to 0.45e1 and then add. This produces 1.65e1. Because the computation
and result require only three significant digits, we can compute the cor-
rect result via the representation shown in Figure 6-1. However, suppose we
want to add the two values 1.23e1 and 4.56e0. Although both values can
be represented using the three-significant-digit format, the computation
and result do not fit into three significant digits. That is, 1.23e1 + 0.456e1
requires four digits of precision in order to compute the correct result of
1.686, so we must either round or truncate the result to three significant
digits. Rounding generally produces the most accurate result, so let’s
round the result to obtain 1.69e1.

In fact, the rounding does not occur after adding the two values together
(that is, producing the sum 1.686e1 and then rounding this to 1.69e1). The
rounding actually occurs when converting 4.56e0 to 0.456e1, because the
value 0.456e1 requires four digits of precision to maintain. Therefore, during
the conversion, we have to round it to 0.46e1 so that the result fits into three
significant digits. Then, the sum of 1.23e1 and 0.46e1 produces the final
(rounded) sum of 1.69e1.

As you can see, the lack of precision (the number of digits or bits we
maintain in a computation) affects the accuracy (the correctness of the
computation).

In the addition/subtraction example, we were able to round the result
because we maintained four significant digits during the calculation (specifi-
cally, when converting 4.56e0 to 0.456e1). If our floating-point calculation
had been limited to three significant digits during computation, we would
have had to truncate the last digit of the smaller number, obtaining 0.45e1,
resulting in a sum of 1.68e1, a value that is even less accurate.

To improve the accuracy of floating-point calculations, it is useful to
maintain one or more extra digits for use during the calculation (such as
the extra digit used to convert 4.56e0 to 0.456e1). Extra digits available
during a computation are known as guard digits (or guard bits in the case
of a binary format). They greatly enhance accuracy during a long chain of
computations.

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

Arithmetic 315

In a sequence of floating-point operations, the error can accumulate
and greatly affect the computation itself. For example, suppose we were to
add 1.23e3 to 1.00e0. Adjusting the numbers so their exponents are the
same before the addition produces 1.23e3 + 0.001e3. The sum of these two
values, even after rounding, is 1.23e3. This might seem perfectly reasonable
to you; after all, we can maintain only three significant digits, so adding in
a small value shouldn’t affect the result at all. However, suppose we were to
add 1.00e0 to 1.23e3 10 times.5 The first time we add 1.00e0 to 1.23e3, we
get 1.23e3. Likewise, we get this same result the second, third, fourth . . .
and tenth times we add 1.00e0 to 1.23e3. On the other hand, had we added
1.00e0 to itself 10 times, then added the result (1.00e1) to 1.23e3, we would
have gotten a different result, 1.24e3. This is an important fact to know
about limited-precision arithmetic:

The order of evaluation can affect the accuracy of the result.

You will get more-accurate results if the relative magnitudes (the expo-
nents) are close to one another when adding and subtracting floating-point
values. If you are performing a chain calculation involving addition and
subtraction, you should attempt to group the values appropriately.

Another problem with addition and subtraction is that you can wind up
with false precision. Consider the computation 1.23e0 – 1.22e0, which pro-
duces 0.01e0. Although the result is mathematically equivalent to 1.00e – 2,
this latter form suggests that the last two digits are exactly 0. Unfortunately,
we have only a single significant digit at this time (remember, the original
result was 0.01e0, and those two leading 0s were significant digits). Indeed,
some floating-point unit (FPU) or software packages might actually insert
random digits (or bits) into the LO positions. This brings up a second
important rule concerning limited-precision arithmetic:

Subtracting two numbers with the same signs (or adding two
numbers with different signs) can produce high-order significant
digits (bits) that are 0. This reduces the number of significant
digits (bits) by a like amount in the final result.

By themselves, multiplication and division do not produce particularly
poor results. However, they tend to multiply any error that already exists in
a value. For example, if you multiply 1.23e0 by 2, when you should be mul-
tiplying 1.24e0 by 2, the result is even less accurate. This brings up a third
important rule when working with limited-precision arithmetic:

When performing a chain of calculations involving addition, sub-
traction, multiplication, and division, try to perform the multipli-
cation and division operations first.

Often, by applying normal algebraic transformations, you can arrange
a calculation so the multiply and divide operations occur first. For example,
suppose you want to compute x * (y + z). Normally you would add y and

5. � �But not in the same calculation, where guard digits could maintain the fourth digit during
the calculation.

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

316 Chapter 6

z together and multiply their sum by x. However, you will get a little more
accuracy if you transform x * (y + z) to get x * y + x * z and compute the
result by performing the multiplications first.6

Multiplication and division are not without their own problems. When
multiplying two very large or very small numbers, it is quite possible for
overflow or underflow to occur. The same situation occurs when dividing
a small number by a large number, or dividing a large number by a small
(fractional) number. This brings up a fourth rule you should attempt to fol-
low when multiplying or dividing values:

When multiplying and dividing sets of numbers, try to arrange
the multiplications so that they multiply large and small numbers
together; likewise, try to divide numbers that have the same rela-
tive magnitudes.

Given the inaccuracies present in any computation (including convert-
ing an input string to a floating-point value), you should never compare two
floating-point values to see if they are equal. In a binary floating-point for-
mat, different computations that produce the same (mathematical) result
may differ in their least significant bits. For example, 1.31e0 + 1.69e0 should
produce 3.00e0. Likewise, 1.50e0 + 1.50e0 should produce 3.00e0. However,
if you were to compare (1.31e0 + 1.69e0) against (1.50e0 + 1.50e0), you
might find out that these sums are not equal to one another. The test for
equality succeeds if and only if all bits (or digits) in the two operands are
exactly the same. Because this is not necessarily true after two different
floating-point computations that should produce the same result, a straight
test for equality may not work. Instead, you should use the following test:

if Value1 >= (Value2 - error) and Value1 <= (Value2 + error) then ...

Another common way to handle this same comparison is to use a state-
ment of this form:

if abs(Value1 - Value2) <= error then ...

error should be a value slightly greater than the largest amount of error
that will creep into your computations. The exact value will depend on the
particular floating-point format you use. Here is the final rule we will state
in this section:

When comparing two floating-point numbers, always compare
one value to see if it is in the range given by the second value plus
or minus a small error value.

Many other little problems can occur when using floating-point values.
This book can point out only some of the major problems and make you
aware that you cannot treat floating-point arithmetic like real arithmetic

6. � �Of course, the drawback is that you must now perform two multiplications rather than one,
so the result may be slower.

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

Arithmetic 317

because of the inaccuracies present in limited-precision arithmetic. A good
text on numerical analysis or even scientific computing can help fill in the
details. If you are going to be working with floating-point arithmetic, in any
language, you should take the time to study the effects of limited-precision
arithmetic on your computations.

6.5.2	 Floating-Point on the x86-64
When the 8086 CPU first appeared in the late 1970s, semiconductor tech-
nology was not to the point where Intel could put floating-point instructions
directly on the 8086 CPU. Therefore, Intel devised a scheme to use a sec-
ond chip to perform the floating-point calculations—the 8087 floating-point
unit (or x87 FPU).7 By the release of the Intel Pentium chip, semiconductor
technology had advanced to the point that the FPU was fully integrated
onto the x86 CPU. Today, the x86-64 still contains the x87 FPU device, but
it has also expanded the floating-point capabilities by using the SSE, SSE2,
AVX, and AVX2 instruction sets.

This section describes the x86 FPU instruction set. Later sections (and
chapters) discuss the more advanced floating-point capabilities of the SSE
through AVX2 instruction sets.

6.5.3	 FPU Registers
The x87 FPUs add 14 registers to the x86-64: eight floating-point data regis-
ters, a control register, a status register, a tag register, an instruction pointer,
a data pointer, and an opcode register. The data registers are similar to the
x86-64’s general-purpose register set insofar as all floating-point calcula-
tions take place in these registers. The control register contains bits that let you
decide how the FPU handles certain degenerate cases like rounding of inac-
curate computations; it also contains bits that control precision and so on.
The status register is similar to the x86-64’s flags register; it contains the con-
dition code bits and several other floating-point flags that describe the state
of the FPU. The tag register contains several groups of bits that determine
the state of the value in each of the eight floating-point data registers. The
instruction, data pointer, and opcode registers contain certain state information
about the last floating-point instruction executed. We do not consider the
last four registers here; see the Intel documentation for more details.

6.5.3.1	 FPU Data Registers

The FPUs provide eight 80-bit data registers organized as a stack, a signifi-
cant departure from the organization of the general-purpose registers on
the x86-64 CPU. MASM refers to these registers as ST(0), ST(1), . . . ST(7).8

7. � �Intel has also referred to this device as the Numeric Data Processor (NDP), Numeric Processor
Extension (NPX), and math coprocessor.

8. � �Often, programmers will create text equates for these register names to use the identifiers
ST0 to ST7.

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

318 Chapter 6

The biggest difference between the FPU register set and the x86-64
register set is the stack organization. On the x86-64 CPU, the AX register
is always the AX register, no matter what happens. On the FPU, however,
the register set is an eight-element stack of 80-bit floating-point values
(Figure 6-2).

ST(1)
ST(2)
ST(3)
ST(4)
ST(5)
ST(6)
ST(7)

ST(0)
79 63 0

Figure 6-2: FPU floating-point register stack

ST(0) refers to the item on the top of stack, ST(1) refers to the next
item on the stack, and so on. Many floating-point instructions push and
pop items on the stack; therefore, ST(1) will refer to the previous contents
of ST(0) after you push something onto the stack. Getting used to the reg-
ister numbers changing will take some thought and practice, but this is an
easy problem to overcome.

6.5.3.2	 The FPU Control Register

When Intel designed the 8087 (and, essentially, the IEEE floating-point
standard), there were no standards in floating-point hardware. Different
(mainframe and mini) computer manufacturers all had different and
incompatible floating-point formats. Unfortunately, several applications
had been written taking into account the idiosyncrasies of these different
floating-point formats.

Intel wanted to design an FPU that could work with the majority of
the software out there (keep in mind that the IBM PC was three to four
years away when Intel began designing the 8087, so Intel couldn’t rely on
that “mountain” of software available for the PC to make its chip popular).
Unfortunately, many of the features found in these older floating-point
formats were mutually incompatible. For example, in some floating-point
systems, rounding would occur when there was insufficient precision; in
others, truncation would occur. Some applications would work with one
floating-point system but not with the other.

Intel wanted as many applications as possible to work with as few changes
as possible on its 8087 FPUs, so it added a special register, the FPU control
register, that lets the user choose one of several possible operating modes for
the FPU. The 80x87 control register contains 16 bits organized as shown in
Figure 6-3.

Bits 10 and 11 of the FPU control register provide rounding control
according to the values in Table 6-10.

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

Arithmetic 319

Round
00 – To nearest or even
01 – Down
10 – Up
11 – Truncate result

Reserved

Underflow
Precision

Overflow
Zero divide

Denormalized
Invalid operation

00 – 24 bits
01 – Reserved
10 – 53 bits
11 – 64 bits

Precision
control

Rounding
control

Exception masks

0891011 5

Figure 6-3: FPU control register

Table 6-10: Rounding Control

Bits 10 and 11 Function

00 To nearest or even

01 Round down

10 Round up

11 Truncate

The 00 setting is the default. The FPU rounds up values above one-half
of the least significant bit. It rounds down values below one-half of the least
significant bit. If the value below the least significant bit is exactly one-half
of the least significant bit, the FPU rounds the value toward the value whose
least significant bit is 0. For long strings of computations, this provides a
reasonable, automatic way to maintain maximum precision.

The round-up and round-down options are present for those computa-
tions requiring accuracy. By setting the rounding control to round down
and performing the operation, then repeating the operation with the
rounding control set to round up, you can determine the minimum and
maximum ranges between which the true result will fall.

The truncate option forces all computations to truncate any excess bits.
You will rarely use this option if accuracy is important. However, you might
use this option to help when porting older software to the FPU. This option
is also extremely useful when converting a floating-point value to an inte-
ger. Because most software expects floating-point-to-integer conversions to
truncate the result, you will need to use the truncation/rounding mode to
achieve this.

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

320 Chapter 6

Bits 8 and 9 of the control register specify the precision during compu-
tation. This capability is provided to allow compatibility with older software
as required by the IEEE 754 standard. The precision-control bits use the
values in Table 6-11.

Table 6-11: Mantissa Precision-Control Bits

Bits 8 and 9 Precision Control

00 24 bits

01 Reserved

10 53 bits

11 64 bits

Some CPUs may operate faster with floating-point values whose preci-
sion is 53 bits (that is, 64-bit floating-point format) rather than 64 bits (that
is, 80-bit floating-point format). See the documentation for your specific
processor for details. Generally, the CPU defaults these bits to 11 to select
the 64-bit mantissa precision.

Bits 0 to 5 are the exception masks. These are similar to the interrupt
enable bit in the x86-64’s flags register. If these bits contain a 1, the corre-
sponding condition is ignored by the FPU. However, if any bit contains 0s,
and the corresponding condition occurs, then the FPU immediately gener-
ates an interrupt so the program can handle the degenerate condition.

