
3
FUNCT ION FUNDAMENTALS

In the last chapter, we introduced you to
Racket’s basic numerical operations. In

this chapter, we’ll explore the core ideas that
form the subject of functional programming.

What Is a Function?

A function can be thought of as a box with the following characteristics: if
you push an object in one side, an object (possibly the same, or not) comes
out the other side; and for any given input item, the same output item comes
out. This last characteristic means that if you put a triangle in one side and
a star comes out the other, the next time you put a triangle in, you will also
get a star out (see Figure 3-1). Unfortunately, Racket doesn’t have any built-
in functions that take geometric shapes as input, so we’ll need to settle for
more-mundane objects like numbers or strings.

f

Figure 3-1: How a function works

Racket Programming the Fun Way (Sample) © 2021 by James W. Stelly

Lambda Functions
In its most basic form, a function in Racket is something produced by a
lambda expression, designated by the Greek letter λ. This comes from a math-
ematical discipline called lambda calculus, an arcane world we won’t explore
here. Instead, we’ll focus on practical applications of lambda expressions.
Lambda functions are intended for short simple functions that are imme-
diately applied, and hence, don’t need a name (they’re anonymous). For
example, Racket has a built-in function called add1 that simply adds 1 to its
argument. A Racket lambda expression that does the same thing looks like
this:

(lambda (x) (+ 1 x))

Racket lets you abbreviate lambda with the Greek symbol λ, and we’ll
frequently designate it this way. You can enter λ in DrRacket by selecting
it from the Insert menu or using the keyboard shortcut CTRL-\. We could
rewrite the code above to look like this:

(λ (x) (+ 1 x))

To see a lambda expression in action, enter the following in the interac-
tions pane:

> ((λ (x y) (+ (* 2 x) y)) 4 5)

13

Notice that instead of a function name as the first element of the list, we
have the actual function. Here 4 and 5 get passed to the lambda function for
evaluation.

An equivalent way of performing the above computation is with a let

form.

> (let ([x 4]

[y 5])

(+ (* 2 x) y))

13

This form makes the assignment to variables x and y more obvious.
We can use lambda expressions in a more conventional way by assigning

them to an identifier (a named function).

> (define foo (λ (x y) (+ (* 2 x) y)))

> (foo 4 5)

13

Racket also allows you to define functions using this shortcut:

> (define (foo x y) (+ (* 2 x) y))

> (foo 4 5)

13

These two forms of function definition are entirely equivalent.

42 Chapter 3

Racket Programming the Fun Way (Sample) © 2021 by James W. Stelly

Higher-Order Functions
Racket is a functional programming language. Functional programming is a
programming paradigm that emphasizes a declarative style of programming
without side effects. A side effect is something that changes the state of the
programming environment, like assigning a value to a global variable.

Lambda values are especially powerful because they can be passed as
values to other functions. Functions that take other functions as values (or
return a function as a value) are known as higher-order functions. In this sec-
tion, we’ll explore some of the most commonly used higher-order functions.

The map Function
One of the most straightforward higher-order functions is the map function,
which takes a function as its first argument and a list as its second argument,
and then applies the function to each element of the list. Here’s an example
of the map function:

> (map (λ (x) (+ 1 x)) '(1 2 3))

'(2 3 4)

You can also pass a named function into map:

> (define my-add1 (λ (x) (+ 1 x)))

> (map my-add1 '(1 2 3)) ; this works too

'(2 3 4)

In the first example above, we take our increment function and pass it
into map as a value. The map function then applies it to each element in the list
'(1 2 3).

It turns out that map is quite versatile. It can take as many lists as the
function will accept as arguments. The effect is sort of like a zipper, where
the list arguments are fed to the function in parallel, and the resulting values
is a single list, formed by applying the function to the elements from each
list. The example below shows map being used to add the corresponding ele-
ments of two equally sized lists together:

> (map + '(1 2 3) '(2 3 4))

'(3 5 7)

As you can see, the two lists were combined by adding the correspond-
ing elements together.

The apply Function
The map function lets you apply a function to each item in a list individually.
But sometimes, we want to apply all the elements of a list as arguments in
a single function call. For example, Racket arithmetical operators can take
multiple numeric arguments:

> (+ 1 2 3 4)

10

Function Fundamentals 43

Racket Programming the Fun Way (Sample) © 2021 by James W. Stelly

But if we try to pass in a list as an argument, we’ll get an error:

> (+ '(1 2 3 4))

. . +: contract violation

expected: number?

given: '(1 2 3 4)

The + operator is only expecting numeric arguments. But not to worry.
There’s a simple solution: the apply function:

> (apply + '(1 2 3 4))

10

The apply function takes a function and a list as its arguments. It then
applies the function to values in the list as if they were arguments to the func-
tion.

The foldr and foldl Functions
Yet another way to add the elements of a list together is with the foldr func-
tion. The foldr function takes a function, an initial argument, and a list:

> (foldr + 0 '(1 2 3 4))

10

Even though foldr produced the same result as apply here, behind the
scenes it worked very differently. This is how foldr added the list together:
1 + (2 + (3 + (4 + 0))). The function “folds” the list together by performing its
operation in a right-associative fashion (hence the r in foldr).

Closely associated with foldr is foldl. The action of foldl is slightly differ-
ent from what you might expect. Observe the following:

> (foldl cons '() '(1 2 3 4))

'(4 3 2 1)

> (foldr cons '() '(1 2 3 4))

'(1 2 3 4)

One might have expected foldl to produce '(1 2 3 4), but actually foldl

performs the computation (cons 4 (cons 3 (cons 2 (cons 1 '())))). The list
arguments are processed from left to right, but the two arguments fed to
cons are reversed—for example, we have (cons 1 '()) and not (cons '() 1).

The compose Function
Functions can be combined together, or composed, by passing the output of
one function to the input of another. In math, if we have f(x) and g(x), they
can be composed to make h(x) = f(g(x)) (in mathematics text this is some-
times designated with a special composition operator as h(x) = (f ◦ g)(x). We
can do this in Racket using the compose function, which takes two or more
functions and returns a new composed function. This new function works a
bit like a pipeline. For example, if we want to increment a number by 1 and

44 Chapter 3

Racket Programming the Fun Way (Sample) © 2021 by James W. Stelly

square the result (that is, for any n compute (n + 1)2), we could use following
function:

(define (n+1_squared n) (sqr (add1 n)))

But compose allows this to be expressed a bit more succinctly:

> (define n+1_squared (compose sqr add1))

> (n+1_squared 4)

25

Even simpler . . .

> ((compose sqr add1) 4)

25

Please note that add1 is performed first and then sqr. Functions are com-
posed from right to left—that is, the rightmost function is applied first.

The filter Function
Our final example is filter. This function takes a predicate (a function that
returns a Boolean value) and a list. The returned value is a list such that only
elements of the original list that satisfy the predicate are included. Here’s
how we’d use filter to return the even elements of a list:

> (filter even? '(1 2 3 4 5 6))

'(2 4 6)

The filter function allows you to filter out items in the original list that
won’t be needed.

