

;; Chapter 14
(Hungry Henry)

#|
Guess My Number is good and all, but it’s getting a little old.
Let’s take everything we have shown you and create a distributed
game from scratch. Today, we feed Hungry Henry.
|#

14.1 King Henry the Hungry

After !eeing from the squirrels, Chad resumes
his search for a way out of the dungeons. While
exploring, Chad comes across an enormous man
sitting on a golden throne. “Hail, traveler!” the man
calls, “I am King Henry the Hungry!” Then he pro-
claims, “Come hither, I have a proposition for you!”
As Chad approaches, the king begins to tell his
story. “Long ago, I was just like you, boy, a prisoner
in the dungeons of DrRacket. Starving, I created a
program to gather food, and what better food to eat
than cupcakes? I forgot the stop-when clause and
have been happily eating cupcakes ever since.”

232 Chapter 14

The king continues, “I’ve had so much practice that I could beat anyone at a cupcake-
eating competition, and now is the time to prove it. But I need your help to change my
program so that the whole world can participate. If you help me, I will help you "nd a
way out.” Can you help Chad run Hungry Henry’s tournament?

14.2 Hungry Henry, the Game

The goal of this chapter is to turn King Henry’s eating competition into a distributed
game. A server sets up a "eld of cupcakes and waits for players to sign up for a round of
Hungry Henry. Once a player connects to the server, she is given her own avatar to con-
trol. The objective of the game is to navigate this avatar around the screen, getting to
cupcakes before other players do. To navigate, the player sets waypoints on the screen by
clicking the desired location. The avatar then travels to each of these waypoints in turn.
But players must choose these waypoints carefully. Once one has been added, it may not
be removed. Each time an avatar collides with a cupcake, the food is removed and the
avatar increases in size. Of course, a growth in girth means the avatar slows down.

When all the food is gone, the game displays a table that lists the players and the
number of cupcakes they ate. After a delay, the game restarts. If a player attempts to join
while a game is in progress, she will be forced to watch. Once the game restarts, these
spectators are assigned avatars, too.

14.3 Two United States

Before we show you how to implement the Hungry Henry game, we need to drill down
on one more concept: the state machine. While all world games are state machine games,
Hungry Henry makes explicit use of two distinct states in two di#erent state machines.

Ready State Empty State
...after money...

BEEP

WOO!!!

Hungry Henry 233

Consider the ubiquitous soda machine. Initially, it is full. You put in a dollar bill, and
the machine responds by dispensing a can of soda. The machine is now in a di#erent
state; it is partially empty. Eventually, it will dispense its last can and enter its "nal state,
the empty state. Think of Hungry Henry’s state machines like this, but with less liquid
and more cupcakes.

In this chapter, the universe and all of its worlds are in one of two di#erent kinds
of states: waiting and playing. The universe starts in a waiting state. When it’s time for
the game to start, the universe switches to a playing state. Our program will thus need
to understand how to handle events depending on the current state of the universe.
Distinguishing these two states will signi"cantly simplify our data and message protocol.

14.4 Henry’s Universe

Our next step is to divvy up responsibilities between the server and the clients, and these
responsibilities need to be carefully assigned. For example, if we let the client handle
the movement of her avatar or the eating of cupcakes, who will enforce the rules of the
game? You could easily imagine a player changing the client code to her own advantage.
So our choices must prevent players from acting in this malicious manner.

The client will be responsible only for reporting a player’s mouse clicks to the server
and rendering the current state of the game. Essentially, the client will implement the
on-mouse and on-draw specs for big-bang. The server, in contrast, does a lot more
work. It is in charge of handling movement, collisions, eating, and ending the game. And,
of course, whenever something changes, the server sends the new state of the universe to
all the clients.

Message Data and Structures
So what kind of information is actually sent from client to server and vice versa? While
the client needs to send only information about where the player clicked on the screen, the
server needs to send back four kinds of messages: an ID to inform the player of her avatar’s
name, a fraction of the waiting period that has passed, the current state of the avatars and
cupcakes, and the "nal scores.

To keep the protocol simple, the multipart messages are lists tagged with a symbol
that identi"es the type of message. Here is the only type of message the clients can send:

(list GOTO Number Number)

It is just a three-part list: a constant to identify the message type and the x-coordinate and
y-coordinate of a mouse click.

Two of the server’s messages are even simpler than that. When a client registers,
the server responds with a new unique ID for the avatar. By de"ning an ID as a string, the
server can make use of iworld-name to generate an easily recognizable ID.

234 Chapter 14

The time message is just a number between 0 and 1, representing the percentage of
wait time completed. While the server waits for enough players to sign up, the number
gets closer to 1 but is never equal to 1.

The most complex message describes the state of the game:

(list SERIALIZE [Listof Player] [Listof Cupcake])

This message is a three-element list containing the constant SERIALIZE, a list of players,
and a list of cupcakes.

Players are represented with prefab structures:

shared.rkt
#lang racket

(provide ...

 (struct-out player)

 (struct-out body)

 ...)

(struct player (id body waypoints) #:prefab)

Players need their own ID, which clients use to di#erentiate themselves from other
players. The next "eld, body—think an astronomical body—is used to describe the loca-
tion and size of a player. The last "eld, waypoints, is a list of waypoints from oldest to
newest, the order in which the avatar will travel. Ordering points in this way is e%cient
because the program must look at the head of the list many times as the avatar moves
incrementally along its path.

Both avatar bodies and cupcakes can be described as physical bodies:

shared.rkt
(struct body (size loc) #:prefab #:mutable)

The "rst "eld, size, is a positive integer that represents the radius of the body. The sec-
ond "eld, loc, is a complex number that represents the actual location of the body. The
structure is mutable to make it easy for the server to grow or move any object.