Bit 0 corresponds to an invalid operation error, which generally occurs
as the result of a programming error. Situations that raise the invalid
operation exception include pushing more than eight items onto the stack
or attempting to pop an item off an empty stack, taking the square root of a
negative number, or loading a non-empty register.

Bit 1 masks the denormalized interrupt that occurs whenever you try to
manipulate denormalized values. Denormalized exceptions occur when
you load arbitrary extended-precision values into the FPU or work with very
small numbers just beyond the range of the FPU’s capabilities. Normally,
you would probably not enable this exception. If you enable this exception
and the FPU generates this interrupt, the Windows runtime system raises
an exception.

Bit 2 masks the zero-divide exception. If this bit contains 0, the FPU will
generate an interrupt if you attempt to divide a nonzero value by 0. If you
do not enable the zero-divide exception, the FPU will produce NaN when-
ever you perform a zero division. It’s probably a good idea to enable this
exception by programming a 0 into this bit. Note that if your program gen-
erates this interrupt, the Windows runtime system will raise an exception.

Bit 3 masks the overflow exception. The FPU will raise the overflow
exception if a calculation overflows or if you attempt to store a value that is
too large to fit into the destination operand (for example, storing a large

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

Arithmetic 321

extended-precision value into a single-precision variable). If you enable this
exception and the FPU generates this interrupt, the Windows runtime sys-
tem raises an exception.

Bit 4, if set, masks the underflow exception. Underflow occurs when
the result is too small to fit in the destination operand. Like overflow, this
exception can occur whenever you store a small extended-precision value
into a smaller variable (single or double precision) or when the result of a
computation is too small for extended precision. If you enable this excep-
tion and the FPU generates this interrupt, the Windows runtime system
raises an exception.

Bit 5 controls whether the precision exception can occur. A precision
exception occurs whenever the FPU produces an imprecise result, generally
the result of an internal rounding operation. Although many operations
will produce an exact result, many more will not. For example, dividing 1
by 10 will produce an inexact result. Therefore, this bit is usually 1 because
inexact results are common. If you enable this exception and the FPU gen-
erates this interrupt, the Windows runtime system raises an exception.

Bits 6 and 7, and 12 to 15, in the control register are currently unde-
fined and reserved for future use (bits 7 and 12 were valid on older FPUs
but are no longer used).

The FPU provides two instructions, fldcw (load control word) and fstcw
(store control word), that let you load and store the contents of the control reg-
ister, respectively. The single operand to these instructions must be a 16-bit
memory location. The fldcw instruction loads the control register from the
specified memory location. fstcw stores the control register into the specified
memory location. The syntax for these instructions is shown here:

fldcw mem16
fstcw mem16

Here’s some example code that sets the rounding control to truncate
result and sets the rounding precision to 24 bits:

 .data
fcw16 word ?
 .
 .
 .
 fstcw fcw16
 mov ax, fcw16
 and ax, 0f0ffh ; Clears bits 8-11.
 or ax, 0c00h ; Rounding control=%11, Precision = %00.
 mov fcw16, ax
 fldcw fcw16

6.5.3.3	 The FPU Status Register

The 16-bit FPU status register provides the status of the FPU at the instant
you read it; its layout appears in Figure 6-4. The fstsw instruction stores the
16-bit floating-point status register into a word variable.

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

322 Chapter 6

Exception flags

Top of stack
pointer

0123456789101112131415

Busy C3 C2 C1 C0

Condition codes

Precision
Underflow

Stack fault
Exception flag

Overflow
Zero divide

Denormalized
Invalid operation

Figure 6-4: The FPU status register

Bits 0 through 5 are the exception flags. These bits appear in the same
order as the exception masks in the control register. If the corresponding
condition exists, the bit is set. These bits are independent of the exception
masks in the control register. The FPU sets and clears these bits regardless
of the corresponding mask setting.

Bit 6 indicates a stack fault. A stack fault occurs whenever a stack over-
flow or underflow occurs. When this bit is set, the C1 condition code bit
determines whether there was a stack overflow (C1 = 1) or stack underflow
(C1 = 0) condition.

Bit 7 of the status register is set if any error condition bit is set. It is the
logical or of bits 0 through 5. A program can test this bit to quickly deter-
mine if an error condition exists.

Bits 8, 9, 10, and 14 are the coprocessor condition code bits. Various
instructions set the condition code bits, as shown in Tables 6-12 and 6-13,
respectively.

Table 6-12: FPU Condition Code Bits (X = “Don’t care”)

Instruction Condition code bits Condition

C3 C2 C1 C0

fcom
fcomp
fcompp
ficom
ficomp

0
0
1
1

0
0
0
1

X
X
X
X

0
1
0
1

ST > source
ST < source
ST = source
ST or source not comparable

ftst 0
0
1
1

0
0
0
1

X
X
X
X

0
1
0
1

ST is positive
ST is negative
ST is 0 (+ or –)
ST is not comparable

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

Arithmetic 323

Instruction Condition code bits Condition

C3 C2 C1 C0

fxam 0
0
0
0
1
1
1
1
0
0
0
0
1

0
0
1
1
0
0
1
1
0
0
1
1
0

0
1
0
1
0
1
0
1
0
1
0
1
X

0
0
0
0
0
0
0
0
1
1
1
1
1

Unsupported
Unsupported
+ Normalized
– Normalized
+ 0
– 0
+ Denormalized
– Denormalized
+ NaN
– NaN
+ Infinity
– Infinity
Empty register

fucom
fucomp
fucompp

0
0
1
1

0
0
0
1

X
X
X
X

0
1
0
1

ST > source
ST < source
ST = source
Unordered / not comparable

Table 6-13: FPU Condition Code Bits (X = “Don’t care”)

Instruction Condition code bits

C0 C3 C2 C1

fcom, fcomp, fcompp,
ftst, fucom, fucomp,
fucompp, ficom,
ficomp

Result of com-
parison, see
Table 6-12.

Result of com-
parison, see
Table 6-12.

Operands are not
comparable.

Set to 0.

Fxam See Table 6-12. See Table 6-12. See Table 6-12. Sign of result, or
stack overflow/
underflow if stack
exception bit is set.

fprem, fprem1 Bit 2 of quotient Bit 0 of quotient 0—reduction done
1—reduction
incomplete

Bit 0 of quotient,
or stack overflow/
underflow if stack
exception bit is set.

fist, fbstp, frndint,
fst, fstp, fadd,
fmul, fdiv, fdivr,
fsub, fsubr, fscale,
fsqrt, fpatan, f2xm1,
fyl2x, fyl2xp1

Undefined Undefined Undefined Rounding direction
if exception; other-
wise, set to 0.

fptan, fsin, fcos,
fsincos

Undefined Undefined Set to 1 if within
range; otherwise, 0.

Round-up occurred
or stack overflow/
underflow if stack
exception bit is set.
Undefined if C2
is set.

continued

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

324 Chapter 6

Instruction Condition code bits

C0 C3 C2 C1

fchs, fabs, fxch,
fincstp, fdec-
stp, const loads,
fxtract, fld, fild,
fbld, fstp (80 bit)

Undefined Undefined Undefined Set to 0 or stack
overflow/underflow
if stack exception
bit is set.

fldenv, frstor Restored from
memory operand

Restored from
memory operand

Restored from
memory operand

Restored from
memory operand

fldcw, fstenv,
fstcw, fstsw, fclex

Undefined Undefined Undefined Undefined

finit, fsave Cleared to 0 Cleared to 0 Cleared to 0 Cleared to 0

Bits 11 to 13 of the FPU status register provide the register number of
the top of stack. During computations, the FPU adds (modulo-8) the logical
register numbers supplied by the programmer to these 3 bits to determine
the physical register number at runtime.

Bit 15 of the status register is the busy bit. It is set whenever the FPU is
busy. This bit is a historical artifact from the days when the FPU was a sepa-
rate chip; most programs will have little reason to access this bit.

6.5.4	 FPU Data Types
The FPU supports seven data types: three integer types, a packed deci-
mal type, and three floating-point types. The integer type supports 16-, 32-,
and 64-bit integers, although it is often faster to do the integer arithmetic
by using the integer unit of the CPU. The packed decimal type provides an
18-digit signed decimal (BCD) integer. The primary purpose of the BCD
format is to convert between strings and floating-point values. The remain-
ing three data types are the 32-, 64-, and 80-bit floating-point data types. The
80x87 data types appear in Figures 6-5, 6-6, and 6-7. Just note, for future
reference, that the largest BCD value the x87 supports is an 18-digit BCD
value (bits 72 to 78 are unused in this format).

The FPU generally stores values in a normalized format. When a float-
ing-point number is normalized, the HO bit of the mantissa is always 1. In
the 32- and 64-bit floating-point formats, the FPU does not actually store
this bit; the FPU always assumes that it is 1. Therefore, 32- and 64-bit float-
ing-point numbers are always normalized. In the extended-precision 80-bit
floating-point format, the FPU does not assume that the HO bit of the man-
tissa is 1; the HO bit of the mantissa appears as part of the string of bits.

Normalized values provide the greatest precision for a given number of
bits. However, many non-normalized values cannot be represented with the
80-bit format. These values are very close to 0 and represent the set of val-
ues whose mantissa HO bit is not 0. The FPUs support a special 80-bit form
known as denormalized values. Denormalized values allow the FPU to encode

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

Arithmetic 325

very small values it cannot encode using normalized values, but denormal-
ized values offer fewer bits of precision than normalized values. Therefore,
using denormalized values in a computation may introduce slight inaccu-
racy. Of course, this is always better than underflowing the denormalized
value to 0 (which could make the computation even less accurate), but you
must keep in mind that if you work with very small values, you may lose some
accuracy in your computations. The FPU status register contains a bit you
can use to detect when the FPU uses a denormalized value in a computation.

31

32-bit single-precision floating-point format

64-bit single-precision floating-point format

80-bit single-precision floating-point format

... ...

... ...

63 52

79 64

23 16 15

078

078

078

Figure 6-5: FPU floating-point formats

16-bit two’s complement integer

32-bit two’s complement integer

64-bit two’s complement integer

07815

078

... ...

151631

07863

Figure 6-6: FPU integer formats

79

Sign Unused d17 d16

80-bit packed-decimal integer (BCD)

d15 d2 d1 d0

72 71 68 63 59
...

8 4 0

Figure 6-7: FPU packed decimal format

6.5.5	 The FPU Instruction Set
The FPU adds many instructions to the x86-64 instruction set. We can
classify these instructions as data movement instructions, conversions,
arithmetic instructions, comparisons, constant instructions, transcenden-
tal instructions, and miscellaneous instructions. The following sections
describe each of the instructions in these categories.

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

326 Chapter 6

6.5.6	 FPU Data Movement Instructions
The data movement instructions transfer data between the internal FPU regis-
ters and memory. The instructions in this category are fld, fst, fstp, and fxch.
The fld instruction always pushes its operand onto the floating-point stack.
The fstp instruction always pops the top of stack (TOS) after storing it. The
remaining instructions do not affect the number of items on the stack.

6.5.6.1	 The fld Instruction

The fld instruction loads a 32-, 64-, or 80-bit floating-point value onto the
stack. This instruction converts 32- and 64-bit operands to an 80-bit extended-
precision value before pushing the value onto the floating-point stack.

The fld instruction first decrements the TOS pointer (bits 11 to 13 of the
status register) and then stores the 80-bit value in the physical register speci-
fied by the new TOS pointer. If the source operand of the fld instruction is a
floating-point data register, ST(i), then the actual register that the FPU uses
for the load operation is the register number before decrementing the TOS
pointer. Therefore, fld st(0) duplicates the value on the top of stack.

The fld instruction sets the stack fault bit if stack overflow occurs. It sets
the denormalized exception bit if you load an 80-bit denormalized value. It
sets the invalid operation bit if you attempt to load an empty floating-point
register onto the TOS (or perform another invalid operation).

Here are some examples:

fld st(1)
fld real4_variable
fld real8_variable
fld real10_variable
fld real8 ptr [rbx]

There is no way to directly load a 32-bit integer register onto the floating-
point stack, even if that register contains a real4 value. To do so, you must first
store the integer register into a memory location, and then push that memory
location onto the FPU stack by using the fld instruction. For example:

mov tempReal4, eax ; Save real4 value in EAX to memory.
fld tempReal4 ; Push that value onto the FPU stack.

6.5.6.2	 The fst and fstp Instructions

The fst and fstp instructions copy the value on the top of the floating-point
stack to another floating-point register or to a 32-, 64-, or (fstp only) 80-bit
memory variable. When copying data to a 32- or 64-bit memory variable, the
FPU rounds the 80-bit extended-precision value on the TOS to the smaller
format as specified by the rounding control bits in the FPU control register.

The fstp instruction pops the value off the top of stack when moving it
to the destination location, by incrementing the TOS pointer in the status

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

Arithmetic 327

register after accessing the data in ST(0). If the destination operand is a
floating-point register, the FPU stores the value at the specified register
number before popping the data off the top of stack.