As you’ve seen throughout this section, our description of a function as
a box is apt since it is in reality a value that can be passed to other functions
just like a number, a string, or a list.

Lexical Scoping
Racket is a lexically scoped language. The Racket Documentation provides
the following definition for lexical scoping:

Racket is a lexically scoped language, which means that whenever an
identifier is used as an expression, something in the textual environ-
ment of the expression determines the identifier’s binding.

What’s important about this definition is the term textual environment. A
textual environment is one of two things: the global environment, or forms
where identifiers are bound. As we’ve already seen, identifiers are bound in
the global environment (sometimes referred to as the top level) with define.
For example

> (define ten 10)

> ten

10

Function Fundamentals 45

Racket Programming the Fun Way (Sample) © 2021 by James W. Stelly

The values of identifiers bound in the global environment are available
everywhere. For this reason, they should be used sparingly. Global defini-
tions should normally be reserved for function definitions and constant
values. This, however, is not an edict, as there are other legitimate uses for
global variables.

Identifiers bound within a form will normally not be defined outside of
the form environment (but see “Time for Some Closure” on page 58 for an
intriguing exception to this rule).

Let’s look at a few examples.
Previously we explored the lambda expression ((λ (x y) (+ (* 2 x) y

)) 4 5). Within this expression, the identifiers x and y are bound to 4 and
5. Once the lambda expression has returned a value, the identifiers are no
longer defined.

Here again is the equivalent let expression.

(let ([x 4]

[y 5])

(+ (* 2 x) y))

You might imagine that the following would work as well:

(let ([x 4]

[y 5]

[z (* 2 x)])

(+ z y))

But this fails to work. From a syntactic standpoint there’s no way to con-
vert this back to an equivalent lambda expression. And although the identi-
fier x is bound in the list of binding expressions, the value of x is only avail-
able inside the body of the let expression.

There is, however, an alternative definition of let called let*. In this case
the following would work.

> (let* ([x 4]

[y 5]

[z (* 2 x)])

(+ z y))

13

The difference is that with let* the value of an identifier is available im-
mediately after it’s bound, whereas with let the identifier values are only
available after all the identifiers are bound.

Here’s another slight variation where let does work.

> (let ([x 4]

[y 5])

(let ([z (* 2 x)])

(+ z y)))

13

46 Chapter 3

Racket Programming the Fun Way (Sample) © 2021 by James W. Stelly

In this case the second let is within the lexical environment of the first
let (but as we’ve seen, let* more efficiently encodes this type of nested con-
struct). Hence x is available for use in the expression (* 2 x).

Conditional Expressions: It’s All About Choices
The ability of a computer to alter its execution path based on an input is an
essential component of its architecture. Without this a computer cannot
compute. In most programming languages this capability takes the form of
something called a conditional expression, and in Racket it’s expressed (in its
most general form) as a cond expression.

Suppose you’re given the task to write a function that returns a value
that indicates whether a number is divisible by 3 only, divisible by 5 only, or
divisible by both. One way to accomplish this is with the following code.

(define (div-3-5 n)

(let ([div3 (= 0 (remainder n 3))]

[div5 (= 0 (remainder n 5))])

(cond [(and div3 div5) 'div-by-both]

[div3 'div-by-3]

[div5 'div-by-5]

[else 'div-by-neither])))

The cond form contains a list of expressions. For each of these expres-
sions, the first element contains some type of test, which if it evaluates to
true, evaluates the second element and returns its value. Note that in this ex-
ample the test for divisibility by 3 and 5 must come first. Here are trial runs:

> (div-3-5 10)

'div-by-5

> (div-3-5 6)

'div-by-3

> (div-3-5 15)

'div-by-both

> (div-3-5 11)

'div-by-neither

A simplified version of cond is the if form. This form consists of a sin-
gle test (the first subexpression) that returns its second argument (after it’s
evaluated) if the test evaluates to true; otherwise it evaluates and returns the
third argument. This example simply tests whether a number is even or odd.

(define (parity n)

(if (= 0 (remainder n 2)) 'even 'odd))

Function Fundamentals 47

Racket Programming the Fun Way (Sample) © 2021 by James W. Stelly

If we run some tests:

> (parity 5)

'odd

> (parity 4)

'even

Both cond and if are expressions that return values. There are occasions
where one simply wants to conditionally execute some sequence of steps if a
condition is true or false. This usually involves cases where some side effect
like printing a value is desired and returning a result is not required. For
this purpose, Racket provides when and unless. If the conditional expression
evaluates to true, when evaluates all the expressions in its body; otherwise it
does nothing.

> (when (> 5 4)

(displayln 'a)

(displayln 'b))

a

b

> (when (< 5 4) ; doesn't generate output

(displayln 'a)

(displayln 'b))

The unless form behaves in exactly the same way as when; the difference is
that unless evaluates its body if the conditional expression is not true.

> (unless (> 5 4) ; doesn't generate output

(displayln 'a)

(displayln 'b))

> (unless (< 5 4)

(displayln 'a)

(displayln 'b))

a

b

I’m Feeling a Bit Loopy!
Loops (or iteration) are the bread and butter of any programming language.
With the discussion of loops, invariably the topic of mutability comes up.
Mutability of course implies change. Examples of mutability are assigning
values to variables (or worse, changing a value embedded in a data struc-
ture such as a vector). A function is said to be pure if no mutations (or side
effects, like printing out a value or writing to a file—also forms of mutation)
occur within the body of a function. Mutations are generally to be avoided
if possible. Some languages, such as Haskell, go out of their way to avoid

48 Chapter 3

Racket Programming the Fun Way (Sample) © 2021 by James W. Stelly

this type of mischief. A Haskell programmer would rather walk barefoot
through a bed of glowing, hot coals than write an impure function.

There are many good reasons to prefer pure functions, such as some-
thing called referential transparency (this mouthful simply means the abil-
ity to reason about the behavior of your program). We won’t be quite so
persnickety and will make judicious use of mutation and impure functions
where necessary.

Suppose you’re given the task of defining a function to add the first n
positive integers. If you’re familiar with a language like Python (an excellent
language in its own right), you might implement it as follows.

def sum(n):

s = 0

while n > 0:

¶ s = s + n

· n = n - 1

return s

This is a perfectly good function (and a fairly benign example of using
mutable variables) to generate the desired sum, but notice both the variables
s and n are modified ¶ ·. While there’s nothing inherently wrong with this,
these assignments make the implementation of the function sum impure.

Purity
Before we get down and dirty, let’s begin by seeing how we can implement
looping using only pure functions. Recursion is the custom when it comes to
looping or iteration in Racket (and all functional programming languages).
A recursive function is just a function defined in terms of itself. Here’s a
pure (and simple) recursive program to return the sum of the first n positive
integers.