Finally, the score message contains just the expected table:

(list SCORE [Listof (list ID Number)])

At the end of the game, the server will send a list of two-element lists. The "rst ele-
ment is a player’s ID, and the second is the player’s score.

Hungry Henry 235

register(name1)

ID

t

register(name2)

t

state message

ID

GOTO

state message

GOTO

state message

state message

score message

state message

Client 1 Client 2 Server

Client 1 registers with the server.

Server sends client 1 an ID.

Server sends percentage of
wait time.

Client 2 registers with the server.

Server sends client 2 an ID.

Server sends them percentage of
wait time.

Server sends them the initial play state.

Player sets a waypoint and client 1
sends a GOTO message.

Server sends updated list of players
and cupcakes.

Server checks movement and eating
and sends updated list of players and
cupcakes.

Player sets a waypoint and client 2
sends a GOTO message.

Server sends updated list of players
and cupcakes.

Server checks movement and eating
and sends updated list of players and
cupcakes.

When all food is eaten,
sever sends a score message.

[WAITING STATE AND JOIN STATE]

[SWITCH TO PLAY STATE]

236 Chapter 14

Complex Numbers Are Good Positions

Complex numbers, such as 3+2i, are convenient for representing coordinates, so we’ll
use them for waypoints. To model movements, we can use normal math operators,
such as * and +. To access the x-coordinate of a complex number, we use the built-
in function real-part, which gives us the real portion of the complex number. To
access the y-coordinate, we use imag-part, which extracts the imaginary portion.
If there is a need to construct an imaginary number from two real numbers, we use
the make-rectangular function, which takes two real numbers and returns a complex
number, where the real part is the "rst number and the imaginary part is the second
number.

A Day in the Life of a Server
In the beginning, our server just ticks along, waiting for a client to join. When a client
connects to the server, it is sent an ID. During this phase, the server continually keeps
its clients up-to-date with the approximate time left until the game starts. Once time
has run out and enough players have signed up, the server switches to a play state. From
this point on, any new clients are considered spectators, and the server tells the players
and spectators the location of all the food and avatars in the game. Once the players have
eaten all of the food, the server tallies the scores and sends a SCORE message to the cli-
ents. Afterward, it resets to its join state, joining together all the players and spectators
as the players for the next round.

A Day in the Life of a Client
The "rst action that any good client takes is to register with the server. In response, it
gets an ID back and begins to receive time messages. Using these time messages, the cli-
ent draws a progress bar and waits. When the client gets a message from the server that
describes the state of the game, it means the game has started. The client switches to a
play state and renders the state messages, which contain the location of all the food and
players. Whenever the player clicks the mouse, the client must send a message to the
server describing the location of the player’s chosen waypoint. Eventually, the client gets
a message that contains all score tallies, signaling the end of the current round of play.

14.5 State of the Union

Now that we know what our message protocol looks like and how the clients and server
interact, let’s turn to the data that is used within the client and the server. As we go along,
keep in mind that our server and client are interacting state machines.

Hungry Henry 237

State of Henry

The client can be in one of two states: waiting or playing. Clearly, the client is in a wait-
ing state until the server sends the "rst state message. Then it transitions to playing. Once
a game ends, the client transitions back to waiting, giving that state a second purpose—to
display the scores from the game.

With that in mind, let’s call the "rst state an appetizer:

client.rkt
(struct app (id img countdown))

The app structure has three "elds, which the client uses to render a waiting screen. The
"rst "eld, id, names the player’s assigned ID, which is later used in gameplay. During the
waiting phase, it is #f. The next "eld, img, is the base image that displays messages to the
screen. These messages include waiting text or the score table from the last game, if there
was one. The last "eld, countdown, holds the time left until the game starts, and it is
used to render a progress bar.

The second state, the playing state, is called entree because it follows an appetizer:

client.rkt
(struct entree (id players food))

As before, the "rst "eld is this player’s id. The next two "elds are lists of the current
players and the available cupcakes.

State of the House
Like the client, the server has two states. The "rst state is a join state, representing the
period during which players are allowed to join the server:

server.rkt
(struct join (clients [time #:mutable]))

The "rst "eld of join is a list of players who have joined. The second "eld holds the time
that remains until the server intends to start the game.

The second server state is called play, and it represents the server while the game is
in progress:

server.rkt
(struct play (players food spectators) #:mutable)

Like join, the "rst "eld of play stores a list of the players who are in the game. The sec-
ond "eld, food, is a list of body structures that represent the remaining cupcakes. The

238 Chapter 14

last "eld keeps track of the current spectators. When the server transfers back to the join
state, these spectators are appended to the list of current players.

You may have noticed that neither join states nor play states include informa-
tion about the iworlds that represent clients and allow the server to communicate with
clients. Well, the preceding data representation is a bit of a lie. Instead of plain prefab
players, the server uses lists of internal player representations:

server.rkt
(define-values

 (ip ip? ip-id ip-iw ip-body ip-waypoints ip-player)

 (let ()

 (struct ip (id iw body waypoints player))

 (define (create iw id body waypoints)

 (ip id iw body waypoints (player id body waypoints)))

 (values

 create ip? ip-id ip-iw ip-body ip-waypoints ip-player)))

This de"nition is a mouthful, but look closely, and you’ll see that it’s similar to how we
handled forcing moves in the lazy version of Dice of Doom. With this structure de"-
nition, we can construct internal players the same way we construct ordinary struct
instances. But what really happens is that an ip adds a "eld, which contains the prefab
player that would result from the arguments given to ip.