Executing an fstp st(0) instruction effectively pops the data off the top
of stack with no data transfer. Here are some examples:

fst real4_variable
fst real8_variable
fst realArray[rbx * 8]
fst st(2)
fstp st(1)

The last example effectively pops ST(1) while leaving ST(0) on the top
of stack.

The fst and fstp instructions will set the stack exception bit if a stack
underflow occurs (attempting to store a value from an empty register stack).
They will set the precision bit if a loss of precision occurs during the store
operation (for example, when storing an 80-bit extended-precision value
into a 32- or 64-bit memory variable and some bits are lost during conver-
sion). They will set the underflow exception bit when storing an 80-bit value
into a 32- or 64-bit memory variable, but the value is too small to fit into
the destination operand. Likewise, these instructions will set the overflow
exception bit if the value on the top of stack is too big to fit into a 32- or
64-bit memory variable. They set the invalid operation flag if an invalid
operation (such as storing into an empty register) occurs. Finally, these
instructions set the C1 condition bit if rounding occurs during the store
operation (this occurs only when storing into a 32- or 64-bit memory vari-
able and you have to round the mantissa to fit into the destination) or if a
stack fault occurs.

NO T E 	 Because of an idiosyncrasy in the FPU instruction set related to the encoding of the
instructions, you cannot use the fst instruction to store data into a real10 memory
variable. You may, however, store 80-bit data by using the fstp instruction.

6.5.6.3	 The fxch Instruction

The fxch instruction exchanges the value on the top of stack with one of the
other FPU registers. This instruction takes two forms: one with a single FPU
register as an operand and the second without any operands. The first form
exchanges the top of stack with the specified register. The second form of
fxch swaps the top of stack with ST(1).

Many FPU instructions (for example, fsqrt) operate only on the top of
the register stack. If you want to perform such an operation on a value that
is not on top, you can use the fxch instruction to swap that register with TOS,
perform the desired operation, and then use fxch to swap the TOS with the
original register. The following example takes the square root of ST(2):

fxch st(2)
fsqrt
fxch st(2)

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

328 Chapter 6

The fxch instruction sets the stack exception bit if the stack is empty;
it sets the invalid operation bit if you specify an empty register as the oper-
and; and, it always clears the C1 condition code bit.

6.5.7	 Conversions
The FPU performs all arithmetic operations on 80-bit real quantities. In a
sense, the fld and fst/fstp instructions are conversion instructions because
they automatically convert between the internal 80-bit real format and the
32- and 64-bit memory formats. Nonetheless, we’ll classify them as data
movement operations, rather than conversions, because they are moving
real values to and from memory. The FPU provides six other instructions
that convert to or from integer or BCD format when moving data. These
instructions are fild, fist, fistp, fisttp, fbld, and fbstp.

6.5.7.1	 The fild Instruction

The fild (integer load) instruction converts a 16-, 32-, or 64-bit two’s comple-
ment integer to the 80-bit extended-precision format and pushes the result
onto the stack. This instruction always expects a single operand: the address
of a word, double-word, or quad-word integer variable. You cannot specify
one of the x86-64’s 16-, 32-, or 64-bit general-purpose registers. If you want
to push the value of an x86-64 general-purpose register onto the FPU stack,
you must first store it into a memory variable and then use fild to push that
memory variable.

The fild instruction sets the stack exception bit and C1 (accordingly)
if stack overflow occurs while pushing the converted value. Look at these
examples:

fild word_variable
fild dword_val[rcx * 4]
fild qword_variable
fild sqword ptr [rbx]

6.5.7.2	 The fist, fistp, and fisttp Instructions

The fist, fistp, and fisttp instructions convert the 80-bit extended-preci-
sion variable on the top of stack to a 16-, 32-, or (fistp/fistpp only) 64-bit
integer and store the result away into the memory variable specified by the
single operand. The fist and fistp instructions convert the value on TOS
to an integer according to the rounding setting in the FPU control register
(bits 10 and 11). The fisttp instruction always does the conversion using the
truncation mode. As with the fild instruction, the fist, fistp, and fisttp
instructions will not let you specify one of the x86-64’s general-purpose 16-,
32-, or 64-bit registers as the destination operand.

The fist instruction converts the value on the top of stack to an integer
and then stores the result; it does not otherwise affect the floating-point
register stack. The fistp and fisttp instructions pop the value off the floating-
point register stack after storing the converted value.

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

Arithmetic 329

These instructions set the stack exception bit if the floating-point regis-
ter stack is empty (this will also clear C1). They set the precision (imprecise
operation) and C1 bits if rounding occurs (that is, if the value in ST(0) has
any fractional component). These instructions set the underflow exception
bit if the result is too small (less than 1 but greater than 0, or less than 0 but
greater than –1). Here are some examples:

fist word_var[rbx * 2]
fist dword_var
fisttp dword_var
fistp qword_var

The fist and fistp instructions use the rounding control settings to
determine how they will convert the floating-point data to an integer during
the store operation. Be default, the rounding control is usually set to round
mode; yet most programmers expect fist/fistp to truncate the decimal
portion during conversion. If you want fist/fistp to truncate floating-point
values when converting them to an integer, you will need to set the rounding
control bits appropriately in the floating-point control register (or use the
fisttp instruction to truncate the result regardless of the rounding control
bits). Here’s an example:

 .data
fcw16 word ?
fcw16_2 word ?
IntResult sdword ?
 .
 .
 .
 fstcw fcw16
 mov ax, fcw16
 or ax, 0c00h ; Rounding =%11 (truncate).
 mov fcw16_2, ax ; Store and reload the ctrl word.
 fldcw fcw16_2

 fistp IntResult ; Truncate ST(0) and store as int32.

 fldcw fcw16 ; Restore original rounding control.

6.5.7.3	 The fbld and fbstp Instructions

The fbld and fbstp instructions load and store 80-bit BCD values. The fbld
instruction converts a BCD value to its 80-bit extended-precision equiva-
lent and pushes the result onto the stack. The fbstp instruction pops the
extended-precision real value on TOS, converts it to an 80-bit BCD value
(rounding according to the bits in the floating-point control register), and
stores the converted result at the address specified by the destination mem-
ory operand. There is no fbst instruction.

The fbld instruction sets the stack exception bit and C1 if stack overflow
occurs. The results are undefined if you attempt to load an invalid BCD

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

330 Chapter 6

value. The fbstp instruction sets the stack exception bit and clears C1 if
stack underflow occurs (the stack is empty). It sets the underflow flag under
the same conditions as fist and fistp. Look at these examples:

; Assuming fewer than eight items on the stack, the following
; code sequence is equivalent to an fbst instruction:

 fld st(0)
 fbstp tbyte_var

; The following example easily converts an 80-bit BCD value to
; a 64-bit integer:

 fbld tbyte_var
 fistp qword_var

These two instructions are especially useful for converting between
string and floating-point formats. Along with the fild and fist instructions,
you can use fbld and fbstp to convert between integer and string formats
(see “Unsigned Decimal to String Conversion” in Chapter 9).

6.5.8	 Arithmetic Instructions
Arithmetic instructions make up a small but important subset of the FPU’s
instruction set. These instructions fall into two general categories: those
that operate on real values and those that operate on a real and an integer
value.

6.5.8.1	 The fadd, faddp, and fiadd Instructions

The fadd, faddp, and fiadd instructions take the following forms:

fadd
faddp
fadd st(i), st(0)
fadd st(0), st(i)
faddp st(i), st(0)
fadd mem32
fadd mem64
fiadd mem16
fiadd mem32

The fadd instruction, with no operands, is a synonym for faddp. The
faddp instruction (also with no operands) pops the two values on the top of
stack, adds them, and pushes their sum back onto the stack.

The next two forms of the fadd instruction, those with two FPU register
operands, behave like the x86-64’s add instruction. They add the value in
the source register operand to the value in the destination register oper-
and. One of the register operands must be ST(0).

The faddp instruction with two operands adds ST(0) (which must always
be the source operand) to the destination operand and then pops ST(0).
The destination operand must be one of the other FPU registers.

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

Arithmetic 331

The last two forms, fadd with a memory operand, adds a 32- or 64-bit
floating-point variable to the value in ST(0). This instruction will convert
the 32- or 64-bit operands to an 80-bit extended-precision value before
performing the addition. Note that this instruction does not allow an 80-bit
memory operand. There are also instructions for adding 16- and 32-bit inte-
gers in memory to ST(0): fiadd mem16 and fiadd mem32.

These instructions can raise the stack, precision, underflow, overflow,
denormalized, and illegal operation exceptions, as appropriate. If a stack
fault exception occurs, C1 denotes stack overflow or underflow, or the
rounding direction (see Table 6-13).

Listing 6-1 demonstrates the various forms of the fadd instruction.

; Listing 6-1
;
; Demonstration of various forms of fadd

 option casemap:none

nl = 10

 .const
ttlStr byte "Listing 6-1", 0
fmtSt0St1 byte "st(0):%f, st(1):%f", nl, 0
fmtAdd1 byte "fadd: st0:%f", nl, 0
fmtAdd2 byte "faddp: st0:%f", nl, 0
fmtAdd3 byte "fadd st(1), st(0): st0:%f, st1:%f", nl, 0
fmtAdd4 byte "fadd st(0), st(1): st0:%f, st1:%f", nl, 0
fmtAdd5 byte "faddp st(1), st(0): st0:%f", nl, 0
fmtAdd6 byte "fadd mem: st0:%f", nl, 0

zero real8 0.0
one real8 1.0
two real8 2.0
minusTwo real8 -2.0

 .data
st0 real8 0.0
st1 real8 0.0

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

332 Chapter 6

; printFP- Prints values of st0 and (possibly) st1.
; Caller must pass in ptr to fmtStr in RCX.

printFP proc
 sub rsp, 40

; For varargs (for example, printf call), double
; values must appear in RDX and R8 rather
; than XMM1, XMM2.
; Note: if only one double arg in format
; string, printf call will ignore 2nd
; value in R8.

 mov rdx, qword ptr st0
 mov r8, qword ptr st1
 call printf
 add rsp, 40
 ret
printFP endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbp
 mov rbp, rsp
 sub rsp, 48 ;Shadow storage

; Demonstrate various fadd instructions:

 mov rax, qword ptr one
 mov qword ptr st1, rax
 mov rax, qword ptr minusTwo
 mov qword ptr st0, rax
 lea rcx, fmtSt0St1
 call printFP

; fadd (same as faddp)

 fld one
 fld minusTwo
 fadd ;Pops st(0)!
 fstp st0

 lea rcx, fmtAdd1
 call printFP

; faddp:

 fld one
 fld minusTwo

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

Arithmetic 333

 faddp ;Pops st(0)!
 fstp st0

 lea rcx, fmtAdd2
 call printFP

; fadd st(1), st(0)

 fld one
 fld minusTwo
 fadd st(1), st(0)
 fstp st0
 fstp st1

 lea rcx, fmtAdd3
 call printFP

; fadd st(0), st(1)

 fld one
 fld minusTwo
 fadd st(0), st(1)
 fstp st0
 fstp st1

 lea rcx, fmtAdd4
 call printFP

; faddp st(1), st(0)

 fld one
 fld minusTwo
 faddp st(1), st(0)
 fstp st0

 lea rcx, fmtAdd5
 call printFP

; faddp mem64

 fld one
 fadd two
 fstp st0

 lea rcx, fmtAdd6
 call printFP

 leave
 ret ;Returns to caller

asmMain endp
 end

Listing 6-1: Demonstration of fadd instructions

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

334 Chapter 6

Here’s the build command and output for the program in Listing 6-1:

C:\>build listing6-1

C:\>echo off
 Assembling: listing6-1.asm
c.cpp

C:\>listing6-1
Calling Listing 6-1:
st(0):-2.000000, st(1):1.000000
fadd: st0:-1.000000
faddp: st0:-1.000000
fadd st(1), st(0): st0:-2.000000, st1:-1.000000
fadd st(0), st(1): st0:-1.000000, st1:1.000000
faddp st(1), st(0): st0:-1.000000
fadd mem: st0:3.000000
Listing 6-1 terminated

6.5.8.2	 The fsub, fsubp, fsubr, fsubrp, fisub, and fisubr Instructions

These six instructions take the following forms:

fsub
fsubp
fsubr
fsubrp

fsub st(i), st(0)
fsub st(0), st(i)
fsubp st(i), st(0)
fsub mem32
fsub mem64

fsubr st(i) , st(0)
fsubr st(0), st(i)
fsubrp st(i) , st(0)
fsubr mem32
fsubr mem64

fisub mem16
fisub mem32
fisubr mem16
fisubr mem32

With no operands, fsub is the same as fsubp (without operands). With
no operands, the fsubp instruction pops ST(0) and ST(1) from the register
stack, computes ST(1) – ST(0), and then pushes the difference back onto
the stack. The fsubr and fsubrp instructions (reverse subtraction) operate in
an identical fashion except they compute ST(0) – ST(1).

With two register operands (destination, source), the fsub instruction
computes destination = destination – source. One of the two registers must be

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

Arithmetic 335

ST(0). With two registers as operands, the fsubp also computes destination =
destination – source, and then it pops ST(0) off the stack after computing the
difference. For the fsubp instruction, the source operand must be ST(0).