(define (sum n)

¶ (if (= 0 n) 0

· (+ n (sum (- n 1)))))

As you can see, we first test whether n has reached 0 ¶, and if so we sim-
ply return the value 0. Otherwise, we take the current value of n and recur-
sively add to it the sum of all the numbers less than n ·. For the mathemati-
cally inclined, this is somewhat reminiscent of how a proof by mathematical
induction works where we have a base case ¶ and the inductive part of the
proof ·.

Let’s test it out.

> (sum 100)

5050

There’s a potential problem with the example we have just seen. The
problem is that every time a recursive call is made, Racket must keep track of

Function Fundamentals 49

Racket Programming the Fun Way (Sample) © 2021 by James W. Stelly

where it is in the code so that it can return to the proper place. Let’s take a
deeper look at this function.

(define (sum n)

(if (= 0 n) 0

¶ (+ n (sum (- n 1)))))

When the recursive call to sum is made ¶, there’s still an addition re-
maining to be done after the recursive call returns. The system must then
remember where it was when the recursive call was made so that it can pick
up where it left off when the recursive call returns. This isn’t a problem for
functions that don’t have to nest very deeply, but for large depths of recur-
sion, the computer can run out of space and fail in a dramatic fashion.

Racket (and virtually all Scheme variants) implement something called
tail call optimization (the Racket community says this is simply the proper way
to handle tail calls rather than an optimization, but tail call optimization is
generally used elsewhere). What this means is that if a recursive call is the
very last call being made, there’s no need to remember where to return to
since there are no further computations to be made within the function.
Such functions in effect behave as a simple iterative loop. This is a basic
paradigm for performing looping computations in the Lisp family of lan-
guages. You do, however, have to construct your functions in such a way as
to take advantage of this feature. We can rewrite the summing function as
follows.

(define (sum n)

(define (s n acc)

¶ (if (= 0 n) acc

· (s (- n 1) (+ acc n))))

(s n 0))

Notice that sum now has a local function called s that takes an additional
argument called acc. Also notice that s calls itself recursively ·, but it’s the
last call in the local function; hence tail call optimization takes place. This all
works because acc accumulates the sum and passes it along as it goes. When
it reaches the final nested call ¶, the accumulated value is returned.

Another way to do this is with a named let form as shown here.

(define (sum n)

(let loop ([n n] [acc 0])

(if (= 0 n) acc

(loop (- n 1) (+ acc n)))))

The named let form, similar to the normal let, has a section where local
variables are initialized. The expression [n n] may at first appear puzzling,
but what it means is that the first n, which is local to the let, is initialized
with the n that the sum function is called with. Unlike define, which simply
binds an identifier with a function body, the named let binds the identifier
(in this case loop), evaluates the body, and returns the value resulting from
calling the function with the initialized parameter list. In this example the

50 Chapter 3

Racket Programming the Fun Way (Sample) © 2021 by James W. Stelly

function is called recursively (which is the normal use case for a named let)
as indicated by the last line in the code. This is a simple illustration of a side-
effect-free looping construct favored by the Lisp community.

The Power of the Dark Side
Purity is good, as far as it goes. The problem is that staying pure takes a lot
of work (especially in real life). It’s time to take a closer look at the dreaded
set! form. Note that an exclamation point at the end of any built-in Racket
identifier is likely there as a warning that it’s going to do something impure,
like modify the program state in some fashion. A programming style that
uses statements to change a program’s state is said to use imperative pro-
gramming. In any case, set! reassigns a value to a previously bound identi-
fier. Let’s revisit the Python sum function we saw a bit earlier. The equivalent
Racket version is given below.

(define (sum n)

(let ([s 0]) ; initialize s to zero

(do () ; an optional initializer statement can go here

((< n 1)) ; do until this becomes true

(set! s (+ s n))

(set! n (- n 1)))

s))

Racket doesn’t actually have a while statement (this has to do with the
expectation within the Lisp community that recursion should be the go-to
method for recursion). The Racket do form functions as a do-until.

If you’re familiar with the C family of programming languages, then you
will see that the full form of the do statement actually functions much like
the C for statement. One way to sum the first n integers in C would be as
follows:

int sum(int n)

{

int s = 0;

for (i=1; i<= n; i++) // initialize i=1, set i = i+1 at each iteration

// do while i<= n

{

s = s + i;

}

return s; // return s

}

Here’s the Racket equivalent:

(define (sum n)

¶ (let ([s 0])

· (do ([i 1 (add1 i)]) ; initialize i=1, set i = i+1 at each iteration

Function Fundamentals 51

Racket Programming the Fun Way (Sample) © 2021 by James W. Stelly

¸ ((> i n) s) ; do until i>n, then return s

¹ (set! s (+ s i)))))

In the above code we first initialize the local variable s (which holds our
sum) to 0 ¶. The first argument to do · initializes i (i is local to the do form)
to 1 and specifies that i is to be incremented by 1 at each iteration of the
loop. The second argument ¸ tests whether i has reached the target value
and if so returns the current value of s. The last line ¹ is where the sum is
actually computed by increasing the value of s with the current value of i via
the set! statement.

The value of forms such as do with the set! statement is that many algo-
rithms are naturally stated in a step-by-step fashion with variables mutated by
equivalents to the set! statement. This helps to avoid the mental gymnastics
needed to convert such constructs to pure recursive functions.

In the next section, we examine the for family of looping variants. Here
we will see that Racket’s for form provides a great deal of flexibility in how to
manage loops.

The for Family
Racket provides the for form along with a large family of for variants that
should satisfy most of your iteration needs.

A Stream of Values
Before we dive into for, let’s take a look at a couple of Racket forms that are
often used in conjunction with for: in-range and in-naturals. These functions
return something we haven’t seen before called a stream. A stream is an ob-
ject that’s sort of like a list, but whereas a list returns all its values at once, a
stream only returns a value when requested. This is basically a form of lazy
evaluation, where a value is not provided until asked for. For example, (in-
range 10) will return a stream of 10 values starting with 0 and ending with 9.
Here are some examples of in-range in action.

> (define digits (in-range 10))

> (stream-first digits)

0

> (stream-first (stream-rest digits))

1

> (stream-ref digits 5)

5

In the code above, (in-range 10) defines a sequence of values 0, 1, . . . ,
9, but digits doesn’t actually contain these digits. It basically just contains
a specification that will allow it to return the numbers at some later time.
When (stream-first digits) is executed, digits gives the first available value,
which in this case is the number 0. Then (stream-rest digits) returns the

52 Chapter 3

Racket Programming the Fun Way (Sample) © 2021 by James W. Stelly

stream containing the digits after the first, so that (stream-first (stream-rest

digits)) returns the number 1. Finally, stream-ref returns the i-th value in the
stream, which in this case is 5.

The function in-naturals works like in-range, but instead of returning a
specific number of values, in-naturals returns an infinite number of values.