Now we can send a representation of players to clients simply by calling the
ip-player function and sending that result to the iworld in ip. To clarify, an instance
of ip is never sent across a network. It is used only by the server to hold all of its knowledge
about a player.

14.6 Main, Take Client

Since the client is clearly simpler than the server, we will deal with the main function of
the client "rst. It handles three actions: drawing, messaging waypoints to the server, and
receiving messages in return.

client.rkt
(define (lets-eat label server)

 (big-bang INITIAL

 (to-draw render-the-meal)

 (on-mouse set-waypoint)

 (on-receive handle-server-messages)

 (register server)

 (name label)))

Hungry Henry 239

This function takes a name that the client wishes to use as her ID and the address of
the server that the client wishes to join. These two pieces of data are used by the last two
clauses of big-bang.

The functions in the other clauses all follow the same pattern; they dispatch the event
to a di#erent function based on the client’s present state. For example, the drawing and
message-handling functions look like this:

client.rkt
(define (render-the-meal meal)

 (cond [(app? meal) (render-appetizer meal)]

 [(entree? meal) (render-entree meal)]))

(define (handle-server-messages meal msg)

 (cond [(app? meal) (handle-appetizer-message meal msg)]

 [(entree? meal) (handle-entree-message meal msg)]))

Very little thought is required in writing these. Before anything can be done, we need to
understand the context of our situation—that is, the current state—and then pass the cur-
rent state to the appropriate helper function.

Handling mouse events proceeds in a similar fashion, but the handler must take into
consideration another condition:

client.rkt
(define (set-waypoint meal x y me)

 (if (and (entree? meal) (mouse=? me "button-down"))

 (make-package meal (list GOTO x y))

 meal))

Because the rules state that a player’s only action is to click the mouse during the game,
the mouse event handler checks these two conditions "rst. If true, set-waypoint
sends the appropriate message to the server. If not, the state is returned unchanged.

The Appetizer State
While the player is waiting for the server to start a game, the client is in the so-called app
state. In this state, it displays any message that the server sends. The top-level function for
rendering appetizer states draws a progress bar:

client.rkt
(define (render-appetizer app)

 (add-progress-bar (render-id+image app) (app-countdown app)))

240 Chapter 14

The render-appetizer function adds the most recent message to the image in app by
making a call to render-id+image. It then adds a progress bar on top of that image with
a call to add-progress-bar. The render-id+image function takes the app structure
and generates an image from the latest message the client received:

client.rkt
(define (render-id+image app)

 (define id (app-id app))

 (define base-image (app-img app))

 (overlay

 (cond

 [(boolean? id) base-image]

 [else (define s (string-append LOADING-OPEN-TEXT id))

 (above base-image (text s TEXT-SIZE TEXT-COLOR))])

 BASE))

This function renders the image as well as the player’s ID if the server has sent it already.
Adding a progress bar is so easy that we won’t show it here.

Waiting For Server
Ryan09 : 10
Spence08 : 0

You are Ryan09

loading

The remaining events concern messages from the server:

client.rkt
(define (handle-appetizer-message s msg)

 (cond [(id? msg) (app msg (app-img s) (app-countdown s))]

 [(time? msg) (app (app-id s) (app-img s) msg)]

 [(state? msg) (switch-to-entree s msg)]

 [else s]))

Hungry Henry 241

As the protocol speci"es, this function handles three messages. The "rst two cond clauses
should be obvious. They just switch out one "eld with the newly arrived message. The
third cond clause switches the client to the entree state. The last clause makes our
message handling fault tolerant; it handles any violation of the agreed-upon protocol by
ignoring the message and returning the current state. To make the program fault toler-
ant, the predicates that check our messages need to be programmed defensively. For
example, here is the de"nition of time?:

client.rkt
(define (time? msg)

 (and (real? msg) (<= 0 msg 1)))

It doesn’t just check whether the message is a number but also ensures that number is real
and between 0 and 1.

It's okay. You'll learn
to be fault tolerant
one day.

There is only one more function to deal with the app state. The function
switch-to-entree is called when the "rst state message arrives. It consumes the
current state and the state message, and it returns an entree:

client.rkt
(define (switch-to-entree s m)

 (apply entree (app-id s) (rest m)))

242 Chapter 14

Do you remember apply, the higher-order function introduced in chapter 7? Go
back and reread that section if you don’t. All apply does here is call the entree construc-
tor on the current id and the remaining two elements of the state message, which just
happen to make up the "elds of an entree. Isn’t that easy? Time to eat.

The Entree State
The entree state represents the client’s playing state. In this state, the player may
interact with the world by clicking the screen to direct the avatar. The client displays
the player’s avatar, all of the other avatars, and some information about each one in the
rendering function render-entree:

client.rkt
(define (render-entree entree)

 (define id (entree-id entree))

 (define pl (entree-players entree))

 (define fd (entree-food entree))

 (add-path id pl (add-players id pl (add-food fd BASE))))

Excuse me, waiter,
which entree would you
suggest I render-entree?

Hungry Henry 243

This function starts by drawing all of the food and players onto the base scene. It then
draws the path of this client’s player. So let’s look at how players are drawn:

client.rkt
(define (add-players id lof base-scene)

 (for/fold ([scn base-scene]) ([feaster lof])

 (place-image (render-avatar id feaster)

 (feaster-x feaster) (feaster-y feaster)

 scn)))

The add-players function consumes this client’s id, a list of all the players in the
game, and a scene to add images on. The function uses for/fold to create a single
image from the list of players. The given scene is used as the base case, and the function
iterates over the given list of players. The loop creates an image with render-avatar
and places it on the scene.