With two register operands, the fsubr and fsubrp instructions work in
a similar fashion to fsub and fsubp, except they compute destination = source
– destination.

The fsub mem32, fsub mem64, fsubr mem32, and fsubr mem64 instructions accept
a 32- or 64-bit memory operand. They convert the memory operand to
an 80-bit extended-precision value and subtract this from ST(0) (fsub) or
subtract ST(0) from this value (fsubr) and store the result back into ST(0).
There are also instructions for subtracting 16- and 32-bit integers in memory
from ST(0): fisub mem16 and fisub mem32 (also fisubr mem16 and fisubr mem32).

These instructions can raise the stack, precision, underflow, overflow,
denormalized, and illegal operation exceptions, as appropriate. If a stack
fault exception occurs, C1 denotes stack overflow or underflow, or indicates
the rounding direction (see Table 6-13).

Listing 6-2 demonstrates the fsub/fsubr instructions.

; Listing 6-2
;
; Demonstration of various forms of fsub/fsubrl

 option casemap:none

nl = 10

 .const
ttlStr byte "Listing 6-2", 0
fmtSt0St1 byte "st(0):%f, st(1):%f", nl, 0
fmtSub1 byte "fsub: st0:%f", nl, 0
fmtSub2 byte "fsubp: st0:%f", nl, 0
fmtSub3 byte "fsub st(1), st(0): st0:%f, st1:%f", nl, 0
fmtSub4 byte "fsub st(0), st(1): st0:%f, st1:%f", nl, 0
fmtSub5 byte "fsubp st(1), st(0): st0:%f", nl, 0
fmtSub6 byte "fsub mem: st0:%f", nl, 0
fmtSub7 byte "fsubr st(1), st(0): st0:%f, st1:%f", nl, 0
fmtSub8 byte "fsubr st(0), st(1): st0:%f, st1:%f", nl, 0
fmtSub9 byte "fsubrp st(1), st(0): st0:%f", nl, 0
fmtSub10 byte "fsubr mem: st0:%f", nl, 0

zero real8 0.0
three real8 3.0
minusTwo real8 -2.0

 .data
st0 real8 0.0
st1 real8 0.0

 .code
 externdef printf:proc

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

336 Chapter 6

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; printFP- Prints values of st0 and (possibly) st1.
; Caller must pass in ptr to fmtStr in RCX.

printFP proc
 sub rsp, 40

; For varargs (for example, printf call), double
; values must appear in RDX and R8 rather
; than XMM1, XMM2.
; Note: if only one double arg in format
; string, printf call will ignore 2nd
; value in R8.

 mov rdx, qword ptr st0
 mov r8, qword ptr st1
 call printf
 add rsp, 40
 ret
printFP endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbp
 mov rbp, rsp
 sub rsp, 48 ;Shadow storage

; Demonstrate various fsub instructions:

 mov rax, qword ptr three
 mov qword ptr st1, rax
 mov rax, qword ptr minusTwo
 mov qword ptr st0, rax
 lea rcx, fmtSt0St1
 call printFP

; fsub (same as fsubp)

 fld three
 fld minusTwo
 fsub ;Pops st(0)!
 fstp st0

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

Arithmetic 337

 lea rcx, fmtSub1
 call printFP

; fsubp:

 fld three
 fld minusTwo
 fsubp ;Pops st(0)!
 fstp st0

 lea rcx, fmtSub2
 call printFP

; fsub st(1), st(0)

 fld three
 fld minusTwo
 fsub st(1), st(0)
 fstp st0
 fstp st1

 lea rcx, fmtSub3
 call printFP

; fsub st(0), st(1)

 fld three
 fld minusTwo
 fsub st(0), st(1)
 fstp st0
 fstp st1

 lea rcx, fmtSub4
 call printFP

; fsubp st(1), st(0)

 fld three
 fld minusTwo
 fsubp st(1), st(0)
 fstp st0

 lea rcx, fmtSub5
 call printFP

; fsub mem64

 fld three
 fsub minusTwo
 fstp st0

 lea rcx, fmtSub6
 call printFP

; fsubr st(1), st(0)

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

338 Chapter 6

 fld three
 fld minusTwo
 fsubr st(1), st(0)
 fstp st0
 fstp st1

 lea rcx, fmtSub7
 call printFP

; fsubr st(0), st(1)

 fld three
 fld minusTwo
 fsubr st(0), st(1)
 fstp st0
 fstp st1

 lea rcx, fmtSub8
 call printFP

; fsubrp st(1), st(0)

 fld three
 fld minusTwo
 fsubrp st(1), st(0)
 fstp st0

 lea rcx, fmtSub9
 call printFP

; fsubr mem64

 fld three
 fsubr minusTwo
 fstp st0

 lea rcx, fmtSub10
 call printFP

 leave
 ret ;Returns to caller

asmMain endp
 end

Listing 6-2: Demonstration of the fsub instructions

Here’s the build command and output for Listing 6-2:

C:\>build listing6-2

C:\>echo off
 Assembling: listing6-2.asm
c.cpp

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

Arithmetic 339

C:\>listing6-2
Calling Listing 6-2:
st(0):-2.000000, st(1):3.000000
fsub: st0:5.000000
fsubp: st0:5.000000
fsub st(1), st(0): st0:-2.000000, st1:5.000000
fsub st(0), st(1): st0:-5.000000, st1:3.000000
fsubp st(1), st(0): st0:5.000000
fsub mem: st0:5.000000
fsubr st(1), st(0): st0:-2.000000, st1:-5.000000
fsubr st(0), st(1): st0:5.000000, st1:3.000000
fsubrp st(1), st(0): st0:-5.000000
fsubr mem: st0:-5.000000
Listing 6-2 terminated

6.5.8.3	 The fmul, fmulp, and fimul Instructions

The fmul and fmulp instructions multiply two floating-point values. The fimul
instruction multiples an integer and a floating-point value. These instruc-
tions allow the following forms:

fmul
fmulp

fmul st(0), st(i)
fmul st(i), st(0)
fmul mem32
fmul mem64

fmulp st(i), st(0)

fimul mem16
fimul mem32

With no operands, fmul is a synonym for fmulp. The fmulp instruction,
with no operands, will pop ST(0) and ST(1), multiply these values, and push
their product back onto the stack. The fmul instructions with two register
operands compute destination = destination × source. One of the registers
(source or destination) must be ST(0).

The fmulp st(0), st(i) instruction computes ST(i) = ST(i) × ST(0) and
then pops ST(0). This instruction uses the value for i before popping ST(0).
The fmul mem32 and fmul mem64 instructions require a 32- or 64-bit memory
operand, respectively. They convert the specified memory variable to an
80-bit extended-precision value and then multiply ST(0) by this value.
There are also instructions for multiplying 16- and 32-bit integers in mem-
ory by ST(0): fimul mem16 and fimul mem32.

These instructions can raise the stack, precision, underflow, overflow,
denormalized, and illegal operation exceptions, as appropriate. If rounding
occurs during the computation, these instructions set the C1 condition code
bit. If a stack fault exception occurs, C1 denotes stack overflow or underflow.

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

340 Chapter 6

Listing 6-3 demonstrates the various forms of the fmul instruction.

; Listing 6-3
;
; Demonstration of various forms of fmul

 option casemap:none

nl = 10

 .const
ttlStr byte "Listing 6-3", 0
fmtSt0St1 byte "st(0):%f, st(1):%f", nl, 0
fmtMul1 byte "fmul: st0:%f", nl, 0
fmtMul2 byte "fmulp: st0:%f", nl, 0
fmtMul3 byte "fmul st(1), st(0): st0:%f, st1:%f", nl, 0
fmtMul4 byte "fmul st(0), st(1): st0:%f, st1:%f", nl, 0
fmtMul5 byte "fmulp st(1), st(0): st0:%f", nl, 0
fmtMul6 byte "fmul mem: st0:%f", nl, 0

zero real8 0.0
three real8 3.0
minusTwo real8 -2.0

 .data
st0 real8 0.0
st1 real8 0.0

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; printFP- Prints values of st0 and (possibly) st1.
; Caller must pass in ptr to fmtStr in RCX.

printFP proc
 sub rsp, 40

; For varargs (for example, printf call), double
; values must appear in RDX and R8 rather
; than XMM1, XMM2.
; Note: if only one double arg in format
; string, printf call will ignore 2nd
; value in R8.

 mov rdx, qword ptr st0

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

Arithmetic 341

 mov r8, qword ptr st1
 call printf
 add rsp, 40
 ret
printFP endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbp
 mov rbp, rsp
 sub rsp, 48 ;Shadow storage

; Demonstrate various fmul instructions:

 mov rax, qword ptr three
 mov qword ptr st1, rax
 mov rax, qword ptr minusTwo
 mov qword ptr st0, rax
 lea rcx, fmtSt0St1
 call printFP

; fmul (same as fmulp)

 fld three
 fld minusTwo
 fmul ;Pops st(0)!
 fstp st0

 lea rcx, fmtMul1
 call printFP

; fmulp:

 fld three
 fld minusTwo
 fmulp ;Pops st(0)!
 fstp st0

 lea rcx, fmtMul2
 call printFP

; fmul st(1), st(0)

 fld three
 fld minusTwo
 fmul st(1), st(0)
 fstp st0
 fstp st1

 lea rcx, fmtMul3
 call printFP

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

342 Chapter 6

; fmul st(0), st(1)

 fld three
 fld minusTwo
 fmul st(0), st(1)
 fstp st0
 fstp st1

 lea rcx, fmtMul4
 call printFP

; fmulp st(1), st(0)

 fld three
 fld minusTwo
 fmulp st(1), st(0)
 fstp st0

 lea rcx, fmtMul5
 call printFP

; fmulp mem64

 fld three
 fmul minusTwo
 fstp st0

 lea rcx, fmtMul6
 call printFP

 leave
 ret ;Returns to caller

asmMain endp
 end

Listing 6-3: Demonstration of the fmul instruction

Here is the build command and output for Listing 6-3:

C:\>build listing6-3

C:\>echo off
 Assembling: listing6-3.asm
c.cpp

C:\>listing6-3
Calling Listing 6-3:
st(0):-2.000000, st(1):3.000000
fmul: st0:-6.000000
fmulp: st0:-6.000000
fmul st(1), st(0): st0:-2.000000, st1:-6.000000
fmul st(0), st(1): st0:-6.000000, st1:3.000000

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

Arithmetic 343

fmulp st(1), st(0): st0:-6.000000
fmul mem: st0:-6.000000
Listing 6-3 terminated

6.5.8.4	 The fdiv, fdivp, fdivr, fdivrp, fidiv, and fidivr Instructions

These four instructions allow the following forms:

fdiv
fdivp
fdivr
fdivrp

fdiv st(0), st(i)
fdiv st(i), st(0)
fdivp st(i), st(0)

fdivr st(0), st(i)
fdivr st(i), st(0)
fdivrp st(i), st(0)

fdiv mem32
fdiv mem64
fdivr mem32
fdivr mem64

fidiv mem16
fidiv mem32
fidivr mem16
fidivr mem32

With no operands, the fdiv instruction is a synonym for fdivp. The fdivp
instruction with no operands computes ST(1) = ST(1) / ST(0). The fdivr
and fdivrp instructions work in a similar fashion to fdiv and fdivp except
that they compute ST(0) / ST(1) rather than ST(1) / ST(0).

With two register operands, these instructions compute the following
quotients:

fdiv st(0), st(i) ; st(0) = st(0)/st(i)
fdiv st(i), st(0) ; st(i) = st(i)/st(0)
fdivp st(i), st(0) ; st(i) = st(i)/st(0) then pop st0
fdivr st(0), st(i) ; st(0) = st(i)/st(0)
fdivr st(i), st(0) ; st(i) = st(0)/st(i)
fdivrp st(i), st(0) ; st(i) = st(0)/st(i) then pop st0

The fdivp and fdivrp instructions also pop ST(0) after performing the
division operation. The value for i in these two instructions is computed
before popping ST(0).

These instructions can raise the stack, precision, underflow, overflow,
denormalized, zero divide, and illegal operation exceptions, as appropriate.

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

344 Chapter 6

If rounding occurs during the computation, these instructions set the C1
condition code bit. If a stack fault exception occurs, C1 denotes stack over-
flow or underflow.

Listing 6-4 provides a demonstration of the fdiv/fdivr instructions.

