

C
O

DE

E
A
T
 SLEEP

A N I N T R O D U C T I O N T O

C R E A T I V E P R O B L E M S O L V I N G

V . A N T O N S P R A U L

T H I N K L I K E
A P R O G R A M M E RA P R O G R A M M E R

T H I N K L I K E

C
O

DE

E
A
T
 SLEEPR E W I R ER E W I R E

Y O U R B R A I NY O U R B R A I N

$34.95 ($36.95 CDN)

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT™

 “ I L I E F LAT .”

Th is book uses RepKover — a durab le b ind ing that won’t snap shut. SHELVE IN
:

PROGRAM
M

ING/GENERAL

• Master more advanced programming tools like recursion
and dynamic memory

• Organize your thoughts and develop strategies to tackle
particular types of problems

Although the book’s examples are written in C++, the
creative problem-solving concepts they illustrate go beyond
any particular language; in fact, they often reach outside the
realm of computer science. As the most skillful programmers
know, writing great code is a creative art—and the first
step in creating your masterpiece is learning to Think Like
a Programmer.

distillation of the techniques he has used and honed over

A B O U T T H E A U T H O R

V. Anton Spraul has taught introductory programming and
computer science for more than 15 years. This book is a

many one-on-one sessions with struggling programmers.
He is also the author of Computer Science Made Simple.

The real challenge of programming isn’t learning a
language’s syntax—it’s learning to creatively solve
problems so you can build something great.

In this one-of-a-kind text, author V. Anton Spraul breaks
down the ways that programmers solve problems and
teaches you what other introductory books often ignore:
how to Think Like a Programmer. Each chapter tackles

and recursion, and open-ended exercises throughout
a single programming concept, like classes, pointers,

challenge you to apply your knowledge.

You’ll also learn how to:

them easier to solve
• Split problems into discrete components to make

• Make the most of code reuse with functions, classes,
and libraries

• Pick the perfect data structure for a particular job

C
O

DE
E
A
T
 SLEEP

T
H

IN
K

 L
IK

E
 A

 P
R

O
G

R
A

M
M

E
R

T
H

IN
K

 L
IK

E
 A

 P
R

O
G

R
A

M
M

E
R

I N D E X

Numbers and Symbols
&& operator (logical and), 48

short-circuit evaluation of, 129,
132, 133

& operator (address-of), 85
& symbol (reference parameter),

84–85, 137, 211, 213
* operator (dereference), 59–60,

82, 128–129, 138, 213–216
* symbol (pointer declaration), 59,

75, 82, 85, 99–100, 160,
177–178, 186, 192

pointer to function, 177–178
== operator (equality), 197–198
= operator (assignment), 137–138,

197–198
-> operator (structure deference),

102, 128
% operator (modulo), 33–34, 39–40,

50–52

A
abstract data type, 116, 175, 183,

188–189
access specifier, 112, 119, 125, 127
activation record, 86–87, 89–90
address-of operator (&), 85
algorithm, xv, 173–174, 176–177,

182–183, 188–193
analogy. See finding an analogy
and (Boolean logic), 48

short-circuit evaluation of, 129,
132, 133

application programming interface
(API), 176

arrays, 56
ARRAY_SIZE constant, 58
aggregate statistics, 61–62
basic operations, 56–62
of bool, 209, 215
computing average, 61
const array declaration, 67
copying, 57
dynamically allocating, 93, 97, 98
element, 56
finding largest value in, 58–59,

66, 70–71, 73
of fixed data, 67–69
initialization, 57, 70, 71
median, 67
mode (statistic), 62–65
multidimensional, 71–74

treating as array of arrays,
72–74

when to use, 71–72
nonscalar, 69–71
recursive processing of, 153–155
searching

criterion-based, 58–59
for specific value, 58

sorting, 59–61, 189–193
insertion sort, 60–61,

190–192, 193
qsort, 59–60, 192–193

of string, 123
of struct, 69–71
subscript, 56, 66
vs. vectors, 75–76
when to use, 74–78

assignment operator (=), 137–138,
197–198

Think Like a Programmer
©2012, V. Anton Spraul

228 INDEX

avoiding frustration, 21–22, 95–96,
201, 220, 224

by dividing problems, 41

B
bad_alloc exception, 89
bad smells, 65, 97, 192
base case, 144, 162
Big Recursive Idea (BRI), 143,