The render-avatar function creates an image of an avatar based on the client’s id
and the feaster that represents the player to be drawn:

client.rkt
(define (render-avatar id player)

 (define size (body-size (player-body player)))

 (define color

 (if (id=? id (player-id player)) MY-COLOR PLAYER-COLOR))

 (above

 (render-text (player-id player))

 (overlay (render-player-score player)

 PLAYER-IMG

 (circle size 'outline color))))

This function decides what color the avatar’s bounding circle should be, based on the
given id. It then draws the bounding circle that has a radius based on the size of the given
player. The actual avatar is placed at the center of the circle. By drawing the player’s ava-
tar in this way, we have an accurate view of how large the avatar is, but we avoid pixelat-
ing the image by stretching it. We will leave it to you to write the rendering function that
displays scores. The list of food is rendered in a similar fashion.

The last rendering step in the client concerns the path for this client’s avatar:

client.rkt
(define (add-path id players base-scene)

 (define player

 (findf (lambda (x) (id=? id (player-id x))) players))

 (if (boolean? player)

 base-scene

 (add-waypoint* player base-scene)))

244 Chapter 14

This function takes an id, a list of players, and an image to which the path is added. The
function checks if this client’s id exists in the list of players. If it does not exist, then the
id came from a spectator and no waypoints are drawn. Otherwise, it draws all the points
for this client. This function is straightforward, so we leave it as an exercise for you.

6

2

Finally, we deal with message handling for the entree state. The function for han-
dling the messages in the entree state is similar to the message handler for the app state:

client.rkt
(define (handle-entree-message s msg)

 (cond [(state? msg) (update-entree s msg)]

 [(score? msg) (restart s msg)]

 [else s]))

In the case of a state message, the handler calls update-entree, which works like
switch-to-entree. In the case of a score message, the game restarts:

client.rkt
(define (restart s end-msg)

 (define score-image (render-scores end-msg))

 (app (entree-id s) (above LOADING score-image) ZERO%))

Hungry Henry 245

This function builds an image that contains a table of all the scores and uses it as the base
image for a new app structure. Building the table image is really easy as well:

client.rkt
(define (render-scores msg)

 (define scores (sort (second msg) < #:key second))

 (for/fold ([img empty-image]) ([name-score scores])

 (define txt (get-text name-score))

 (above (render-text txt) img)))

Here, we take the list of scores and sort it in ascending order based on the second value of
each list. If you want more detail about #:key, look up “keyword arguments” in the doc-
umentation. The function then iterates across this sorted list with for/fold and builds
an image with the name and score, sticking it above the previous rows. And there you go.
That’s the entire client.

14.7 Main, Take Server

Whenever we get to modules, we start with a main function, which is a universe func-
tion in the case of a game server:

server.rkt
(define (bon-appetit)

 (universe JOIN0

 (on-new connect)

 (on-tick tick-tock TICK)

 (on-msg handle-goto-message)

 (on-disconnect disconnect)))

The initial state of the universe is a join state with no clients and some initial time.
The on-new clause deals with new connections:

server.rkt
(define (connect s iw)

 (cond [(join? s) (add-player s iw)]

 [(play? s) (add-spectator s iw)]))

Like all on-new handlers, this function takes the current universe and an iworld, a piece
of data representing the new connection. Once again, this event handler dispatches to
auxiliary functions depending on the current state s of the universe. All of the universe
handlers employ a similar strategy.

246 Chapter 14

The function disconnect does exactly what it sounds like. It handles dispatch for
disconnections:

server.rkt
(define (disconnect s iw)

 (cond [(join? s) (drop-client s iw)]

 [(play? s) (drop-player s iw)]))

Just as before, this function determines the current state of the server and passes along its
argument to the appropriate function.

Ticking works like this:

server.rkt
(define (tick-tock s)

 (cond [(join? s) (wait-or-play s)]

 [(play? s) (move-and-eat s)]))

In the join state, the function counts down and possibly transitions to the play state. In
the play state, it moves all the players and lets them eat cupcakes. The move-and-eat
function may also transition back to the join initial state if the last cupcake has been
eaten.

The "nal universe clause we need to explain is on-msg. The on-msg handler clause
is a little di#erent from all of the others. Recall that the server accepts messages only
when it is in the play state, and even then, there is only one kind of message that it
accepts:

server.rkt
(define (handle-goto-message s iw msg)

 (cond [(and (play? s) (goto? msg)) (goto s iw msg)]

 [else (empty-bundle s)]))

If the server is in the play state, and the message is a valid GOTO message, we add the
new waypoint to the given player’s path. If not, then we do nothing, which in the case
of a server, means we return a bundle with no messages, no dropped clients, and an
unchanged state. It’s a really short function:

server.rkt
(define (empty-bundle s)

 (make-bundle s empty empty))

The rest of the section explains how the server reacts to the network events and
clock tick events, depending on which state it is in. Altogether, this makes four combina-
tions. We start with a close look at how to handle network events while the server is in
the join state.

Hungry Henry 247

The Join State and Network Events

One network event signals the arrival of a new client. Think about this event and how we
might handle it in the join state. Now think about how we might handle it in the play
state. In both states, we must create a new internal player, add it to the state, and send the
client its new id. The di#erence is that in the join state, we add the new internal player
to the list of players, and in the play state, we add it to the list of spectators.