; Listing 6-4
;
; Demonstration of various forms of fsub/fsubrl

 option casemap:none

nl = 10

 .const
ttlStr byte "Listing 6-4", 0
fmtSt0St1 byte "st(0):%f, st(1):%f", nl, 0
fmtDiv1 byte "fdiv: st0:%f", nl, 0
fmtDiv2 byte "fdivp: st0:%f", nl, 0
fmtDiv3 byte "fdiv st(1), st(0): st0:%f, st1:%f", nl, 0
fmtDiv4 byte "fdiv st(0), st(1): st0:%f, st1:%f", nl, 0
fmtDiv5 byte "fdivp st(1), st(0): st0:%f", nl, 0
fmtDiv6 byte "fdiv mem: st0:%f", nl, 0
fmtDiv7 byte "fdivr st(1), st(0): st0:%f, st1:%f", nl, 0
fmtDiv8 byte "fdivr st(0), st(1): st0:%f, st1:%f", nl, 0
fmtDiv9 byte "fdivrp st(1), st(0): st0:%f", nl, 0
fmtDiv10 byte "fdivr mem: st0:%f", nl, 0

three real8 3.0
minusTwo real8 -2.0

 .data
st0 real8 0.0
st1 real8 0.0

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; printFP- Prints values of st0 and (possibly) st1.
; Caller must pass in ptr to fmtStr in RCX.

printFP proc
 sub rsp, 40

; For varargs (for example, printf call), double

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

Arithmetic 345

; values must appear in RDX and R8 rather
; than XMM1, XMM2.
; Note: if only one double arg in format
; string, printf call will ignore 2nd
; value in R8.

 mov rdx, qword ptr st0
 mov r8, qword ptr st1
 call printf
 add rsp, 40
 ret
printFP endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbp
 mov rbp, rsp
 sub rsp, 48 ;Shadow storage

; Demonstrate various fdiv instructions:

 mov rax, qword ptr three
 mov qword ptr st1, rax
 mov rax, qword ptr minusTwo
 mov qword ptr st0, rax
 lea rcx, fmtSt0St1
 call printFP

; fdiv (same as fdivp)

 fld three
 fld minusTwo
 fdiv ;Pops st(0)!
 fstp st0

 lea rcx, fmtDiv1
 call printFP

; fdivp:

 fld three
 fld minusTwo
 fdivp ;Pops st(0)!
 fstp st0

 lea rcx, fmtDiv2
 call printFP

; fdiv st(1), st(0)

 fld three

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

346 Chapter 6

 fld minusTwo
 fdiv st(1), st(0)
 fstp st0
 fstp st1

 lea rcx, fmtDiv3
 call printFP

; fdiv st(0), st(1)

 fld three
 fld minusTwo
 fdiv st(0), st(1)
 fstp st0
 fstp st1

 lea rcx, fmtDiv4
 call printFP

; fdivp st(1), st(0)

 fld three
 fld minusTwo
 fdivp st(1), st(0)
 fstp st0

 lea rcx, fmtDiv5
 call printFP

; fdiv mem64

 fld three
 fdiv minusTwo
 fstp st0

 lea rcx, fmtDiv6
 call printFP

; fdivr st(1), st(0)

 fld three
 fld minusTwo
 fdivr st(1), st(0)
 fstp st0
 fstp st1

 lea rcx, fmtDiv7
 call printFP

; fdivr st(0), st(1)

 fld three
 fld minusTwo
 fdivr st(0), st(1)
 fstp st0

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

Arithmetic 347

 fstp st1

 lea rcx, fmtDiv8
 call printFP

; fdivrp st(1), st(0)

 fld three
 fld minusTwo
 fdivrp st(1), st(0)
 fstp st0

 lea rcx, fmtDiv9
 call printFP

; fdivr mem64

 fld three
 fdivr minusTwo
 fstp st0

 lea rcx, fmtDiv10
 call printFP

 leave
 ret ; Returns to caller

asmMain endp
 end

Listing 6-4: Demonstration of the fdiv/fdivr instructions

Here’s the build command and sample output for Listing 6-4:

C:\>build listing6-4

C:\>echo off
 Assembling: listing6-4.asm
c.cpp

C:\>listing6-4
Calling Listing 6-4:
st(0):-2.000000, st(1):3.000000
fdiv: st0:-1.500000
fdivp: st0:-1.500000
fdiv st(1), st(0): st0:-2.000000, st1:-1.500000
fdiv st(0), st(1): st0:-0.666667, st1:3.000000
fdivp st(1), st(0): st0:-1.500000
fdiv mem: st0:-1.500000
fdivr st(1), st(0): st0:-2.000000, st1:-0.666667
fdivr st(0), st(1): st0:-1.500000, st1:3.000000
fdivrp st(1), st(0): st0:-0.666667
fdivr mem: st0:-0.666667
Listing 6-4 terminated

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

348 Chapter 6

6.5.8.5	 The fsqrt Instruction

The fsqrt routine does not allow any operands. It computes the square root
of the value on TOS and replaces ST(0) with this result. The value on TOS
must be 0 or positive; otherwise, fsqrt will generate an invalid operation
exception.

This instruction can raise the stack, precision, denormalized, and
invalid operation exceptions, as appropriate. If rounding occurs during the
computation, fsqrt sets the C1 condition code bit. If a stack fault exception
occurs, C1 denotes stack overflow or underflow.

Here’s an example:

; Compute z = sqrt(x**2 + y**2);

 fld x ; Load x.
 fld st(0) ; Duplicate x on TOS.
 fmulp ; Compute x**2.

 fld y ; Load y.
 fld st(0) ; Duplicate y.
 fmul ; Compute y**2.

 faddp ; Compute x**2 + y**2.
 fsqrt ; Compute sqrt(x**2 + y**2).
 fstp z ; Store result away into z.

6.5.8.6	 The fprem and fprem1 Instructions

The fprem and fprem1 instructions compute a partial remainder (a value that
may require additional computation to produce the actual remainder).
Intel designed the fprem instruction before the IEEE finalized its floating-
point standard. In the final draft of that standard, the definition of fprem
was a little different from Intel’s original design. To maintain compatibility
with the existing software that used the fprem instruction, Intel designed a
new version to handle the IEEE partial remainder operation, fprem1. You
should always use fprem1 in new software; therefore, we will discuss only
fprem1 here, although you use fprem in an identical fashion.

fprem1 computes the partial remainder of ST(0) / ST(1). If the differ-
ence between the exponents of ST(0) and ST(1) is less than 64, fprem1 can
compute the exact remainder in one operation. Otherwise, you will have to
execute fprem1 two or more times to get the correct remainder value. The
C2 condition code bit determines when the computation is complete. Note
that fprem1 does not pop the two operands off the stack; it leaves the partial
remainder in ST(0) and the original divisor in ST(1) in case you need to
compute another partial product to complete the result.

The fprem1 instruction sets the stack exception flag if there aren’t two
values on the top of stack. It sets the underflow and denormal exception
bits if the result is too small. It sets the invalid operation bit if the values
on TOS are inappropriate for this operation. It sets the C2 condition code

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

Arithmetic 349

bit if the partial remainder operation is not complete (or on stack under-
flow). Finally, it loads C1, C2, and C0 with bits 0, 1, and 2 of the quotient,
respectively.

An example follows:

; Compute z = x % y

 fld y
 fld x
repeatLp:

 fprem1
 fstsw ax ; Get condition code bits into AX.
 and ah, 1 ; See if C2 is set.
 jnz repeatLp ; Repeat until C2 is clear.
 fstp z ; Store away the remainder.
 fstp st(0) ; Pop old y value.

6.5.8.7	 The frndint Instruction

The frndint instruction rounds the value on TOS to the nearest integer by
using the rounding algorithm specified in the control register.

This instruction sets the stack exception flag if there is no value on the
TOS (it will also clear C1 in this case). It sets the precision and denormal
exception bits if a loss of precision occurred. It sets the invalid operation
flag if the value on the TOS is not a valid number. Note that the result on
the TOS is still a floating-point value; it simply does not have a fractional
component.

6.5.8.8	 The fabs Instruction

fabs computes the absolute value of ST(0) by clearing the mantissa sign bit
of ST(0). It sets the stack exception bit and invalid operation bits if the stack
is empty.

Here’s an example:

; Compute x = sqrt(abs(x));

 fld x
 fabs
 fsqrt
 fstp x

6.5.8.9	 The fchs Instruction

fchs changes the sign of ST(0)’s value by inverting the mantissa sign bit (this
is the floating-point negation instruction). It sets the stack exception bit and
invalid operation bits if the stack is empty.

Look at this example:

; Compute x = -x if x is positive, x = x if x is negative.
; That is, force x to be a negative value.

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

350 Chapter 6

 fld x
 fabs
 fchs
 fstp x

6.5.9	 Comparison Instructions
The FPU provides several instructions for comparing real values. The fcom,
fcomp, and fcompp instructions compare the two values on the top of stack
and set the condition codes appropriately. The ftst instruction compares
the value on the top of stack with 0.

Generally, most programs test the condition code bits immediately after
a comparison. Unfortunately, no instructions test the FPU condition codes.
Instead, you use the fstsw instruction to copy the floating-point status reg-
ister into the AX register, then the sahf instruction to copy the AH register
into the x86-64’s condition code bits. Then you can test the standard x86-
64 flags to check for a condition. This technique copies C0 into the carry
flag, C2 into the parity flag, and C3 into the zero flag. The sahf instruction
does not copy C1 into any of the x86-64’s flag bits.

Because sahf does not copy any FPU status bits into the sign or overflow
flags, you cannot use signed comparison instructions. Instead, use unsigned
operations (for example, seta, setb, ja, jb) when testing the results of a float-
ing-point comparison. Yes, these instructions normally test unsigned values,
and floating-point numbers are signed values. However, use the unsigned opera-
tions anyway; the fstsw and sahf instructions set the x86-64 flags register as
though you had compared unsigned values with the cmp instruction.

The x86-64 processors provide an extra set of floating-point compari-
son instructions that directly affect the x86-64 condition code flags. These
instructions circumvent having to use fstsw and sahf to copy the FPU status
into the x86-64 condition codes. These instructions include fcomi and fcomip.
You use them just like the fcom and fcomp instructions, except, of course, you
do not have to manually copy the status bits to the FLAGS register.

6.5.9.1	 The fcom, fcomp, and fcompp Instructions

The fcom, fcomp, and fcompp instructions compare ST(0) to the specified oper-
and and set the corresponding FPU condition code bits based on the result
of the comparison. The legal forms for these instructions are as follows:

fcom
fcomp
fcompp

fcom st(i)
fcomp st(i)

fcom mem32
fcom mem64
fcomp mem32
fcomp mem64

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

Arithmetic 351

With no operands, fcom, fcomp, and fcompp compare ST(0) against ST(1)
and set the FPU flags accordingly. In addition, fcomp pops ST(0) off the
stack, and fcompp pops both ST(0) and ST(1) off the stack.

With a single-register operand, fcom and fcomp compare ST(0) against
the specified register. fcomp also pops ST(0) after the comparison.

With a 32- or 64-bit memory operand, the fcom and fcomp instructions
convert the memory variable to an 80-bit extended-precision value and then
compare ST(0) against this value, setting the condition code bits accord-
ingly. fcomp also pops ST(0) after the comparison.

These instructions set C2 (which winds up in the parity flag when using
sahf) if the two operands are not comparable (for example, NaN). If it is
possible for an illegal floating-point value to wind up in a comparison, you
should check the parity flag for an error before checking the desired condi-
tion (for example, with the setp/setnp or jp/jnp instructions).

These instructions set the stack fault bit if there aren’t two items on the
top of the register stack. They set the denormalized exception bit if either
or both operands are denormalized. They set the invalid operation flag if
either or both operands are NaNs. These instructions always clear the C1
condition code.

Let’s look at an example of a floating-point comparison:

 fcompp
 fstsw ax
 sahf
 setb al ; al = true if st(0) < st(1).
 .
 .
 .
 fcompp
 fstsw ax
 sahf
 jnb st1GEst0

 ; Code that executes if st(0) < st(1)

st1GEst0:

Because all x86-64 64-bit CPUs support the fcomi and fcomip instructions
(described in the next section), you should consider using those instructions
as they spare you from having to store the FPU status word into AX and then
copy AH into the flags register before testing the condition. On the other
hand, fcomi and fcomip support only a limited number of operand forms (the
fcom and fcomp instructions are more general).

Listing 6-5 is a sample program that demonstrates the use of the vari-
ous fcom instructions.

; Listing 6-5
;
; Demonstration of fcom instructions

 option casemap:none

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

352 Chapter 6

nl = 10

 .const
ttlStr byte "Listing 6-5", 0
fcomFmt byte "fcom %f < %f is %d", nl, 0
fcomFmt2 byte "fcom(2) %f < %f is %d", nl, 0
fcomFmt3 byte "fcom st(1) %f < %f is %d", nl, 0
fcomFmt4 byte "fcom st(1) (2) %f < %f is %d", nl, 0
fcomFmt5 byte "fcom mem %f < %f is %d", nl, 0
fcomFmt6 byte "fcom mem %f (2) < %f is %d", nl, 0
fcompFmt byte "fcomp %f < %f is %d", nl, 0
fcompFmt2 byte "fcomp (2) %f < %f is %d", nl, 0
fcompFmt3 byte "fcomp st(1) %f < %f is %d", nl, 0
fcompFmt4 byte "fcomp st(1) (2) %f < %f is %d", nl, 0
fcompFmt5 byte "fcomp mem %f < %f is %d", nl, 0
fcompFmt6 byte "fcomp mem (2) %f < %f is %d", nl, 0
fcomppFmt byte "fcompp %f < %f is %d", nl, 0
fcomppFmt2 byte "fcompp (2) %f < %f is %d", nl, 0

three real8 3.0
zero real8 0.0
minusTwo real8 -2.0

 .data
st0 real8 ?
st1 real8 ?