152–155
binary tree

empty, testing for, 162
leaf, 163
recursive processing, 160–165,

166–167
root node, 161
subtree, 161

C
C++

array declaration, 55
array initialization, 57
as choice for this book, xvii
cin standard stream, 26
class declaration, 112–113
cout standard stream, 26
delete operator, 83
exception, 130
file processing, 210–211
free function, 88
friend keyword, 184
get method, 34
header files for input/output, 26
list class, 182–183, 210–214,

216, 218
malloc function, 88
new operator, 75, 82, 97, 98
pointer declaration, 82
prerequisites, xv
reference parameters, 84
short-circuit evaluation, 129,

132, 133
Standard Template Library, 175
this keyword, 120
typedef keyword, 91, 101, 127,

160, 177
character codes, 34–35

checksum validation, 31–32
cin standard stream, 26
class

access specifier, 112, 119,
125, 127

basic framework, 119–122
composition, 126
constructor, 112–113, 119,

121–122, 126–127
data member, 112
declaration, 112–113
deep copy, 134–137
destructor, 133–134
dynamic data structures,

125–140
encapsulation, 114, 126, 180
expressiveness, 117–118, 121, 128
fake, 140–141
friend method, 184
get and set, 119–121
goals of use, 113–118
information hiding, 115, 180
interface, 115
method, 112
method names, choosing, 117,

119–120
operator overloading, 137
private member, 112
protected member, 112
public member, 112
shallow copy, 135
single-tasker, 141
subclass, 112
support method, 122
template, 141
validation, 121, 124
wrapper function, 163–165

classic puzzles
the Fox, the Goose, and the

Corn, 3–7, 15, 17, 20
sliding number puzzle, 7–11, 18
sudoku, 11–13
Quarrasi Lock, 13–15, 20

code block, 173
code reuse, 53, 172–173

abstract data type, 175
algorithm, 173–174
as-needed learning, 180–188

Think Like a Programmer
©2012, V. Anton Spraul

INDEX 229

class use, 114
code block, 173
component, 173

choosing, 188–193
finding, 182–183

exploratory learning, 176–180
library, 175–176
pattern, 174
properties, desired, 172
saving code for later use, 44,

67, 218
code validation. See testing
comparator function, 59
component, 173

types, 173–176
flexibility of, 188–189

composition, 126
const

arrays, 67–69, 71
numeric types, 58
parameters, 59, 211

constraints, 1–2, 6, 11–13, 19, 31,
33, 38, 40–41, 203

importance of, 26
constructor, 112–113, 119, 121–122,

126–127
copy constructor, 138
default constructor, 113,

122, 179
converting between ranges

character digit to integer, 35,
43–48

number to letter of alphabet, 49
copy-and-paste job, 173
copy constructor, 138
cout standard stream, 26
creeping featurism, 201
cross-linking, 100, 103, 134–135
cross-training, 220
c_str method, 211

D
dangling reference, 90, 100,

125, 212
caused by cross-linking, 136

data member, 112, 119–120
data redundancy, 123–124

deep copy, 134–137
default constructor, 113, 122, 179
dereferencing, 82
design pattern. See pattern
destructor, 133–134
diagrams, pointer, 92, 94, 96, 103
direct recursion, 144
DirectX, 176
dispatcher function, 153–154
dividing problems, 17–18, 31–41,

41–53
class use, 115
sliding tile puzzle, 8–11

division by zero, 108, 198
doubly linked list, 131
dummy record, 129, 179, 181, 186
dynamic data structures, 158–165