> (define naturals (in-naturals))

> (stream-first naturals)

0

> (stream-first (stream-rest naturals))

1

> (stream-ref naturals 1000)

1000

How the stream concept is useful will become clearer as we see it used
within some for examples. We’ll also met some useful additional arguments
for in-range.

for in the Flesh
Here’s an example of for in its most basic form. The goal is to print each
character of the string “Hello” on a separate line.

> (let* ([h "Hello"]

¶ [l (string-length h)])

· (for ([i (in-range l)])

¸ (display (string-ref h i))

(newline)))

H

e

l

l

o

We capture the string-length ¶ and use this length with the in-range

function ·. for then uses the resulting stream of values to populate the iden-
tifier i, which is used in the body of the for form to extract and display the
characters ¸. In the prior section it was pointed out that in-range produces
a sequence of values, but it turns out that in the context of a for statement,
a positive integer can also produce a stream as the following example illus-
trates.

> (for ([i 5]) (display i))

01234

The for form is quite forgiving when it comes to the type of arguments
that it accepts. It turns out that there’s a much simpler way to achieve our
goal.

Function Fundamentals 53

Racket Programming the Fun Way (Sample) © 2021 by James W. Stelly

> (for ([c "Hello"])

(display c)

(newline))

H

e

l

l

o

Instead of a stream of indexes, we have simply provided the string itself.
As we’ll see, for will accept many built-in data types that consist of multiple
values, like lists, vectors, and sets. These data types can also be converted to
streams (for example, by in-list, in-vector, and so on), which in some cases
can provide better performance when used with for. All expressions that
provide values to the identifier that for uses to iterate over are called sequence
expressions.

It’s time to see how we can make use of the mysterious in-naturals form
introduced above.

> (define (list-chars str)

(for ([c str]

[i (in-naturals)])

(printf "~a: ~a\n" i c)))

> (list-chars "Hello")

0: H

1: e

2: l

3: l

4: o

The for form inside the list-chars function now has two sequence ex-
pressions. Such sequence expressions are evaluated in parallel until one of
the expressions runs out of values. That is why the for expression eventually
terminates, even though in-naturals provides an infinite number of values.

There is, in fact, a version of for that does not evaluate its sequence ex-
pressions in parallel: it’s called for*. This version of for evaluates its sequence
expressions in a nested fashion as the following example illustrates.

> (for* ([i (in-range 2 7 4)]

[j (in-range 1 4)])

(display (list i j (* i j)))

(newline))

(2 1 2)

(2 2 4)

(2 3 6)

(6 1 6)

54 Chapter 3

Racket Programming the Fun Way (Sample) © 2021 by James W. Stelly

(6 2 12)

(6 3 18)

In this example we also illustrate the additional optional arguments that
in-range can take. The sequence expression (in-range 2 7 4) will result in a
stream that starts with the number 2, and increment that value by 4 with
each iteration. The iteration will stop once the streamed value reaches one
less than 7. So in this expression, i is bound to 2 and 6. The expression (in-

range 1 4) does not specify a step value, so the default step size of 1 is used.
This results in j being bound to 1, 2, and 3.

Ultimately, for* takes every possible combination of i values and j values
to form the output shown.

Can You Comprehend This?
There is a type of notation in mathematics called set-builder notation. An
example of set-builder notation is the expression

{
x2 | x ∈ N, x ≤ 10

}
. This

is just the set of squares of all the natural numbers between 0 and 10. Racket
provides a natural (pun intended) extension of this idea in the form of some-
thing called a list comprehension. A direct translation of that mathematical
expression in Racket would appear as follows.

> (for/list ([x (in-naturals)] #:break (> x 10)) (sqr x))

'(0 1 4 9 16 25 36 49 64 81 100)

The #:break keyword is used to terminate the stream generated by in-

naturals once all the desired values have been produced. Another way to do
this, without having to resort to using #:break, would be with in-range.

> (for/list ([x (in-range 11)]) (sqr x))

'(0 1 4 9 16 25 36 49 64 81 100)

If you only wanted the squares of even numbers, you could do it this
way:

> (for/list ([x (in-range 11)] #:when (even? x)) (sqr x))

'(0 4 16 36 64 100)

This time the #:when keyword was brought into play to provide a condi-
tion to filter the values used to generate the list.

An important difference of for/list over for is that for/list does not
produce any side effects and is therefore a pure form, whereas for is ex-
pressly for the purpose of producing side effects.

More Fun with for
Both for and for/list share the same keyword parameters. Suppose we
wanted to print a list of squares, but don’t particularly like the number 5.
Here’s how it could be done.

Function Fundamentals 55

Racket Programming the Fun Way (Sample) © 2021 by James W. Stelly

> (for ([n (in-range 1 10)] #:unless (= n 5))

(printf "~a: ~a\n" n (sqr n)))

1: 1

2: 4

3: 9

4: 16

6: 36

7: 49

8: 64

9: 81

By using #:unless we’ve produced an output for all values, 1 ≤ n < 10,
unless n = 5.

Sometimes it’s desirable to test a list of values to see if they all meet
some particular criteria. Mathematicians use a fancy notation to designate
this called the universal quantifier, which looks like this ∀ and means “for
all.” An example is the expression ∀x ∈

{
2, 4, 6

}
, x mod 2 = 0, which is

literally interpreted as “for all x in the set
{
2, 4, 6

}
, the remainder of x after

dividing by 2 is 0.” This just says that the numbers 2, 4, and 6 are even. The
Racket version of “for all” is for/and.

Feed the for/and form a list of values and a Boolean expression to evalu-
ate the values. If each value evaluates to true, the entire for/and expression
returns true; otherwise it returns false. Let’s have a go at it.

> (for/and ([x '(2 4 6)]) (even? x))

#t

> (for/and ([x '(2 4 5 6)]) (even? x))

#f

Like for, for/and can handle multiple sequence expressions. In this case,
the values in each sequence are compared in parallel.

> (for/and ([x '(2 4 5 6)]

[y #(3 5 9 8)])

(< x y))

#t

> (for/and ([x '(2 6 5 6)]

[y #(3 5 9 8)])

(< x y))

#f

Closely related to for/and is for/or. Not to be outdone, mathematicians
have a notation for this as well: it’s called the existential quantifier, ∃. For ex-
ample, they express the fact that there exists a number in the set

{
2, 7, 4, 6

}
greater than 5 with the expression ∃x ∈

{
2, 7, 4, 6

}
, x > 5.

56 Chapter 3

Racket Programming the Fun Way (Sample) © 2021 by James W. Stelly

> (for/or ([x '(2 7 4 6)]) (> x 5))

#t

> (for/or ([x '(2 1 4 5)]) (> x 5))

#f

Suppose now that you not only want to know whether a list contains a
value that meets a certain criterion, but you want to extract the first value
that meets the criterion. This is a job for for/first:

> (for/first ([x '(2 1 4 6 7 1)] #:when (> x 5)) x)

6

> (for/first ([x '(2 1 4 5 2)] #:when (> x 5)) x)

#f

The last example demonstrates that if there is no value that meets the
criterion, for/first returns false.