So let’s take advantage of these similarities with a little abstraction:

server.rkt
(define (make-connection adder)

 (lambda (u iw)

 (define player (named-player iw))

 (define mails (list (make-mail iw (ip-id player))))

 (make-bundle (adder u player) mails empty)))

This function consumes adder, a function that takes a state and a player and returns a
state. Using adder, make-connection creates another function. This newly created
function consumes a universe state and an iworld. It builds a new player, and it con-
structs mail for the new client that contains the guaranteed unique ID created with the
new player’s name. The function returns this bundle.

This abstract function allows us to de"ne the function to handle new clients for the
join state in one line:

server.rkt
(define (join-add-player j new-p)

 (join (cons new-p (join-clients j)) (join-time j)))

(define add-player (make-connection join-add-player))

The other part of the make-connection function we need is named-player:

server.rkt
(define (named-player iw)

 (create-player iw (symbol->string (gensym (iworld-name iw)))))

It uses a fancy function, called gensym, to create a unique name that starts with the
name of the client. Then it creates a player using create-player:

server.rkt
(define (create-player iw n)

 (ip iw n (create-a-body PLAYER-SIZE) empty))

248 Chapter 14

This creates a player with all the speci"ed information, a body with some initial size, and
an empty list of waypoints. The body of the player is placed at some random point on the
playing "eld.

#|

NOTE: The gensym function comes with all members of the Lisp family.

It’s used to generate unique symbols that are not eq? to any other

symbol in the entire program. You will learn more about why this

facility is useful for writing programming languages in the next

chapter. Here, we just use it for making unique names.

|#

Other than the arrival of new players, the server must also deal with player
disconnections:

server.rkt
(define (drop-client j iw)

 (empty-bundle (join-remove j iw)))

When a client is dropped, drop-client must "nd the player with the same iworld and
remove it from the list of players. It does this using join-remove:

server.rkt
(define (join-remove j iw)

 (join (rip iw (join-clients j)) (join-time j)))

The rip function "nds the player with the given iworld and removes it from the list
of clients. To do so, it uses the remove function, which we know from chapter 6, but with
a twist:

server.rkt
(define (rip iw players)

 (remove iw players (lambda (iw p) (iworld=? iw (ip-iw p)))))

As this de"nition shows, remove is actually a higher-order function that takes an
optional third argument for equality testing. By default, this function is equal?, but
here we de"ne “equality” to mean “having the same iworld” instead of “being exactly
the same.” Why do you think we use iworld=? instead of the equal? function?

Hungry Henry 249

The Join State and Tick Events

Dealing with tick events requires a complex handler. It all starts with wait-or-play:

server.rkt
(define (wait-or-play j)

 (cond [(keep-waiting? j) (keep-waiting j)]

 [else (start-game j)]))

As the name says, this function either continues waiting or transitions into the play state.
Checking whether or not to transition works as follows:

server.rkt
(define (keep-waiting? j)

 (or (> PLAYER-LIMIT (length (join-clients j)))

 (> WAIT-TIME (join-time j))))

The server waits if there are not enough players for a good game or if the allotted wait
time is not up. It’s equally easy to de"ne keep-waiting:

server.rkt
(define (keep-waiting j)

 (set-join-time! j (+ (join-time j) 1))

 (time-broadcast j))

All that’s necessary is to increment the time and send that new time to all clients, which
the following function accomplishes:

server.rkt
(define (time-broadcast j)

 (define iworlds (map ip-iw (join-clients j)))

 (define load% (min 1 (/ (join-time j) WAIT-TIME)))

 (make-bundle j (broadcast iworlds load%) empty))

The key is the call to broadcast. This helper will be used in a number of places to send
a message to all clients. It takes a list of iworlds and the message to be sent, which in this
case is a percentage of the current time. It returns a list of mails, one for each client.

250 Chapter 14

Let’s take a look at the broadcast function:

server.rkt
(define (broadcast iws msg)

 (map (lambda (iw) (make-mail iw msg)) iws))

With map, this function de"nition becomes downright trivial. We show it only because it
is used in almost every function that sends a message from the server to the clients.

Now it is time to look at how the server starts a game:

server.rkt
(define (start-game j)

 (define clients (join-clients j))

 (define cupcakes (bake-cupcakes (length clients)))

 (broadcast-universe (play clients cupcakes empty)))

The start-game function takes a join state and creates a play state. This play uni-
verse starts with the list of players from the join universe, a list of food, and an empty
list of spectators. Using broadcast-universe, we send this initial state to all of the
clients. We generate a number of cupcakes that is directly proportional to the number
of players:

server.rkt
(define (bake-cupcakes player#)

 (for/list ([i (in-range (* player# FOOD*PLAYERS))])

 (create-a-body CUPCAKE)))

We chose to generate cupcakes in this fashion, but you can de"ne this function in what-
ever way you want. Take note that we use the create-a-body function.

Onwards to the broadcast-universe function:

server.rkt
(define (broadcast-universe p)

 (define mails (broadcast (get-iws p) (serialize-universe p)))

 (make-bundle p mails empty))

Here, we reuse the broadcast function to create a state message for each of the clients.
As usual, this function returns a bundle with the universe and the list of mail that needs

Hungry Henry 251

to be sent. While get-iws is another easy little function that you should be able to write
yourself, serialize-universe is a little trickier:

server.rkt
(define (serialize-universe p)

 (define serialized-players (map ip-player (play-players p)))

 (list SERIALIZE serialized-players (play-food p)))

Remember that ips contain complete players and that these are represented with prefab
structures. As planned, we can send those across the network, and that’s what we do.
With that, we are "nished with the join state for the server.

The Play State and Network Events
Now our server can reach the play state. It is time to think about how the play state
should handle network events. As with the join state, we start with handling new con-
nections, which are added as spectators. Recall that we have already dealt with new con-
nections for join states and that we created an abstraction for dealing with them.