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; printFP- Prints values of st0 and (possibly) st1.
; Caller must pass in ptr to fmtStr in RCX.

printFP proc
 sub rsp, 40

; For varargs (for example, printf call), double
; values must appear in RDX and R8 rather
; than XMM1, XMM2.
; Note: if only one double arg in format
; string, printf call will ignore 2nd
; value in R8.

 mov rdx, qword ptr st0
 mov r8, qword ptr st1

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

Arithmetic 353

 movzx r9, al
 call printf
 add rsp, 40
 ret
printFP endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbp
 mov rbp, rsp
 sub rsp, 48 ;Shadow storage

; fcom demo

 xor eax, eax
 fld three
 fld zero
 fcom
 fstsw ax
 sahf
 setb al
 fstp st0
 fstp st1
 lea rcx, fcomFmt
 call printFP

; fcom demo 2

 xor eax, eax
 fld zero
 fld three
 fcom
 fstsw ax
 sahf
 setb al
 fstp st0
 fstp st1
 lea rcx, fcomFmt2
 call printFP

; fcom st(i) demo

 xor eax, eax
 fld three
 fld zero
 fcom st(1)
 fstsw ax
 sahf
 setb al
 fstp st0
 fstp st1

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

354 Chapter 6

 lea rcx, fcomFmt3
 call printFP

; fcom st(i) demo 2

 xor eax, eax
 fld zero
 fld three
 fcom st(1)
 fstsw ax
 sahf
 setb al
 fstp st0
 fstp st1
 lea rcx, fcomFmt4
 call printFP

; fcom mem64 demo

 xor eax, eax
 fld three ;Never on stack so
 fstp st1 ; copy for output
 fld zero
 fcom three
 fstsw ax
 sahf
 setb al
 fstp st0
 lea rcx, fcomFmt5
 call printFP

; fcom mem64 demo 2

 xor eax, eax
 fld zero ;Never on stack so
 fstp st1 ; copy for output
 fld three
 fcom zero
 fstsw ax
 sahf
 setb al
 fstp st0
 lea rcx, fcomFmt6
 call printFP

; fcomp demo

 xor eax, eax
 fld zero
 fld three
 fst st0 ; Because this gets popped
 fcomp
 fstsw ax
 sahf
 setb al

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

Arithmetic 355

 fstp st1
 lea rcx, fcompFmt
 call printFP

; fcomp demo 2

 xor eax, eax
 fld three
 fld zero
 fst st0 ; Because this gets popped
 fcomp
 fstsw ax
 sahf
 setb al
 fstp st1
 lea rcx, fcompFmt2
 call printFP

; fcomp demo 3

 xor eax, eax
 fld zero
 fld three
 fst st0 ; Because this gets popped
 fcomp st(1)
 fstsw ax
 sahf
 setb al
 fstp st1
 lea rcx, fcompFmt3
 call printFP

; fcomp demo 4

 xor eax, eax
 fld three
 fld zero
 fst st0 ; Because this gets popped
 fcomp st(1)
 fstsw ax
 sahf
 setb al
 fstp st1
 lea rcx, fcompFmt4
 call printFP

; fcomp demo 5

 xor eax, eax
 fld three
 fstp st1
 fld zero
 fst st0 ; Because this gets popped
 fcomp three
 fstsw ax

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

356 Chapter 6

 sahf
 setb al
 lea rcx, fcompFmt5
 call printFP

; fcomp demo 6

 xor eax, eax
 fld zero
 fstp st1
 fld three
 fst st0 ; Because this gets popped
 fcomp zero
 fstsw ax
 sahf
 setb al
 lea rcx, fcompFmt6
 call printFP

; fcompp demo

 xor eax, eax
 fld zero
 fst st1 ; Because this gets popped
 fld three
 fst st0 ; Because this gets popped
 fcompp
 fstsw ax
 sahf
 setb al
 lea rcx, fcomppFmt
 call printFP

; fcompp demo 2

 xor eax, eax
 fld three
 fst st1 ; Because this gets popped
 fld zero
 fst st0 ; Because this gets popped
 fcompp
 fstsw ax
 sahf
 setb al
 lea rcx, fcomppFmt2
 call printFP

 leave
 ret ;Returns to caller

asmMain endp
 end

Listing 6-5: Program that demonstrates the fcom instructions

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

Arithmetic 357

Here’s the build command and output for the program in Listing 6-5:

C:\>build listing6-5

C:\>echo off
 Assembling: listing6-5.asm
c.cpp

C:\>listing6-5
Calling Listing 6-5:
fcom 0.000000 < 3.000000 is 1
fcom(2) 3.000000 < 0.000000 is 0
fcom st(1) 0.000000 < 3.000000 is 1
fcom st(1) (2) 3.000000 < 0.000000 is 0
fcom mem 0.000000 < 3.000000 is 1
fcom mem 3.000000 (2) < 0.000000 is 0
fcomp 3.000000 < 0.000000 is 0
fcomp (2) 0.000000 < 3.000000 is 1
fcomp st(1) 3.000000 < 0.000000 is 0
fcomp st(1) (2) 0.000000 < 3.000000 is 1
fcomp mem 0.000000 < 3.000000 is 1
fcomp mem (2) 3.000000 < 0.000000 is 0
fcompp 3.000000 < 0.000000 is 0
fcompp (2) 0.000000 < 3.000000 is 1
Listing 6-5 terminated

NO T E 	 The x87 FPU also provides instructions that do unordered comparisons: fucom,
fucomp, and fucompp. These are functionally equivalent to fcom, fcomp, and fcompp
except they raise an exception under different conditions. See the Intel documentation
for more details.

6.5.9.2	 The fcomi and fcomip Instructions

The fcomi and fcomip instructions compare ST(0) to the specified operand
and set the corresponding EFLAGS condition code bits based on the result
of the comparison. You use these instructions in a similar manner to fcom
and fcomp except you can test the CPU’s flag bits directly after the execu-
tion of these instructions without first moving the FPU status bits into the
EFLAGS register. The legal forms for these instructions are as follows:

fcomi st(0), st(i)
fcomip st(0), st(i)

Note that a pop-pop version (fcomipp) does not exist. If all you want to do
is compare the top two items on the FPU stack, you will have to explicitly
pop that item yourself (for example, by using the fstp st(0) instruction).

Listing 6-6 is a sample program that demonstrates the operation of the
fcomi and fcomip instructions.

; Listing 6-6
;

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

358 Chapter 6

; Demonstration of fcomi and fcomip instructions

 option casemap:none

nl = 10

 .const
ttlStr byte "Listing 6-6", 0
fcomiFmt byte "fcomi %f < %f is %d", nl, 0
fcomiFmt2 byte "fcomi(2) %f < %f is %d", nl, 0
fcomipFmt byte "fcomip %f < %f is %d", nl, 0
fcomipFmt2 byte "fcomip (2) %f < %f is %d", nl, 0

three real8 3.0
zero real8 0.0
minusTwo real8 -2.0

 .data
st0 real8 ?
st1 real8 ?

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; printFP- Prints values of st0 and (possibly) st1.
; Caller must pass in ptr to fmtStr in RCX.

printFP proc
 sub rsp, 40

; For varargs (for example, printf call), double
; values must appear in RDX and R8 rather
; than XMM1, XMM2.
; Note: if only one double arg in format
; string, printf call will ignore 2nd
; value in R8.

 mov rdx, qword ptr st0
 mov r8, qword ptr st1
 movzx r9, al
 call printf
 add rsp, 40
 ret

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

Arithmetic 359

printFP endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbp
 mov rbp, rsp
 sub rsp, 48 ; Shadow storage

; Test to see if 0 < 3
; Note: ST(0) contains 0, ST(1) contains 3

 xor eax, eax
 fld three
 fld zero
 fcomi st(0), st(1)
 setb al
 fstp st0
 fstp st1
 lea rcx, fcomiFmt
 call printFP

; Test to see if 3 < 0
; Note: ST(0) contains 0, ST(1) contains 3

 xor eax, eax
 fld zero
 fld three
 fcomi st(0), st(1)
 setb al
 fstp st0
 fstp st1
 lea rcx, fcomiFmt2
 call printFP

; Test to see if 3 < 0
; Note: ST(0) contains 0, ST(1) contains 3

 xor eax, eax
 fld zero
 fld three
 fst st0 ; Because this gets popped
 fcomip st(0), st(1)
 setb al
 fstp st1
 lea rcx, fcomipFmt
 call printFP

; Test to see if 0 < 3
; Note: ST(0) contains 0, ST(1) contains 3

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

360 Chapter 6

 xor eax, eax
 fld three
 fld zero
 fst st0 ; Because this gets popped
 fcomip st(0), st(1)
 setb al
 fstp st1
 lea rcx, fcomipFmt2
 call printFP

 leave
 ret ; Returns to caller

asmMain endp
 end

Listing 6-6: Sample program demonstrating floating-point comparisons

Here’s the build command and output for the program in Listing 6-6:

C:\>build listing6-6

C:\>echo off
 Assembling: listing6-6.asm
c.cpp

C:\>listing6-6
Calling Listing 6-6:
fcomi 0.000000 < 3.000000 is 1
fcomi(2) 3.000000 < 0.000000 is 0
fcomip 3.000000 < 0.000000 is 0
fcomip (2) 0.000000 < 3.000000 is 1
Listing 6-6 terminated

NO T E 	 The x87 FPU also provides two instructions that do unordered comparisons:
fucomi and fucomip. These are functionally equivalent to fcomi and fcomip except
they raise an exception under different conditions. See the Intel documentation for
more details.

6.5.9.3	 The ftst Instruction

The ftst instruction compares the value in ST(0) against 0.0. It behaves just
like the fcom instruction would if ST(1) contained 0.0. This instruction does
not differentiate –0.0 from +0.0. If the value in ST(0) is either of these val-
ues, ftst will set C3 to denote equality (or unordered). This instruction does
not pop ST(0) off the stack.

Here’s an example:

ftst
fstsw ax
sahf
sete al ; Set al to 1 if TOS = 0.0

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

Arithmetic 361

6.5.10	 Constant Instructions
The FPU provides several instructions that let you load commonly used con-
stants onto the FPU’s register stack. These instructions set the stack fault,
invalid operation, and C1 flags if a stack overflow occurs; they do not other-
wise affect the FPU flags. The specific instructions in this category include
the following:

fldz ; Pushes +0.0.
fld1 ; Pushes +1.0.
fldpi ; Pushes pi (3.15159...)
fldl2t ; Pushes log2(10).
fldl2e ; Pushes log2(e).
fldlg2 ; Pushes log10(2).
fldln2 ; Pushes ln(2).

6.5.11	 Transcendental Instructions
The FPU provides eight transcendental (logarithmic and trigonometric)
instructions to compute sine, cosine, partial tangent, partial arctangent,
2x – 1, y × log2(x), and y × log2(x + 1). Using various algebraic identities, it
is easy to compute most of the other common transcendental functions
by using these instructions.

6.5.11.1	 The f2xm1 Instruction

f2xm1 computes 2ST(0) – 1. The value in ST(0) must be in the range –1.0 to
+1.0. If ST(0) is out of range, f2xm1 generates an undefined result but raises
no exceptions. The computed value replaces the value in ST(0).

Here’s an example computing 10i using the identity 10i = 2i×log2(10). This
is useful for only a small range of i that doesn’t put ST(0) outside the previ-
ously mentioned valid range:

fld i
fldl2t
fmul
f2xm1
fld1
fadd

Because f2xm1 computes 2x – 1, the preceding code adds 1.0 to the result
at the end of the computation.

6.5.11.2	 The fsin, fcos, and fsincos Instructions

These instructions pop the value off the top of the register stack and com-
pute the sine, cosine, or both, and push the result(s) back onto the stack.
The fsincos instruction pushes the sine followed by the cosine of the origi-
nal operand; hence it leaves cos(ST(0)) in ST(0) and sin(ST(0)) in ST(1).

These instructions assume ST(0) specifies an angle in radians, and this
angle must be in the range –263 < ST(0) < +263. If the original operand is out

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

362 Chapter 6

of range, these instructions set the C2 flag and leave ST(0) unchanged. You
can use the fprem1 instruction, with a divisor of 2π, to reduce the operand to
a reasonable range.

These instructions set the stack fault (or rounding)/C1, precision,
underflow, denormalized, and invalid operation flags according to the
result of the computation.

6.5.11.3	 The fptan Instruction

fptan computes the tangent of ST(0), replaces ST(0) with this value, and
then pushes 1.0 onto the stack. Like the fsin and fcos instructions, the value
of ST(0) must be in radians and in the range –263 < ST(0) < +263. If the
value is outside this range, fptan sets C2 to indicate that the conversion did
not take place. As with the fsin, fcos, and fsincos instructions, you can use
the fprem1 instruction to reduce this operand to a reasonable range by using
a divisor of 2π.

If the argument is invalid (that is, 0 or π radians, which causes a divi-
sion by 0), the result is undefined and this instruction raises no exceptions.
fptan will set the stack fault/rounding, precision, underflow, denormal,
invalid operation, C2, and C1 bits as required by the operation.