Correspondingly, if you want the last value, you can use for/last:

> (for/last ([x '(2 1 4 6 7 1)] #:when (> x 5)) x)

7

The for family of functions is fertile ground for exploring parallels be-
tween mathematical notation and Racket forms. Here is yet another exam-
ple. To indicate the sum of the squares of the integers from 1 to 10, the fol-
lowing notation would be employed:

S =
10∑
i=1

i2

The equivalent Racket expression is:

> (for/sum ([i (in-range 1 11)]) (sqr i))

385

The equivalent mathematical expression for products is

p =
10∏
i=1

i2

which in Racket becomes

> (for/product ([i (in-range 1 11)]) (sqr i))

13168189440000

Most of the for forms discussed above come in a starred version (for ex-
ample for*/list, for*/and, for*/or, and so on). Each of these works by evaluat-
ing their sequence expressions in a nested fashion as described for for*.

Function Fundamentals 57

Racket Programming the Fun Way (Sample) © 2021 by James W. Stelly

Time for Some Closure
Suppose you had $100 in the bank and wanted to explore the effects of com-
pounding with various interest rates. If you’re not familiar with how com-
pound interest works (and you very well should be), it works as follows: if
you have n0 in a bank account that pays i periodic interest, at the end of the
period you would have this:

n1 = n0 + n0i = n0(1 + i)

Using your $100 deposit as an example, if your bank pays 4 percent (i =
0.04) interest per period (good luck getting that rate at a bank nowadays),
you would have the following at the end of the period:

100 + 100 · 4% = 100(1 + 0.04) = 104

One way to do this is to create a function that automatically updates
the balance after applying the interest rate. A clever way to compute this
in Racket is with something called a closure, which we use in the following
function:

(define (make-comp bal int)

(let ([rate (add1 (/ int 100.0))])

¶ (λ () (set! bal (* bal rate)) (round bal))))

Notice that this function actually returns another function—the lambda ex-
pression (λ . . .) ¶—and that the lambda expression contains variables from
the defining scope. We shall explain how this works shortly.

In the code above, we’ve defined a function called make-comp which takes
two arguments: the starting balance and the interest rate percentage. The
rate variable is initialized to (1 + i). Rather than return a number, this func-
tion actually returns another function. The returned function is designed in
such a way that every time it’s called (without arguments) it updates the bal-
ance by applying the interest and returns the new balance. You might think
that once make-comp returns the lambda expression, the variables bal and rate

would be undefined, but not so with closures. The lambda expression is said
to capture the variables bal and rate, which are available within the lexical
environment where the lambda expression is defined. The fact that the re-
turned function contains the variables bal and rate (which are defined out-
side of the function) is what makes it a closure.

Let’s try this out and see what happens.

> (define bal (make-comp 100 4))

> (bal)

104.0

> (bal)

108.0

58 Chapter 3

Racket Programming the Fun Way (Sample) © 2021 by James W. Stelly

> (bal)

112.0

> (bal)

117.0

As you can see, the balance is updated appropriately.
Another use for closures is in a technique called memoization. What this

means is that we store prior computed values and if a value has already been
computed, return the remembered value; otherwise go ahead and compute
the value and save it for when it’s needed again. This is valuable in scenarios
where a function may be called repeatedly with arguments that have already
been computed.

To facilitate this capability, something called a hash table or dictionary is
typically used. A hash table is a mutable set of key-value pairs. A hash table
is constructed with the function make-hash. Items can be stored to the hash ta-
ble via hash-set! and retrieved from the table with hash-ref. We test whether
the table already contains a key with hash-has-key?.

The standard definition for the factorial function is n! = n(n - 1)!. The
obvious way to implement this in Racket is with the following.

(define (fact n)

(if (= 0 n) 1

(* n (fact (- n 1)))))

This works, but every time you call (fact 100), Racket has to perform
100 computations. With memoization, executing (fact 100) still requires 100
computations the first time. But the next time you call (fact 100) (or call fact
for any value less than 100), Racket only has to look up the value in the hash
table, which happens in a single step. Here’s the implementation.

(define fact

(let ([h (make-hash)]) ; hash table to contain memoized values

¶ (define (fact n)

(cond [(= n 0) 1]

· [(hash-has-key? h n) (hash-ref h n)]

[else

¸ (let ([f (* n (fact (- n 1)))])

¹ (hash-set! h n f)

f)]))

º fact))

It’s important to note that the outer fact function actually returns the
inner fact function ¶. This is ultimately what gets executed when we call
fact 100. It’s this inner fact function, which captures the hash table, that
constitutes the closure. First, it checks to see whether the argument to fact

is one that is already computed · and if so, returns the saved value. We still
have to compute the value if it hasn’t been computed yet ¸, but then we save

Function Fundamentals 59

Racket Programming the Fun Way (Sample) © 2021 by James W. Stelly

it in case it’s needed later ¹. The local fact function is returned as the value
of the global fact function (sorry about using the same name twice).

Applications
Having introduced the basic programming constructs available in Racket,
let’s take a look at some applications spanning computer science, mathemat-
ics, and recreational puzzles.

I Don't Have a Queue
In this section we touch on Racket’s object-oriented programming capability.
Objects are like a deluxe version of the structures we met in Chapter 1.

Imagine early morning at a small-town bank with a single teller. The
bank has just opened, and the teller is still trying to get set up, but a cus-
tomer, Tom, has already arrived and is waiting at the window. Shortly, two
other customers show up: Dick and Harry. The teller finally waits on Tom,
then Dick and Harry in that order. This situation is a classic example of a
queue. Formally, a queue is a first-in, first-out (FIFO) data structure. Racket
comes with a built-in queue (several, in fact), but let’s explore building one
from scratch.

We can model a queue with a list. For example the line of folks waiting
to see the teller can be represented by a single list: (define q (list 'tom 'dick

'harry)). But there’s a problem. It’s clearly easy to remove Tom from the
head of the list and get the remainder of the list by using car (or first) and
cdr (or rest):

> (car q)

'tom

> (set! q (cdr q))

> q

'(dick harry)

But what happens when Sue comes along? We could do the following:

> (set! q (append q (list 'sue)))

> q

'(dick harry sue)

But consider what happens if the list is very long, say 10,000 elements. The
append function will create an entire new list containing all the elements from
q and the one additional value 'sue. One way to do this efficiently is to main-
tain a pointer to the last element in the list and instead of creating a new
list change the cdr of the last node of the list to point to the list (list 'sue)

(see Figure 3-2). About now alarm bells should be going off in your head.
You should have an uneasy feeling that modifying a list structure is somehow
wrong. And you’d be right. It’s not even possible to do this with the normal

60 Chapter 3

Racket Programming the Fun Way (Sample) © 2021 by James W. Stelly

Racket list structure since the car and cdr cells in a list pair are immutable
and cannot be changed.

dick harry

nil

sue

nil

tail

head

head

dick harry

sue

nil

tail

Before

After

Figure 3-2: Mutable list

The traditional version of Scheme allow the elements of a cons node to
be modified via set-car! and set-cdr! methods. Since these aren’t defined in
Racket, Racket guarantees that any identifier bound to a Racket list will have
the same value for the life of the program.