You’re late, kid.
Go join the spectators
and I'll let you play the
next game.

Having said that, here is play-add-spectator, which conses the new client onto
the list of spectators.

252 Chapter 14

server.rkt
(define (play-add-spectator pu new-s)

 (define players (play-players pu))

 (define spectators (play-spectators pu))

 (play players (play-food pu) (cons new-s spectators)))

(define add-spectator (make-connection play-add-spectator))

The next network event concerns the arrival of GOTO messages, which are the only
ones that the server deals with:

server.rkt
(define (goto p iw msg)

 (define c (make-rectangular (second msg) (third msg)))

 (set-play-players! p (add-waypoint (play-players p) c iw))

 (broadcast-universe p))

First, goto creates a complex number representing the new waypoint. Second, it modi"es
the current list of players with that waypoint added to the client who sent the message.
Finally, it broadcasts the new state of the universe. This broadcast allows the client to see
that its waypoint message was accepted and to draw an appropriate path. Indeed, all cli-
ents get to see the new waypoint, and that may concern you.

The only unde"ned auxiliary function in goto is add-waypoint:

server.rkt
(define (add-waypoint ps c iw)

 (for/list ([p ps])

 (cond [(iworld=? (ip-iw p) iw)

 (ip (ip-iw p)

 (ip-id p)

 (ip-body p)

 (append (ip-waypoints p) (list c)))]

 [else p])))

This function traverses the given list of players, and when it "nds the player with an
iworld matching the one that sent the new waypoint, it reconstructs the given player,
adding the provided complex number to the end of its list of waypoints.

The last kind of network event to worry about is a client disconnection:

server.rkt
(define (drop-player p iw)

 (broadcast-universe (play-remove p iw)))

Hungry Henry 253

Disconnecting from the play universe is like disconnecting from the join universe with
the di#erence that we broadcast the new state to all players so that they know some client
has dropped out. The play-remove function has a straightforward de"nition:

server.rkt
(define (play-remove p iw)

 (define players (play-players p))

 (define spectators (play-spectators p))

 (play (rip iw players) (play-food p) (rip iw spectators)))

The only di#erence between join-remove and play-remove is that the latter uses rip
on both players and spectators because we don’t know whether a player or a specta-
tor has dropped out.

The Play State and Tick Events
We have one server handler left to deal with: the clock-tick handler. It is a large one
because this function deals with all the game logic. We start with move-and-eat:

server.rkt
(define (move-and-eat pu)

 (define nplayer (move-player* (play-players pu)))

 (define nfood (feed-em-all nplayer (play-food pu)))

 (progress nplayer nfood (play-spectators pu)))

For doing so much, this three-line function de"nition looks almost trivial, but bear with
us—it gets a little complicated. First, move-and-eat uses move-player* to move the
players in the appropriate direction at an appropriate speed. Second, a new list of food
is generated that doesn’t contain any cupcakes that a player has eaten. The function
feed-em-all also mutates the bodies of players who are eating; remember that they
grow in size. Finally, these two lists, along with the list of spectators, are sent to the
progress function. It will either progress the game by sending the new play state to
all clients or transition to a join state by sending out the "nal score message.

Here is how we move all the players:

server.rkt
(define (move-player* players)

 (for/list ([p players])

 (define waypoints (ip-waypoints p))

 (cond [(empty? waypoints) p]

 [else (define body (ip-body p))

 (define nwpts

 (move-toward-waypoint body waypoints))

 (ip (ip-iw p) (ip-id p) body nwpts)])))

254 Chapter 14

For every player with waypoints, we mutate the player’s body with move-toward-way-
point. If the player reaches her "rst point, move-toward-waypoint chops o# the "rst
waypoint and returns the new list. If the next waypoint has not been reached, the list
remains the same. A player without waypoints is left unchanged.

Moving individual players takes a bit of tricky math, but using complex numbers
makes our lives pretty easy:

server.rkt
(define (move-toward-waypoint body waypoints)

 (define goal (first waypoints))

 (define bloc (body-loc body))

 (define line (- goal bloc))

 (define dist (magnitude line)) ;;in pixels per clock tick

 (define speed (/ BASE-SPEED (body-size body)))

 (cond [(<= dist speed)

 (set-body-loc! body goal)

 (rest waypoints)]

 [else ; (> dist speed 0)

 (define velocity (/ (* speed line) dist))

 (set-body-loc! body (+ bloc velocity))

 waypoints]))

The main part of the function is the conditional block. It checks the distance the player
moves in this tick. If this condition is satis"ed, the function sets the location to the goal
to avoid overshooting it. Then, the function returns the rest of the waypoints. Otherwise,
we add velocity to the current location, where velocity is the fraction of the complex
number by which the body should move toward the next waypoint. Also notice that speed
depends on the size of the body, meaning that a player’s body slows down as it gets bigger.

If this looks to you like a bunch of complicated vector math, hidden behind complex
arithmetic, then you’re right. We recommend that you browse the Web for more infor-
mation on vector-based movement. You should admire, however, how this avoids all uses
of sin, cos, and other trigonometry.

Now think about the ip structure for a moment. Don’t we have an internal player
that needs updating? No, we don’t. We got away with this because body in the ip and
player structure is the same body, so mutating one mutates the other. Because they are
really eq?, no extra modi"cations are needed.