E
efficiency, 181–182, 193
encapsulation, 114, 126, 180
end-of-line

character code for, 37
finding in character stream, 38

equality operator (==), 197–198
exception, 130
experimenting with programs,

20–21, 28, 30, 37
expressiveness, 117–118

F
fake class, 140–141
fast learner, 200–201
fast coder, 200–201
fencepost error, 196
file processing, 210–211
finding an analogy, 2, 20, 62, 93,

182, 191
creating your own analogy,

38–39
loop problems, 29–30
Quarrasi Lock problem, 13–15

find method (string), 211–212
flexibility, 93, 154, 160, 188–189
the Fox, the Goose, and the Corn,

3–7, 15, 17, 20

Think Like a Programmer
©2012, V. Anton Spraul

230 INDEX

functions
activation record, 86
comparator, 59
dispatcher, 153–154
multiple exits, 132
names, choosing, 117, 119–120
pointer to, 177
recursive, 152–165
wrapper, 163–165

frustration, 21. See also avoiding
frustration

G
get method (general), 119
get method (iostream), 34

H
hangman, 204–218
head pointer, 103, 123, 127, 137
head recursion, 144, 146–147,

151–152
heap, 87–88

overflow, 89
helper function, 98
histogram, 65–66

I
indirect recursion, 144
inefficiency

in space, 77
in time, 77, 181–182

information hiding, 115–117
input processing, 31–41
iteration, 25. See also looping
iterator class, 183, 210

begin method, 183
const_iterator, 211
end method, 183
erase method, 212
find method, 211–212

iterator pattern, 183–187
advancing to next node, 185
benefits, 183
initializing, 185
methods, 184

J
Java, xiv, 111, 176, 221
JDBC, 176

K
King of the Hill algorithm, 58, 66,

70–71, 73, 214–215
Kobayashi Maru, 2, 19, 26

L
learning new skills, 219–224

classwork, 223–224
for known languages, 222
libraries, 223
new languages, 219–222

left-hand side, 137
library, 175–176, 223
lifetime, 90
linked lists, 101–108, 175

adding node to, 104–106, 128
building, 101–103
diagram, 103
doubly linked list, 131
empty, testing for, 108
head pointer, 103, 123, 127, 137
iterator, 182–187
node, 101, 127
NULL terminator, 103
recursion, 168–169
recursive processing, 158–160
removing node, 130–133
reverse traversal, 168–169
sequential access, 103
traversal, 106–108, 129, 168–169,

179, 181
list class, 182–183, 210–214,

216, 218
lookup table, 67
looping, 26–41, 71, 94
loop postmortem, 217

M
master plan, 196–203
median, 67
member, 112

Think Like a Programmer
©2012, V. Anton Spraul

INDEX 231

memory allocation
activation record, 86
array, 74, 97
bad_alloc exception, 89
in classes, 125–140
dangling reference, 90, 100
delete operator, 83
fragmentation, 87–88
free function, 88
heap, 87–88
heap overflow, 89
leak (see memory leak)
lifetime, 90
malloc function, 88
new operator, 75, 82, 97, 98
reasons to minimize, 88–90
stack, 86–87, 89–90
thrashing, 89

memory fragmentation, 87–88
memory leak, 75, 90

avoiding, 95
minimal data set, 160
mode (statistic), 62
modulo operator (%), 33–34, 37,

39–40, 50–52
most constrained variable, 12
multidimensional array, 71–74

treating as array of arrays, 72–74
when to use, 71–72

N
new operator, 75, 82, 97, 98
node

binary tree, 160–161, 163
linked list, 101, 127
payload, 102, 145

npos value, 211–212
NULL pointer, 90

O
OpenGL, 223
operators

address-of (&), 85
assignment (=), 137–138,

197–198
derefererence (*), 59–60, 82,

128–129, 138, 213–216

equality (==), 197–198
logical and (&&), 48

short-circuit evaluation of,
129, 132, 133

modulo (%), 33–34, 39–40, 50–52
overloading, 137–138

overconfidence, 199
overflow

heap, 89
stack, 89–90

overloading, 137–138

P
parameters

recursive functions, use in,
155–156

reference, 84
pattern, 174

iterator, 183–187
policy, 176–180
singleton, 174
strategy, 176–180
wrapper function, 174