There are still valid reasons why this capability may be needed. As we’ve
seen, this functionality is needed for queues to ensure efficient operation.
To accommodate this need, Racket provides a mutable cons cell that can be
created with the mcons function. Each component of the mutable cons cell
can be modified with set-mcar! and set-mcdr!. The functions mcar and mcdr are
the corresponding accessor functions.

The reason modifying a list structure is bad is because if some other
identifier is bound to the list, it will now have the modified list as its value,
and maybe that’s not what was intended. Observe the following.

> (define a (mcons 'apple 'orange))

> (define b a)

> a

(mcons 'apple 'orange)

> b

(mcons 'apple 'orange)

> (set-mcdr! a 'banana)

> a

(mcons 'apple 'banana)

> b

(mcons 'apple 'banana)

Although we only seemed to be changing the value of a, we also changed
the value of b.

Function Fundamentals 61

Racket Programming the Fun Way (Sample) © 2021 by James W. Stelly

To avoid this potentially disastrous situation, we’ll encapsulate the list in
such a way that the list itself is not accessible, but we’ll still be able to remove
elements from the front of the list and add elements to the end of the list to
implement our queue. Encapsulation is a fundamental component of object-
oriented programming. We’ll dive right in by creating a class that contains
all the functionality we need to implement our queue:

¶ (define queue%

· (class object%

¸ (init [queue-list '()])

¹ (define head '{})

(define tail '{})

º (super-new)

» (define/public (enqueue val)

(let ([t (mcons val '())])

(if (null? head)

(begin

(set! head t)

(set! tail t))

(begin

(set-mcdr! tail t)

(set! tail t)))))

¼ (define/public (dequeue)

(if (null? head) (error "Queue is empty.")

(let ([val (mcar head)])

½ (set! head (mcdr head))

(when (null? head) (set! tail '()))

val)))

(define/public (print-queue)

(define (prt rest)

(if (null? rest)

(newline)

(let ([h (mcar rest)]

[t (mcdr rest)])

(printf "~a " h)

(prt t))))

(prt head))

¾ (for ([v queue-list]) (enqueue v))))

62 Chapter 3

Racket Programming the Fun Way (Sample) © 2021 by James W. Stelly

Our class name is queue% (note that, by convention, Racket class names
end with %). We begin with the class definition ¶. All classes must inherit
from some parent class. In this case we’re using the built-in class object% ·.
Once we’ve specified the class name and parent class, we specify the ini-
tialization parameters for the class ¸. This class takes a single, optional list
argument. If supplied, this list is used to initialize the queue ¾. Our class
uses head and tail pointer identifiers, which we have to define ¹. Within the
body of a class, define statements are not accessible from outside the class.
This means that there is no way for the values of head or tail to be bound to
an identifier outside of the class.

After a required call to the super class (in this case object%) º, we get
into the real meat of this class: its methods. First we define a public class
method called enqueue ». Public methods are accessible from outside the
class. This method takes a single value, which is added to the end of the
queue in a manner similar to our apple and banana example. If the queue is
empty, then it initializes the head and tail identifiers with the mutable cons
cell t.

The dequeue method ¼ returns the value at the head of the queue, but
generates an error if the queue is empty. The head pointer is updated to
point to the next value in the queue ½.

To see all the values in the queue, we’ve also defined the method print-

queue.
Let’s see it in action.

> (define queue (new queue% [queue-list '(tom dick harry)]))

> (send queue dequeue)

'tom

> (send queue enqueue 'sue)

> (send queue print-queue)

dick harry sue

> (send queue dequeue)

'dick

> (send queue dequeue)

'harry

> (send queue dequeue)

'sue

> (send queue dequeue)

. . Queue is empty.

Class objects are created with the new form. This form includes the class
name and any parameters defined by the init form in the class definition
(see the class definition code ¸).

Function Fundamentals 63

Racket Programming the Fun Way (Sample) © 2021 by James W. Stelly

Unlike normal Racket functions and methods, an object method must
be invoked with a send form. The send identifier is followed by the object
name (queue), the method name, and any arguments for the method.

This example was just meant to expose the basics of Racket’s object-
oriented capabilities, but we’ll be seeing much more of Racket’s object prow-
ess in the remainder of the text.

The Tower of Hanoi
The Tower of Hanoi is a puzzle that consists of three pegs embedded in a
board, along with eight circular discs, each with a hole in the center. No two
discs are the same size, and they are arranged on one of the pegs so that the
largest is on the bottom and the rest are arranged such that a smaller disc is
always immediately above a larger disc (See Figure 3-3).

Figure 3-3: The Tower of Hanoi

W. W. Rouse Ball tells the following entertaining story about how this
puzzle came about (see [3] and [8]).

In the great temple at Benares beneath the dome which marks the
center of the world, rests a brass plate in which are fixed three dia-
mond needles, each a cubit high and as thick as the body of a bee.
On one of these needles, at the creation, God placed sixty-four disks
of pure gold, the largest disc resting on the brass plate and the oth-
ers getting smaller and smaller up to the top one. This is the tower
of Brahma. Day and night unceasingly, the priest on duty transfers
the disks from one diamond needle to another, according to the
fixed and immutable laws of Brahmah, which require that the priest
must move only one disk at a time, and he must place these discs
on needles so that there never is a smaller disc below a larger one.
When all the sixty-four discs shall have been thus transferred from
the needle on which, at the creation, God placed them, to one of
the other needles, tower, temple, and Brahmans alike will crumble
into dust, and with a thunderclap the world will vanish.

This would take 264 - 1 moves. Let’s see how much time we have left until the
world comes to an end. We assume one move can be made each second.

> (define moves (- (expt 2 64) 1))

> moves

18446744073709551615

> (define seconds-in-a-year (* 60 60 24 365.25))

> seconds-in-a-year

64 Chapter 3

Racket Programming the Fun Way (Sample) © 2021 by James W. Stelly

31557600.0

> (/ moves seconds-in-a-year)

584542046090.6263

This last number is about 5.84 × 1011 years. The universe is currently
estimated to be a shade under 14 × 109 years old. If the priests started mov-
ing disks at the beginning of the universe, there would be about 570 billion
years left, so you probably have at least enough time to finish reading this
book.