6.5.11.4	 The fpatan Instruction

fpatan expects two values on the top of stack. It pops them and computes
ST(0) = tan-1(ST(1) / ST(0)). The resulting value is the arctangent of the
ratio on the stack expressed in radians. If you want to compute the arctan-
gent of a particular value, use fld1 to create the appropriate ratio and then
execute the fpatan instruction.

This instruction affects the stack fault/C1, precision, underflow, denor-
mal, and invalid operation bits if a problem occurs during the computation.
It sets the C1 condition code bit if it has to round the result.

6.5.11.5	 The fyl2x Instruction

The fyl2x instruction computes ST(0) = ST(1) × log2(ST(0)). The instruction
itself has no operands, but expects two operands on the FPU stack in ST(1)
and ST(0), thus using the following syntax:

fyl2x

To compute the log of any other base, you can use the following arith-
metic identity:

logn(x) = log2(x) / log2(n)
So if you first compute log2(n) and put its reciprocal on the stack, then

push x onto the stack and execute fyl2x, you wind up with logn(x).
The fyl2x instruction sets the C1 condition code bit if it has to round

up the value. It clears C1 if no rounding occurs or if a stack overflow occurs.
The remaining floating-point condition codes are undefined after the exe-
cution of this instruction. fyl2x can raise the following floating-point excep-
tions: invalid operation, denormal result, overflow, underflow, and inexact

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

Arithmetic 363

result. Note that the fldl2t and fldl2e instructions turn out to be quite
handy when using the fyl2x instruction (for computing log10 and ln).

6.5.11.6	 The fyl2xp1 Instruction

fyl2xp1 computes ST(0) = ST(1) × log2(ST(0) + 1.0), from two operands on
the FPU stack. The syntax for this instruction is as follows:

fyl2xp1

Otherwise, the instruction is identical to fyl2x.

6.5.12	 Miscellaneous Instructions
The FPU includes several additional instructions that control the FPU, syn-
chronize operations, and let you test or set various status bits: finit/fninit,
fldcw, fstcw, fclex/fnclex, and fstsw.

6.5.12.1	 The finit and fninit Instructions

The finit and fninit instructions initialize the FPU for proper operation.
Your code should execute one of these instructions before executing any
other FPU instructions. They initialize the control register to 37Fh, the
status register to 0, and the tag word to 0FFFFh. The other registers are
unaffected.

Here are some examples:

finit
fninit

The difference between finit and fninit is that finit first checks for any
pending floating-point exceptions before initializing the FPU; fninit does not.

6.5.12.2	 The fldcw and fstcw Instructions

The fldcw and fstcw instructions require a single 16-bit memory operand:

fldcw mem16
fstcw mem16

These two instructions load the control word from a memory location
(fldcw) or store the control word to a 16-bit memory location (fstcw).

When using fldcw to turn on one of the exceptions, if the corresponding
exception flag is set when you enable that exception, the FPU will gener-
ate an immediate interrupt before the CPU executes the next instruction.
Therefore, you should use fclex to clear any pending interrupts before
changing the FPU exception enable bits.

6.5.12.3	 The fclex and fnclex Instructions

The fclex and fnclex instructions clear all exception bits, the stack fault bit,
and the busy flag in the FPU status register.

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

364 Chapter 6

Here are examples:

fclex
fnclex

The difference between these instructions is the same as between finit
and fninit: fclex first checks for pending floating-point exceptions.

6.5.12.4	 The fstsw and fnstsw Instructions

These instructions store the FPU status word into a 16-bit memory location
or the AX register:

fstsw ax
fnstsw ax
fstsw mem16
fnstsw mem16

These instructions are unusual in the sense that they can copy an FPU
value into one of the x86-64 general-purpose registers (specifically, AX).
The purpose is to allow the CPU to easily test the condition code register
with the sahf instruction. The difference between fstsw and fnstsw is the
same as for fclex and fnclex.

	 6.6	� Converting Floating-Point Expressions to Assembly
Language
Because the FPU register organization is different from the x86-64 integer
register set, translating arithmetic expressions involving floating-point oper-
ands is a little different from translating integer expressions. Therefore, it
makes sense to spend some time discussing how to manually translate float-
ing-point expressions into assembly language.

The FPU uses postfix notation (also called reverse Polish notation, or RPN),
for arithmetic operations. Once you get used to using postfix notation, it’s
actually a bit more convenient for translating expressions because you don’t
have to worry about allocating temporary variables—they always wind up on
the FPU stack. Postfix notation, as opposed to standard infix notation, places
the operands before the operator. Table 6-14 provides simple examples of
infix notation and the corresponding postfix notation.

Table 6-14: Infix-to-Postfix Translation

Infix notation Postfix notation

5 + 6 5 6 +

7 – 2 7 2 –

x × y x y ×

a / b a b /

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

Arithmetic 365

A postfix expression like 5 6 + says, “Push 5 onto the stack, push 6 onto
the stack, and then pop the value off the top of stack (6) and add it to the new
top of stack.” Sound familiar? This is exactly what the fld and fadd instructions
do. In fact, you can calculate the result by using the following code:

fld five ; Declared somewhere as five real8 5.0 (or real4/real10)
fld six ; Declared somewhere as six real8 6.0 (or real4/real10)
fadd ; 11.0 is now on the top of the FPU stack.

As you can see, postfix is a convenient notation because it’s easy to
translate this code into FPU instructions.

Another advantage to postfix notation is that it doesn’t require any
parentheses. The examples in Table 6-15 demonstrate some slightly more
complex infix-to-postfix conversions.

Table 6-15: More-Complex Infix-to-Postfix
Translations

Infix notation Postfix notation

(x + y) × 2 x y + 2 ×

x × 2 – (a + b) x 2 × a b + –

(a + b) × (c + d) a b + c d + ×

The postfix expression x y + 2 × says, “Push x, then push y; next, add
those values on the stack (producing x + y on the stack). Next, push 2 and
then multiply the two values (2 and x + y) on the stack to produce two times
the quantity x + y.” Once again, we can translate these postfix expressions
directly into assembly language. The following code demonstrates the con-
version for each of the preceding expressions:

; x y + 2 *

 fld x
 fld y
 fadd
 fld const2 ;const2 real8 2.0 in .data section
 fmul

; x 2 * a b + -

 fld x
 fld const2 ;const2 real8 2.0 in .data section
 fmul
 fld a
 fld b
 fadd
 fsub

; a b + c d + *

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

366 Chapter 6

 fld a
 fld b
 fadd
 fld c
 fld d
 fadd
 fmul

6.6.2	 Converting Arithmetic Expressions to Postfix Notation
For simple expressions, those involving two operands and a single expression,
the translation from infix to postfix notation is trivial: simply move the opera-
tor from the infix position to the postfix position (that is, move the operator
from between the operands to after the second operand). For example, 5 +
6 becomes 5 6 +. Other than separating your operands so you don’t confuse
them (that is, is it 5 and 6 or 56?), converting simple infix expressions into
postfix notation is straightforward.

For complex expressions, the idea is to convert the simple subexpres-
sions into postfix notation and then treat each converted subexpression as
a single operand in the remaining expression. The following discussion sur-
rounds completed conversions with square brackets so it is easy to see which
text needs to be treated as a single operand in the conversion.

As for integer expression conversion, the best place to start is in the
innermost parenthetical subexpression and then work your way outward,
considering precedence, associativity, and other parenthetical subexpres-
sions. As a concrete working example, consider the following expression:

x = ((y – z) * a) – (a + b * c) / 3.14159

A possible first translation is to convert the subexpression (y - z) into
postfix notation:

x = ([y z -] * a) - (a + b * c) / 3.14159

Square brackets surround the converted postfix code just to separate it
from the infix code, for readability. Remember, for the purposes of conver-
sion, we will treat the text inside the square brackets as a single operand.
Therefore, you would treat [y z -] as though it were a single variable name
or constant.

The next step is to translate the subexpression ([y z -] * a) into post-
fix form. This yields the following:

x = [y z - a *] - (a + b * c) / 3.14159

Next, we work on the parenthetical expression (a + b * c). Because
multiplication has higher precedence than addition, we convert b * c first:

x = [y z - a *] - (a + [b c *]) / 3.14159

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

Arithmetic 367

After converting b * c, we finish the parenthetical expression:

x = [y z - a *] - [a b c * +] / 3.14159

This leaves only two infix operators: subtraction and division. Because
division has the higher precedence, we’ll convert that first:

x = [y z - a *] - [a b c * + 3.14159 /]

Finally, we convert the entire expression into postfix notation by deal-
ing with the last infix operation, subtraction:

x = [y z - a *] [a b c * + 3.14159 /] -

Removing the square brackets yields the following postfix expression:

x = y z - a * a b c * + 3.14159 / -

The following steps demonstrate another infix-to-postfix conversion for
this expression:

a = (x * y - z + t) / 2.0

1.	 Work inside the parentheses. Because multiplication has the highest
precedence, convert that first:

a = ([x y *] - z + t) / 2.0

2.	 Still working inside the parentheses, we note that addition and subtrac-
tion have the same precedence, so we rely on associativity to determine
what to do next. These operators are left-associative, so we must translate
the expressions from left to right. This means translate the subtraction
operator first:

a = ([x y * z -] + t) / 2.0

3.	 Now translate the addition operator inside the parentheses. Because
this finishes the parenthetical operators, we can drop the parentheses:

a = [x y * z - t +] / 2.0

4.	 Translate the final infix operator (division). This yields the following:

a = [x y * z - t + 2.0 /]

5.	 Drop the square brackets and we’re done:

a = x y * z - t + 2.0 /

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

368 Chapter 6

6.6.3	 Converting Postfix Notation to Assembly Language
Once you’ve translated an arithmetic expression into postfix notation,
finishing the conversion to assembly language is easy. All you have to do is
issue an fld instruction whenever you encounter an operand and issue an
appropriate arithmetic instruction when you encounter an operator. This
section uses the completed examples from the previous section to demon-
strate how little there is to this process.

x = y z - a * a b c * + 3.14159 / -

1.	 Convert y to fld y.

2.	 Convert z to fld z.

3.	 Convert - to fsub.

4.	 Convert a to fld a.

5.	 Convert * to fmul.

6.	 Continuing in a left-to-right fashion, generate the following code for
the expression:

fld y
fld z
fsub
fld a
fmul
fld a
fld b
fld c
fmul
fadd
fldpi ; Loads pi (3.14159)
fdiv
fsub

fstp x ; Store result away into x.

Here’s the translation for the second example in the previous section:

a = x y * z - t + 2.0 /
 fld x
 fld y
 fmul
 fld z
 fsub
 fld t
 fadd
 fld const2 ;const2 real8 2.0 in .data section
 fdiv

 fstp a ; Store result away into a.

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

Arithmetic 369

As you can see, the translation is fairly simple once you’ve converted the
infix notation to postfix notation. Also note that, unlike integer expression
conversion, you don’t need any explicit temporaries. It turns out that the
FPU stack provides the temporaries for you.9 For these reasons, converting
floating-point expressions into assembly language is actually easier than
converting integer expressions.

	 6.7	� SSE Floating-Point Arithmetic
Although the x87 FPU is relatively easy to use, the stack-based design of
the FPU created performance bottlenecks as CPUs became more powerful.
After introducing the Streaming SIMD Extensions (SSE) in its Pentium III
CPUs (way back in 1999), Intel decided to resolve the FPU performance
bottleneck and added scalar (non-vector) floating-point instructions to
the SSE instruction set that could use the XMM registers. Most modern
programs favor the use of the SSE (and later) registers and instructions for
floating-point operations over the x87 FPU, using only those x87 operations
available exclusively on the x87.

The SSE instruction set supports two floating-point data types: 32-bit
single-precision (Intel calls these scalar single operations) and 64-bit dou-
ble-precision values (Intel calls these scalar double operations).10 The SSE
does not support the 80-bit extended-precision floating-point data types
of the x87 FPU. If you need the extended-precision format, you’ll have to
use the x87 FPU.

6.7.1	 SSE MXCSR Register
The SSE MXCSR register is a 32-bit status and control register that controls
SSE floating-point operations. Bits 16 to 32 are reserved and currently have
no meaning. Table 6-16 lists the functions of the LO 16 bits.

Table 6-16: SSE MXCSR Register

Bit Name Function

0 IE Invalid operation exception flag. Set if an invalid operation was
attempted.

1 DE Denormal exception flag. Set if operations produced a denormalized
value.

2 ZE Zero exception flag. Set if an attempt to divide by 0 was made.

3 OE Overflow exception flag. Set if there was an overflow.

9. � �This assumes, of course, that your calculations aren’t so complex that you exceed the eight-
element limitation of the FPU stack.