It is time to feed the players. We start with feed-em-all:

server.rkt
(define (feed-em-all players foods)

 (for/fold ([foods foods]) ([p players])

 (eat-all-the-things p foods)))

Hungry Henry 255

This function folds across the players, accumulating a new list of food by removing any
food that a player collides with. The function eat-all-the-things is the workhorse
here, "ltering out the eaten cupcakes and face-stu%ng players:

server.rkt
(define (eat-all-the-things player foods)

 (define b (ip-body player))

 (for/fold ([foods '()]) ([f foods])

 (cond

 [(body-collide? f b)

 (set-body-size! b (+ PLAYER-FATTEN-DELTA (body-size b)))

 foods]

 [else (cons f foods)])))

This function also uses for/fold, but this time, it folds across the list of cupcakes. If the
current food collides with the given player, it is not accumulated; instead, the player is
fattened. Otherwise, the food is put back in the list.

The collisions themselves are straightforward:

server.rkt
(define (body-collide? s1 s2)

 (<= (magnitude (- (body-loc s1) (body-loc s2)))

 (+ (body-size s1) (body-size s2))))

This function compares the distance between the centers of the two bodies with the sum
of their sizes. If the distance is less than the combined radius, then it must be a collision.
And that’s it.

256 Chapter 14

Finally, we must discuss the progress function:

server.rkt
(define (progress pls foods spectators)

 (define p (play pls foods spectators))

 (cond [(empty? foods) (end-game-broadcast p)]

 [else (broadcast-universe p)]))

If all cupcakes have been eaten, progress ends the game by transitioning to a join state
and sending the score list to all clients. If not, it just uses broadcast-universe to send
out the current state.

Ending the game is simple:

server.rkt
(define (end-game-broadcast p)

 (define iws (get-iws p))

 (define msg (list SCORE (score (play-players p))))

 (define mls (broadcast iws msg))

 (make-bundle (remake-join p) mls empty))

All that happens here is that we build a score message, broadcast it to all players, and cre-
ate a new join state from the current players and spectators. To accomplish this, we need
the score function, which builds an association list linking each player’s id to her score:

server.rkt
(define (score ps)

 (for/list ([p ps])

 (list (ip-id p) (get-score (body-size (ip-body p))))))

In truth, this function builds the second half of the score message. In order for the client
to recognize this message, it needs to be placed in a list with SCORE as the "rst element.
But the only part of this function that might be a little tricky is getting a player’s score
from its weight. Recall that a player’s weight is increased by some amount whenever it
eats. Hence, its weight is directly proportional to the number of cupcakes eaten:

shared.rkt
(define (get-score f)

 (/ (- f PLAYER-SIZE) PLAYER-FATTEN-DELTA))

We leave the explanation of this math up to your grade school math teacher.

Hungry Henry 257

Last, but not least, we turn our eyes to the remake-join function. Given a play
state, this function constructs a new join state:

server.rkt
(define (remake-join p)

 (define players (refresh (play-players p)))

 (define spectators (play-spectators p))

 (join (append players spectators) START-TIME))

To do this, we refresh the current list of players. This moves them to a new location with
an unfattened body. This list is joined with the spectators list to make the list of clients
for the new state. Add START-TIME to the new join state to get the countdown going,
and you have a complete new join state.

14.8 See Henry Run

The game is complete, but we need to see it run so that we can correct problems that unit
tests don’t uncover. While it is possible to run the game with the existing code, doing so
is cumbersome—politely put. If we write a bit of extra code, life becomes easy.

As in the preceding chapter, let’s create a new "le to run the game and require all
necessary pieces into this fourth "le:

run.rkt
#lang racket

(require (only-in "server.rkt" bon-appetit)

 (only-in "client.rkt" lets-eat)

 2htdp/universe)

The require speci"cation tells Racket to include one function from server.rkt and
another one from client.rkt, plus everything that 2htdp/universe provides.

With these functions, we de"ne serve-dinner, launching a server and two clients:

run.rkt
(define (serve-dinner)

 (launch-many-worlds (bon-appetit)

 (lets-eat "Matthias" LOCALHOST)

 (lets-eat "David" LOCALHOST)))

And bam! We can play the game just by running one simple function. It doesn’t even take
any arguments. With this last "le, the game is complete. Go play.

258 Chapter 14

On-disconnect—Chapter Checkpoint

In this chapter, we created an interesting distributed multiplayer game:

Distributed programming requires a planned-out communication protocol. Ours "ts
into a one-page diagram.

Designing a good protocol can save you a lot of work. Spend time on it.

Chapter Challenges

 Easy Modify the game so that new cupcakes appear on the screen every other time
one is eaten.

 Medium Right now, a clever player could write a client that takes advantage of the other
player’s waypoints. Modify the data protocol so that this security breach cannot happen.

 Difficult Write an AI that follows the modified protocol.

	Preface: Hello World
	Why Would I Want to Learn About Racket?
	Who Should Read this Book?
	What Teaching Approach Is Used?
	Can I Skip Chapters?
	Anything Else I Should Know?