As interesting as this is, our main objective is to use Racket to show how
to actually perform the moves. We’ll of course begin with a more modest
number of disks, so let’s start with just one disk. We’ll number the pegs 0, 1,
and 2. Suppose our goal is to move the disks from peg 0 to peg 2. With only
one disk, we just move the disk from peg 0 to peg 2. If we have n > 1 disks,
we designate the peg we’re moving all the disks from as f, the peg we are
moving to as t and the remaining peg we designate as u. The steps to solve
the puzzle can be stated thusly:

1. Move n - 1 disks from f to u.

2. Move a single disk from f to t.

3. Move n - 1 disks from u to t.

While simple, this process is sufficient to solve the puzzle. Steps 1 and 3
imply the use of recursion. Here is the Racket code that implements these
steps.

¶ (define (hanoi n f t)

· (if (= 1 n) (list (list f t)) ; only a single disk to move

¸ (let* ([u (- 3 (+ f t))] ; determine unused peg

¹ [m1 (hanoi (sub1 n) f u)] ; move n-1 disks from f to u

º [m2 (list f t)] ; move single disk from f to t

» [m3 (hanoi (sub1 n) u t)]); move disks from u to t

¼ (append m1 (cons m2 m3)))))

We pass hanoi the number of disks, the peg to move them from, and the
peg to move to. Then we compute the moves required to implement steps
one ¸, two ¹, and three º. Can you see why the let expression ¸ deter-
mines the unused peg? (Hint: think of the possible combinations. For ex-
ample if f = 1 and t = 2, the let expression ¸ would give u = 3 - (1 + 2) = 0, the
unused peg number.) The hanoi function returns a list of moves ». Each ele-
ment of the list is a list of two elements that designate the peg to move from
and the peg to move to. Here’s an example of the output for three disks:

> (hanoi 3 0 2)

'((0 2) (0 1) (2 1) (0 2) (1 0) (1 2) (0 2))

Note that we have 23 - 1 = 7 moves.

Function Fundamentals 65

Racket Programming the Fun Way (Sample) © 2021 by James W. Stelly

As can be seen from the comments in the code, the hanoi function is es-
sentially a direct translation of the three-step solution process given earlier.
Further, it provides a practical application of recursion where the function
calls itself with a simpler version of the problem.

Fibonacci and Friends
The Fibonacci sequence of numbers is defined as

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

where the next term in the sequence is always the sum of the two preceding
terms. In some cases the initial zero is not considered part of the sequence.
This sequence has a ton of interesting properties. We will only touch on a
few of them here.

Some Interesting Properties
One interesting property of the Fibonacci sequence is that it’s always possi-
ble to create a rectangle tiled with squares whose sides have lengths gener-
ated by the sequence, as seen in Figure 3-4. We’ll see how to generate this
tiling in Chapter 4.

3

5

2

34

8

13

55

21

Figure 3-4: Fibonacci tiling

66 Chapter 3

Racket Programming the Fun Way (Sample) © 2021 by James W. Stelly

Johannes Kepler pointed out that the ratio of consecutive Fibonacci
numbers approaches a particular number, designated by ϕ, which is known
as the golden ratio:

lim
n→∞

Fn+1
Fn

= ϕ =
1 +
√
5

2
≈ 1.6180339887 . . .

If you’re not familiar with that lim n→∞ business, it just means this is what
you get when n gets bigger and bigger.

The number ϕ has many interesting properties as well. One example is
the golden spiral. A golden spiral is a logarithmic spiral whose growth factor
is ϕ, which means that it gets wider (or further from its origin) by a factor of
ϕ for every quarter-turn. A golden spiral with initial radius 1 has the follow-
ing polar equation:

r = ϕθ
2
π (3.1)

A plot of the golden spiral is shown in Figure 3-5. We’ll show how this plot
was produced in Chapter 4.

Figure 3-5: The golden spiral

Function Fundamentals 67

Racket Programming the Fun Way (Sample) © 2021 by James W. Stelly

Figure 3-6 illustrates an approximation of the golden spiral created by
drawing circular arcs connecting the opposite corners of squares in the Fi-
bonacci tiling (in Chapter 4 we’ll see how to superimpose this spiral onto a
Fibonacci tiling).

Figure 3-6: A golden spiral approximation

While these two versions of the golden spiral appear quite similar, math-
ematically they’re quite different. This has to do with a concept called curva-
ture. This has a precise mathematical definition, but for now, just think of it
as the curviness of the path. The tighter the curve, the larger the curviness.
The path described by Equation (3.1) has continuous curvature, while the
Fibonacci spiral has discontinuous curvature. Figure 3-7 demonstrates the
distinct difference in curvature these two paths possess.

We will make use of these properties in the following sections and in
Chapter 4.

68 Chapter 3

Racket Programming the Fun Way (Sample) © 2021 by James W. Stelly

Figure 3-7: Curvature: golden vs. Fibonacci

Computing the Sequence
Mathematically the sequence Fn of Fibonacci numbers is defined by the re-
currence relation:

Fn = Fn-1 + Fn-2

In this section we’ll explore three different methods of computing this se-
quence.

1. The No-brainer Approach. With the recurrence relation definition
for the Fibonacci sequence, our first version practically writes itself. It’s liter-
ally an exact translation from the definition to a Racket function.

(define (F n)

(if (<= n 1) n

(+ (F (- n 1)) (F (- n 2)))))

Function Fundamentals 69

Racket Programming the Fun Way (Sample) © 2021 by James W. Stelly

This code has the virtue of being extremely clear and simple. The only
problem with this code is that it’s terribly inefficient. The two nested calls
cause the same value to be computed over and over. The end result is that
the amount of computation grows exponentially with the size of n.

2. Efficiency Is King. Here we explore an ingenious method presented
in the computer science classic Structure and Interpretation of Computer Pro-
grams [2]. The idea is to use a pair of integers initialized such that a = F1 = 1
and b = F0 = 0, and repeatedly apply the transformations:

a← a + b

b← a

It can be shown that after applying these transformations n times, we’ll have
a = Fn+1 and b = Fn. The proof is not difficult, and I’ve left it as an exercise
for you. Here’s the code to implement this solution:

(define (F n)

(define (f a b c)

(if (= c 0) b

(f (+ a b) a (- c 1))))

(f 1 0 n))

Due to tail call optimization, f recursively calls itself without the need
to keep track of a continuation point. This works as an iterative process and
only grows linearly with the size of n.

3. Memory Serves. In this version we use the memoization technique
introduced in “Time for Some Closure” on page 58. To facilitate this, the
code below uses a hash table. Recall that a hash table is a mutable set of key-
value pairs, and it’s constructed with the function make-hash. Items can be
stored to the hash table via hash-set! and retrieved from the table with hash-

ref. We test whether the table already contains a key with hash-has-key?.