10. � �This book has typically used scalar to denote atomic (noncomposite) data types that were
not floating-point (chars, Booleans, integers, and so forth). In fact, floating-point values
(that are not part of a larger composite data type) are also scalars. Intel uses scalar as
opposed to vector (the SSE also supports vector operations).

continued

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

370 Chapter 6

Bit Name Function

4 UE Underflow exception flag. Set if there was an underflow.

5 PE Precision exception flag. Set if there was a precision exception.

6 DAZ Denormals are 0. If set, treat denormalized values as 0.

7 IM Invalid operation mask. If set, ignore invalid operation exceptions.

8 DM Denormal mask. If set, ignore denormal exceptions.

9 ZM Divide-by-zero mask. If set, ignore division-by-zero exceptions.

10 OM Overflow mask. If set, ignore overflow exceptions.

11 UM Underflow mask. If set, ignore underflow exceptions.

12 PM Precision mask. If set, ignore precision exceptions.

13 Rounding
Control

00: Round to nearest 01: Round toward –infinity
10: Round toward +infinity 11: Round toward 0 (truncate)

14

15 FTZ Flush to zero. When set, all underflow conditions set the register to 0.

Access to the SSE MXCSR register is via the following two instructions:

ldmxcsr mem32
stmxcsr mem32

The ldmxcsr instruction loads the MXCSR register from the specified
32-bit memory location. The stmxcsr instruction stores the current contents
of the MXCSR register to the specified memory location.

By far, the most common use of these two instructions is to set the round-
ing mode. In typical programs using the SSE floating-point instructions, it
is common to switch between the round-to-nearest and round-to-zero (trun-
cate) modes.

6.7.2	 SSE Floating-Point Move Instructions
The SSE instruction set provides two instructions to move floating-point
values between XMM registers and memory: movss (move scalar single) and
movsd (move scalar double). Here is their syntax:

movss xmmn, mem32
movss mem32, xmmn
movsd xmmn, mem64
movsd mem64, xmmn

As for the standard general-purpose registers, the movss and movsd
instructions move data between an appropriate memory location (contain-
ing a 32- or 64-bit floating-point value) and one of the 16 XMM registers
(XMM0 to XMM15).

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

Arithmetic 371

For maximum performance, movss memory operands should appear at a
double-word-aligned memory address, and movsd memory operands should
appear at a quad-word-aligned memory address. Though these instructions
will function properly if the memory operands are not properly aligned in
memory, there is a performance hit for misaligned accesses.

In addition to the movss and movsd instructions that move floating-point
values between XMM registers or XMM registers and memory, you’ll find a
couple of other SSE move instructions useful that move data between XMM
and general-purpose registers, movd and movq:

movd reg32, xmmn
movd xmmn, reg32
movq reg64, xmmn
movq xmmn, reg64

These instructions also have a form that allows a source memory oper-
and. However, you should use movss and movsd to move floating-point variables
into XMM registers.

The movq and movd instructions are especially useful for copying XMM
registers into 64-bit general-purpose registers prior to a call to printf()
(when printing floating-point values). As you’ll see in a few sections, these
instructions are also useful for floating-point comparisons on the SSE.

6.7.3	 SSE Floating-Point Arithmetic Instructions
The Intel SSE instruction set adds the following floating-point arithmetic
instructions:

addss xmmn, xmmn
addss xmmn, mem32
addsd xmmn, xmmn
addsd xmmn, mem64

subss xmmn, xmmn
subss xmmn, mem32
subsd xmmn, xmmn
subsd xmmn, mem64

mulss xmmn, xmmn
mulss xmmn, mem32
mulsd xmmn, xmmn
mulsd xmmn, mem64

divss xmmn, xmmn
divss xmmn, mem32
divsd xmmn, xmmn
divsd xmmn, mem64

minss xmmn, xmmn
minss xmmn, mem32
minsd xmmn, xmmn
minsd xmmn, mem64

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

372 Chapter 6

maxss xmmn, xmmn
maxss xmmn, mem32
maxsd xmmn, xmmn
maxsd xmmn, mem64

sqrtss xmmn, xmmn
sqrtss xmmn, mem32
sqrtsd xmmn, xmmn
sqrtsd xmmn, mem64

rcpss xmmn, xmmn
rcpss xmmn, mem32

rsqrtss xmmn, xmmn
rsqrtss xmmn, mem32

The addsx, subsx, mulsx, and divsx instructions perform the expected
floating-point arithmetic operations. The minsx instructions compute the
minimum value of the two operands, storing the minimum value into
the destination (first) operand. The maxsx instructions do the same thing,
but compute the maximum of the two operands. The sqrtsx instructions
compute the square root of the source (second) operand and store the
result into the destination (first) operand. The rcpsx instructions compute
the reciprocal of the source, storing the result into the destination.11 The
rsqrtsx instructions compute the reciprocal of the square root.12

The operand syntax is somewhat limited for the SSE instructions (com-
pared with the generic integer instructions): the destination operand must
always be an XMM register.

6.7.4	 SSE Floating-Point Comparisons
The SSE floating-point comparisons work quite a bit differently from the inte-
ger and x87 FPU compare instructions. Rather than having a single generic
instruction that sets flags (to be tested by setcc or jcc instructions), the SSE
provides a set of condition-specific comparison instructions that store true
(all 1 bits) or false (all 0 bits) into the destination operand. You can then test
the result value for true or false. Here are the instructions:

cmpss xmmn, xmmm/mem32, imm8
cmpsd xmmn, xmmm/mem64, imm8

cmpeqss xmmn, xmmm/mem32
cmpltss xmmn, xmmm/mem32
cmpless xmmn, xmmm/mem32
cmpunordss xmmn, xmmm/mem32
cmpne	 qss xmmn, xmmm/mem32

11. � �Intel’s documentation claims that the reciprocal operation is just an approximation.
Then again, by definition, the square root operation is also an approximation because it
produces irrational results.

12. � �Also an approximation.

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

Arithmetic 373

cmpnltss xmmn, xmmm/mem32
cmpnless xmmn, xmmm/mem32
cmpordss xmmn, xmmm/mem32

cmpeqsd xmmn, xmmm/mem64
cmpltsd xmmn, xmmm/mem64
cmplesd xmmn, xmmm/mem64
cmpunordsd xmmn, xmmm/mem64
cmpneqsd xmmn, xmmm/mem64
cmpnltsd xmmn, xmmm/mem64
cmpnlesd xmmn, xmmm/mem64
cmpordsd xmmn, xmmm/mem64

The immediate constant is a value in the range 0 to 7 and represents
one of the comparisons in Table 6-17.

Table 6-17: SSE Compare Immediate Operand

imm8 Comparison

0 First operand == second operand

1 First operand < second operand

2 First operand <= second operand

3 First operand unordered second operand

4 First operand != second operand

5 First operand not less than second operand (>=)

6 First operand not less than or equal to second operand (>)

7 First operand ordered second operand

The instructions without the third (immediate) operand are special
pseudo-ops MASM provides that automatically supply the appropriate third
operand. You can use the nlt form for ge and nle form for gt, assuming the
operands are ordered.

The unordered comparison returns true if either (or both) operands
are unordered (typically, NaN values). Likewise, the ordered comparison
returns true if both operands are ordered.

As noted, these instructions leave 0 or all 1 bits in the destination
register to represent false or true. If you want to branch based on these
conditions, you should move the destination XMM register into a general-
purpose register and test that register for zero/not zero. You can use the
movq or movd instructions to accomplish this:

 cmpeqsd xmm0, xmm1
 movd eax, xmm0 ;move true/false to EAX
 test eax, eax ;Test for true/false
 jnz xmm0EQxmm1 ;Branch if xmm0 == xmm1

; code to execute if xmm0 != xmm1

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

374 Chapter 6

6.7.5	 SSE Floating-Point Conversions
The x86-64 provides several floating-point conversion instructions that
convert between floating-point and integer formats. Table 6-18 lists these
instructions and their syntax.

Table 6-18: SSE Conversion Instructions

Instruction syntax Description

cvtsd2si reg32/64, xmmn/mem64 Converts scalar double-precision FP to 32-, or 64-bit integer. Uses the
current rounding mode in the MXCSR to determine how to deal with
fractional components. Result is stored in a general-purpose 32- or
64-bit register.

cvtsd2ss xmmn, xmmn/mem64 Converts scalar double-precision FP (in an XMM register or memory)
to scalar single-precision FP and leaves the result in the destination
XMM register. Uses the current rounding mode in the MXCSR to deter-
mine how to deal with inexact conversions.

cvtsi2sd xmmn, reg32/64/mem32/64 Converts a 32- or 64-bit integer in an integer register or memory to
a double-precision floating-point value, leaving the result in an XMM
register.

cvtsi2ss xmmn, reg32/64/mem32/64 Converts a 32- or 64-bit integer in an integer register or memory to
a single-precision floating-point value, leaving the result in an XMM
register.

cvtss2sd xmmn, xmmn/mem32 Converts a single-precision floating-point value in an XMM register or
memory to a double-precision value, leaving the result in the destina-
tion XMM register.

cvtss2si reg32/64, xmmn/mem32 Converts a single-precision floating-point value in an XMM register or
memory to an integer and leaves the result in a general-purpose 32-
or 64-bit register. Uses the current rounding mode in the MXCSR to
determine how to deal with inexact conversions.

cvttsd2si reg32/64, xmmn/mem64 Converts scalar double-precision FP to a 32-, or 64-bit integer.
Conversion is done using truncation (does not use the rounding control
setting in the MXCSR). Result is stored in a general-purpose 32- or
64-bit register.

cvttss2si reg32/64, xmmn/mem32 Converts scalar single-precision FP to a 32-, or 64-bit integer.
Conversion is done using truncation (does not use the rounding control
setting in the MXCSR). Result is stored in a general-purpose 32- or
64-bit register.

	 6.8	� For More Information
The Intel/AMD processor manuals fully describe the operation of each of
the integer and floating-point arithmetic instructions, including a detailed
description of how these instructions affect the condition code bits and
other flags in the RFLAGS and FPU status registers. To write the best pos-
sible assembly language code, you need to be intimately familiar with how
the arithmetic instructions affect the execution environment, so spending
time with the Intel/AMD manuals is a good idea.

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

Arithmetic 375

Chapter 8 discusses multiprecision integer arithmetic. See that chapter
for details on handling integer operands that are greater than 64 bits in size.

The x86-64 SSE instruction set found on later iterations of the CPU
provides support for floating-point arithmetic using the AVX register set.
Consult the Intel/AMD documentation for details concerning the AVX
floating-point instruction set.

	 6.9	� Test Yourself
1.	 What are the implied operands for the single-operand imul and mul

instructions?

2.	 What is the result size for an 8-bit mul operation? A 16-bit mul operation?
A 32-bit mul operation? A 64-bit mul operation? Where does the CPU put
the products?

3.	 What result(s) does an x86 div instruction produce?

4.	 When performing a signed 16-bit by 16-bit division using idiv, what
must you do before executing the idiv instruction?

5.	 When performing an unsigned 32-bit by 32-bit division using div, what
must you do before executing the div instruction?

6.	 What are the two conditions that will cause a div instruction to produce
an exception?

7.	 How do the mul and imul instructions indicate overflow?

8.	 How do the mul and imul instructions affect the zero flag?

9.	 What is the difference between the extended-precision (single operand)
imul instruction and the more generic (multi-operand) imul instruction?

10.	 What instructions would you normally use to sign-extend the accumula-
tor prior to executing an idiv instruction?

11.	 How do the div and idiv instructions affect the carry, zero, overflow,
and sign flags?

12.	 How does the cmp instruction affect the zero flag?

13.	 How does the cmp instruction affect the carry flag (with respect to an
unsigned comparison)?

14.	 How does the cmp instruction affect the sign and overflow flags (with
respect to a signed comparison)?

15.	 What operands do the setcc instructions take?

16.	 What do the setcc instructions do to their operand?

17.	 What is the difference between the test instruction and the and
instruction?

18.	 What are the similarities between the test instruction and the and
instruction?

19.	 Explain how you would use the test instruction to see if an individual
bit is 1 or 0 in an operand?

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

376 Chapter 6

20.	 Convert the following expressions to assembly language (assume all
variables are signed 32-bit integers):

x = x + y
x = y – z
x = y * z
x = y + z * t
x = (y + z) * t
x = -((x * y) / z)
x = (y == z) && (t != 0)

21.	 Compute the following expressions without using an imul or mul instruc-
tion (assume all variables are signed 32-bit integers):

x = x * 2
x = y * 5
x = y * 8

22.	Compute the following expressions without using a div or idiv instruc-
tion (assume all variables are unsigned 16-bit integers):

x = x / 2
x = y / 8
x = z / 10

23.	 Convert the following expressions to assembly language by using the
FPU (assume all variables are real8 floating-point values):

x = x + y
x = y – z
x = y * z
x = y + z * t
x = (y + z) * t
x = -((x * y) / z)

24.	 Convert the following expressions to assembly language by using SSE
instructions (assume all variables are real4 floating-point values):

x = x + y
x = y – z
x = y * z
x = y + z * t

25.	 Convert the following expressions to assembly language by using FPU
instructions; assume b is a one-byte Boolean variable and x, y, and z are
real8 floating-point variables:

b = x < y
b = x >= y && x < z

The Art of 64-Bit Assembly (Sample Chapter) © 6/15/21 by Randall Hyde

T H E A R T O F 6 4 - B I T
A S S E M B LY

R A N D A L L H Y D E

6/15/21