	Introduction: Open Paren
	(.1	What Makes Lisp So Cool and Unusual?
	(.2	Where Did Lisp Come From?
	(.3	What Does Lisp Look Like?
	(.4	Where Does Racket Come From?
	(.5	What Is This Book About?
	Halt—Chapter Checkpoint

	Chapter 1: Getting Started

	1.1	Readying Racket
	1.2	Interacting with Racket
	Raise—Chapter Checkpoint

	Chapter 2: A First Racket Program
	2.1	The Guess My Number Game
	2.2	Defining Variables
	2.3	Basic Racket Etiquette
	2.4	Defining Functions in Racket
	A Function for Guessing
	Functions for Closing In
	The Main Function

	Resume—Chapter Checkpoint

	Chapter 3: Basics of Racket
	3.1	Syntax and Semantics
	3.2	The Building Blocks of Racket Syntax
	3.3	The Building Blocks of Racket Semantics
	Booleans
	Symbols
	Numbers
	Strings

	3.4	Lists in Racket
	CONS Cells
	Functions for CONS Cells
	Lists and List Functions
	The CONS Function
	The LIST Function
	The FIRST and REST Functions
	Nested Lists

	3.5	Structures in Racket
	Structure Basics
	Nesting Structures
	Structure Transparency

	Interrupt—Chapter Checkpoint

	Chapter 4: Conditions and Decisions
	4.1	How to Ask
	4.2	The Conditionals: IF and Beyond
	One Thing at a Time with IF
	The Special Form that Does It All: COND	
	A First Taste of Recursion

	4.3	Cool Tricks with Conditionals
	Using the Stealth Conditionals AND and OR
	Using Functions that Return More than Just the Truth

	4.4	Equality Predicates, Once More
	4.5	Comparing and Testing
	Writing a Test
	What Is Not a Test
	Testing in the Real World
	More Testing Facilities

	Call-with-current-continuation—Chapter Checkpoint

	Chapter 4½: define define 'define
	4½.1	Module-Level Definitions
	Variable Definitions
	Function Definitions

	4½.2	Local Definitions
	Abort—Chapter Checkpoint

	Chapter 5: big-bang
	5.1	Graphical User Interface
	5.2	Landing a UFO
	5.3	Using big-bang: Syntax and Semantics
	5.4	Guessing Gooey
	The Data
	The Main Function
	Key-Events
	Rendering
	Time to Stop

	Exit—Chapter Checkpoint
	Chapter Challenges

	Chapter 6: Recursion Is Easy
	6.1	Robot Snake
	6.2	A Data Representation for the Snake Game
	6.3	The Main Function
	6.4	Clock Ticks
	Eating and Growing
	Slithering
	Rotting Goo

	6.5	Key-Events
	6.6	Rendering
	6.7	End Game
	6.8	Auxiliary Functions
	Return—Chapter Checkpoint
	Chapter Challenges

	Chapter 7: Land of Lambda
	7.1	Functions as Values
	7.2	Lambda
	7.3	Higher-Order Fun
	7.4	Two More Higher-Order Functions
	7.5	Derive This!
	7.6	apply
	Break—Chapter Checkpoint

	Chapter 8: Mutant Structs
	8.1	Chad’s First Battle
	8.2	Orc Battle
	8.3	Setting Up the World, a First Step
	8.4	Action: How Structs Really Work
	8.5	More Actions, Setting Up the World for Good
	8.6	Ready, Set, big-bang
	8.7	Initializing the Orc World
	8.8	Rendering the Orc World
	8.9	The End of the World
	8.10	Actions, A Final Look
	Throw—Chapter Checkpoint
	Chapter Challenges

	Chapter 9: The Values of Loops
	9.1	FOR Loops
	9.2	Multiple Values
	9.3	Back to FOR/FOLD
	9.4	More on Loops
	Waitpid—Chapter Checkpoint

	Chapter 10: Dice of Doom
	10.1	The Game Tree
	10.2	Dice of Doom, The Game
	10.3	Designing Dice of Doom: Take One
	Filling in the Blanks
	Simplifying the Rules
	End of Game
	Controlling the Game

	10.4	How Game Trees Work
	10.5	Game States and Game Trees for Dice of Doom
	10.6	Roll the Dice
	10.7	Rendering the Dice World
	10.8	Input Handling
	10.9	Creating a Game Tree
	The Game Tree
	Neighbors
	Attacks

	10.10	The End Game
	Kill—Chapter Checkpoint
	Chapter Challenges

	Chapter 11: Power to the Lazy
	11.1	Doomsday
	11.2	Lazy Evaluation
	11.3	Memoized Computations
	11.4	Racket Can Be Lazy
	Delay—Chapter Checkpoint

	Chapter 12: Artificial Intelligence
	12.1	An Intelligent Life-form
	12.2	Lazy Evaluation
	12.3	Adding Artificial Intelligence
	Stop-when—Chapter Checkpoint
	Chapter Challenges

	Chapter 13: The World Is Not Enough
	13.1	What Is a Distributed Game?
	13.2	The Data
	Messages
	Previously Fabricated Structures
	Packages
	Bundles
	Mail
	iworld Structures

	13.3	The Network Postal Service
	13.4	Organizing Your Universe
	13.5	Distributed Guess
	The State of the Client and the State of the Server
	The Server
	The Client
	Running the Game

	Error—Chapter Checkpoint
	Chapter Challenges

	Chapter 14: Hungry Henry
	14.1	King Henry the Hungry
	14.2	Hungry Henry, the Game
	14.3	Two United States
	14.4	Henry’s Universe
	Message Data and Structures
	Complex Numbers Are Good Positions
	A Day in the Life of a Server
	A Day in the Life of a Client

	14.5	State of the Union
	State of Henry
	State of the House

	14.6	Main, Take Client
	The Appetizer State
	The Entree State

	14.7	Main, Take Server
	The Join State and Network Events
	The Join State and Tick Events
	The Play State and Network Events
	The Play State and Tick Events

	14.8	See Henry Run
	On-disconnect—Chapter Checkpoint
	Chapter Challenges

	Good-Bye: Close Paren
).1	Run Racket Run
).2	Racket Is a Programming Language
).3	Racket Is a Metaprogramming Language
).4	Racket Is a Programming-Language Programming Language
	So Long

	Index
	Blank Page
	Blank Page