(define F

(let ([f (make-hash)]) ; hash table to contain memoized F values

(define (fib n)

(cond [(<= n 1) n]

[(hash-has-key? f n) (hash-ref f n)]

[else

(let ([fn (+ (fib (- n 1)) (fib (- n 2)))])

(hash-set! f n fn)

fn)]))

fib))

This code should be fairly easy to decipher. It’s a straightforward appli-
cation of memoization as seen in the fact example presented earlier.

And the Winner Is? It depends. You should definitely never use the first
approach. Here’s something to consider when comparing the second and
the third: the second approach always requires n computations every time F

is called for n. The third approach also requires n computations the first time

70 Chapter 3

Racket Programming the Fun Way (Sample) © 2021 by James W. Stelly

F is called for n. If you call it a second (or subsequent) time for n (or for any
number less than n), it returns almost instantly since it simply has to look
up the value in the hash table. There’s a small space penalty for the third
approach, but it’s likely to be insignificant in most cases.

Binet’s Formula. Before we leave the fascinating world of Fibonacci
numbers and how to compute them, let’s take a look at Binet’s Formula:

Fn =
ϕn - ψn

ϕ - ψ
=
ϕn - ψn
√
5

In this formula, the following is true:

ψ =
1 -
√
5

2
= 1 - ϕ = -

1
ϕ

This formula provides us with yet another way of computing Fn. The follow-
ing applies to all n: ∣∣∣∣ ψn

√
5

∣∣∣∣ < 1
2

So the number Fn is the closest integer to ψn
√
5
. Therefore, if we round to the

nearest integer, Fn can be computed by the following:

Fn =
[
ψn
√
5

]
The square brackets are used to designate the rounding function. In Racket,
this becomes:

(define (F n)

(let* ([phi (/ (add1 (sqrt 5)) 2)]

[phi^n (expt phi n)])

(round (/ phi^n (sqrt 5)))))

While Binet’s formula is quite fast (since it does not require looping or
recursion), the downside is that it only gives an approximate answer, where
the other versions give an exact value.

Continued Fractions. The expression below is an example of a continued
fraction. In this case, the fractional portion is repeated indefinitely. As we
shall see, continued fractions have a surprising relationship to the Fibonacci
sequence.

f = 1 +
1

1 +
1

1 +
1

1 + · · ·
Since the fraction does repeat infinitely, we may make the following sub-

stitution.
f = 1 +

1
f

Function Fundamentals 71

Racket Programming the Fun Way (Sample) © 2021 by James W. Stelly

This substitution simplifies to the quadratic equation:

f2 - f - 1 = 0

That equation has a couple of solutions. This is true:

f =
1±
√
5

2

Or, these are true:

ϕ =
1 +
√
5

2
and ψ =

1 -
√
5

2
The question remains: which of these is the right value for f? Since ψ is
negative, the answer must be ϕ. Thus . . .

ϕ = 1 +
1

1 +
1

1 +
1

1 + · · ·

Bet you didn’t see that coming.

The Insurance Salesman Problem
This problem is adapted from Flannery’s In Code [7]. It’s an example of a
problem that could be solved by hand, but we can take advantage of Racket
to do some of the tedious calculations. The problem is stated as follows.

A door-to-door insurance salesman stops at a woman’s house and the
following dialog ensues:

Salesman: How many children do you have?

Woman: Three.

Salesman: And what are their ages?

Woman: Take a guess.

Salesman: How about a hint?

Woman: Okay, the product of their ages is 36 and all the ages are whole
numbers.

Salesman: That’s not much to go on. Can you give me another hint?

Woman: The sum of their ages is equal to the number on the house
next door.

The salesman immediately runs off, jumps over the fence, looks at the
number on the house next door, scratches his head, and goes back to
the woman.

Salesman: Could you give me just one more hint?

Woman: The oldest one plays the piano.

72 Chapter 3

Racket Programming the Fun Way (Sample) © 2021 by James W. Stelly

The salesman thinks for a bit, does some calculations, and figures out
the children’s ages. What are they?

At first blush, the hints seem a bit incongruous. Let’s take them one at
a time. First, we know that the product of the three ages is 36. Here is a pro-
gram that generates all the unique combinations of three positive integers
that have a product of 36.

#lang racket

(require math/number-theory)

¶ (define triples '())

(define (gen-triples d1)

· (let* ([q (/ 36 d1)]

[divs (divisors q)])

¸ (define (try-div divs)

(when (not (null? divs))

¹ (let* ([d2 (car divs)] [d3 (/ q d2)])

º (when (<= d3 d2 d1)

» (set! triples (cons (list d3 d2 d1) triples)))

(try-div (cdr divs)))))

(try-div divs)))

¼ (for ([d (divisors 36)]) (gen-triples d))

triples

While this code will not win any awards for efficiency, it is relatively sim-
ple and it gets the job done. We first define the variable triples which will
contain the list of generated triples ¶. The processing actually begins when
we call gen-triples ¼ for each divisor of 36 (provided by the divisors func-
tion defined in the math/number-theory library). This function then defines
the quotient q · of the divisor d1 into 36. Following this we generate a list of
divisors of q (divs, which of course also divide 36). We now come to the func-
tion try-div ¸, which does the bulk of the work. Then we get the first divisor
(d2) of q ¹ and generate the third divisor (d3) by dividing q by d2. These divi-
sors (d1, d2, and d3) are tested to see whether a satisfactory triple is formed
(that is to ensure uniqueness, we make sure that they form an ordered se-
quence º) . If so, it’s added to the list of triples ». Testing other divisors re-
sumes on the following line. Running this program produces the following
sets of triples: {1,1,36}, {1,2,18}, {1,3,12}, {1,4,9}, {2,2,9}, {1,6,6}, {2,3,6},
{3,3,4}.

This alone, of course, does not allow the salesman to determine the ages
of the children. The second hint is that the sum of the ages equals the num-
ber on the house next door. Again we make use of Racket to generate the
required sums.

(for ([triple triples]) (printf "~a: ~a\n" triple (apply + triple)))

Function Fundamentals 73

Racket Programming the Fun Way (Sample) © 2021 by James W. Stelly

From this, we have the following.

1 + 1 + 36 = 38

1 + 2 + 18 = 21

1 + 3 + 12 = 16

1 + 4 + 9 = 14

2 + 2 + 9 = 13

1 + 6 + 6 = 13

2 + 3 + 6 = 11

3 + 3 + 4 = 10

After looking at the number of the house next door, the salesman still
does not know the ages. This means the ages must have been one of the two
sets of numbers that sum to 13 (otherwise he would have known which set
to select). Since the woman said “The oldest one plays the piano,” the only
possibility is the set of ages {2, 2, 9}, since the set {1, 6, 6} would imply two
oldest.

Summary
In this chapter, we introduced Racket’s basic programming constructs and
applied them to a variety of problem domains. So far our explorations have
been confined to getting output in a textual form. Next, we will see how to
add some bling to our applications by generating some graphical output.

74 Chapter 3

Racket Programming the Fun Way (Sample) © 2021 by James W. Stelly