performance
inefficiency in space, 77, 85
inefficiency in time, 77,

181–182, 193
tuning, 77

planning, 16–17, 33, 95–96, 173
individuality of, 40
master plan, 196–203

pointers
benefits of, 83–84
cross-linking, 100
declaration, 59, 75, 82, 85,

99–100, 160, 177–178,
186, 192

dereferencing, 59–60, 82,
128–129, 138, 213–216

diagrams, 92, 94, 96, 103
to function, 177
NULL pointer, 90
reference parameters, 84
when to use, 84

policy, 176–180
public member, 112
push_back method, 76
private member, 112

Think Like a Programmer
©2012, V. Anton Spraul

232 INDEX

problem solving, xiii–xv, 2, 203–219
protected member, 112
prerequisites, xv
property (C#), 120
pseudocode, 63

conversion to documentation, 64
solving problems with, 63–64

Q
qsort, 59–60, 65, 192–193

comparator function, 59, 192
Quarrasi Lock problem, 13–15, 20

R
random access, 56, 78
rapid prototyping, 201
readability, 117
recursion, 143

base case, 144
Big Recursive Idea, 143, 152–155
binary tree, 160–165
breadcrumb trail, 166–169
common mistakes, 155–158
direct, 144
dynamic data structures,

applying to, 158–165
head, 144, 146–147, 151–152
indirect, 144
linked list, 158–160
vs. stack, 166–169
tail, 144, 145–146, 149–150
when to use, 165–169
wrapper function, 163–165

reducing problems, 19–20, 41–53,
63, 190

loop problems, 26–29
redundant data, 123–124
refactoring, 65–67, 180, 200
reference parameters, 84–85, 137,

211, 213
const, 211, 213

resizable data structure, 83
restating problems, 17, 33, 42,

182, 193
the Fox, the Goose, and the

Corn, 5–7
loop problems, 31

restore point, 218
reuse. See code reuse
right-hand side, 137
robust programs, definition of, 96
root node, 161
runtime-sized data structure, 83

S
scalar variable, 55
sequential access, 103
sequential search, 58
set method, 119
shallow copy, 135
short-circuit evaluation, 129
single-tasker, 141
singleton, 174
sliding number puzzle, 7–11, 18
solving by sample case, 92–96
sorting, 59, 176–177, 189–193

insertion sort, 60–61,
190–192, 193

qsort, 59–60, 192–193
special cases, 96

checking for, 96–97, 100, 124,
128, 132, 198–199

stack, 86
linked list, 175
overflow, 89–90
runtime, 86–87

starting with what you know, 18–19,
62, 92

loop problems, 29–30
most constrained variable, 12
sudoku, 11–13

strategy, 176–180
string class, 119

array, 123
c_str method, 211
find method, 211–212
npos value, 211–212

strings, 91
array implementation, 91–100
copying, 98
C-style, 178
linked list implementation,

101–107
terminator, 93

Think Like a Programmer
©2012, V. Anton Spraul

INDEX 233

struct, 69
structure deference (->), 102, 128
subclass, 122
subscript, 56
sudoku, 11–13
support method, 122–125

T
tail recursion, 144, 145–146,

149–150
template class, 141
test-driven development, 200
testing, 124, 190, 199–200, 215

memory leaks, 95
promoting ease of, 34, 57, 66,

70, 218
storing test programs, 44
test cases, coding, 93, 98–100,

130–134, 186–187
this keyword, 120
thrashing, 89
tracking state, 50-51
traversal, linked list, 106–108, 129,

168–169, 179, 181
typedef keyword, 91, 101–102, 127,

160, 177

V
validation

checksum 31–32
code (see testing)
data, 61–62, 92, 96, 121, 124–125

vectors, 55
vs. arrays, 75–76
declaring, 76
push_back method, 76

W
weaknesses

coding weaknesses, 196, 197–199
design weaknesses, 196, 199–200

whitespace, 34
wrapper function, 163–165, 174

Think Like a Programmer
©2012, V. Anton Spraul

