
6
M e t h o d L o o k u p a n d

C o n s t a n t L o o k u p

As we saw in Chapter 5, classes play an important role
in Ruby, holding method definitions and constant
values, among other things. We also learned how
Ruby implements inheritance using the super pointer
in each RClass structure.

In fact, as your program grows, you might imagine it organized by class
and superclass, creating a kind of giant tree structure. At the base is the
Object class (or, actually, the internal BasicObject class). This class is Ruby’s
default superclass, and all of your classes appear somewhere higher up in
the tree, branching out in different directions. In this chapter we’ll study
how Ruby uses this superclass tree to look up methods. When you write
code that calls a method, Ruby looks through this tree in a very precise
manner. We’ll step through a concrete example to see the method lookup
process in action.

Ruby Under a Microscope
© 2013 by Pat Shaughnessy

134 Chapter 6

Later in this chapter we’ll learn another way to visualize your Ruby
code. Every time you create a new class or module, Ruby adds a new scope
to a different tree, a tree based on the syntactical structure of your pro-
gram. The trunk of this tree is the top-level scope, or the beginning of your
Ruby code file where you start typing. As you define more and more highly
nested modules and classes, this tree would grow higher and higher as well.
We’ll learn how this syntax, or namespace, tree allows Ruby to find constant
definitions, just as the superclass tree allows Ruby to find methods.

But before we get to method and constant lookup, let’s get started with
a look at Ruby modules. What are modules? How are they different from
classes? What happens when you include a module into a class?

Road m ap

How Ruby Implements Modules . 135

Modules Are Classes .135

Including a Module into a Class . 136

Ruby’s Method Lookup Algorithm . 138

A Method Lookup Example . 139

The Method Lookup Algorithm in Action 140

Multiple Inheritance in Ruby . 141

The Global Method Cache . 142

The Inline Method Cache . . 143

Clearing Ruby’s Method Caches .143

Including Two Modules into One Class . 144

Including One Module into Another . 145

A Module#prepend Example . 146

How Ruby Implements Module#prepend .150

Experiment 6-1: Modifying a Module After Including It 151

Classes See Methods Added to a Module Later 152

Classes Don’t See Submodules Included Later 152

Included Classes Share the Method Table with the
Original Module . 153

A Close Look at How Ruby Copies Modules 154

Ruby Under a Microscope
© 2013 by Pat Shaughnessy

Method Lookup and Constant Lookup 135

How Ruby Implements Modules
As you may know, modules are very similar to classes in Ruby. You can create
a module just as you create a class—by typing the module keyword followed
by a series of method definitions. But while modules are similar to classes,
they are handled differently by Ruby in three important ways:

•	 Ruby doesn’t allow you to create objects directly from modules. In prac-
tice this means that you can’t call the new method on a module because
new is a method of Class, not of Module.

•	 Ruby doesn’t allow you to specify a superclass for a module.

•	 In addition, you can include a module into a class using the include
keyword.

But what are modules exactly? How does Ruby represent them internally?
Does it use an RModule structure? And what does it mean to “include” a mod-
ule into a class?

Modules Are Classes
As it turns out, internally Ruby implements modules as classes. When you
create a module, Ruby creates another RClass/rb_classext_struct structure
pair, just as it would for a new class. For example, suppose we define a new
module like this.

module Professor
end

Internally, Ruby would create a class, not a module! Figure 6-1 shows
how Ruby represents a module internally.

Constant Lookup . 155

Finding a Constant in a Superclass . 156

How Does Ruby Find a Constant in the Parent Namespace? 157

Lexical Scope in Ruby . 158

Creating a Constant for a New Class or Module 159

Finding a Constant in the Parent Namespace Using
Lexical Scope . 160

Ruby’s Constant Lookup Algorithm . 162

Experiment 6-2: Which Constant Will Ruby Find First? 162

Ruby’s Actual Constant Lookup Algorithm 163

Summary . 165

Ruby Under a Microscope
© 2013 by Pat Shaughnessy

136 Chapter 6

RClass: module

m_tbl

RBasic

flags

klassVALUE

ptr

Method table

Class pointer

rb_classext_struct

super

iv_tbl

const_tbl

Superclass pointer

Class-level
instance variables

Constants table

origin
Used by
Module#prepend

Figure 6-1: The portion of Ruby’s class structures that’s used for modules

In this figure I show Ruby’s RClass structure again. However, I’ve
removed some of the values from the diagram because modules don’t use
all of them. Most importantly, I removed iv_index_tbl because you can’t
create object instances of a module—in other words, you can’t call the new
method on a module. This means there are no object-level attributes to
keep track of. I also removed the refined_class and allocator values because
modules don’t use them either. I’ve left the super pointer because modules
do have superclasses internally even though you aren’t allowed to specify
them yourself.

A technical definition of a Ruby module (ignoring the origin value for
now) might look like this:

A Ruby module is a Ruby object that also contains method defini-
tions, a superclass pointer, and a constants table.

Including a Module into a Class
The real magic behind modules happens when you include a module into a
class, as shown in Listing 6-1.

module Professor
end

Ruby Under a Microscope
© 2013 by Pat Shaughnessy

Method Lookup and Constant Lookup 137

class Mathematician < Person
 include Professor
end

Listing 6-1: Including a module into a class

When we run Listing 6-1, Ruby creates a copy of the RClass structure
for the Professor module and uses it as the new superclass for Mathematician.
Ruby’s C source code refers to this copy of the module as an included class.
The superclass of the new copy of Professor is set to the original superclass
of Mathematician, which preserves the superclass, or ancestor chain. Figure 6-2
summarizes this somewhat confusing state of affairs.

RClass
super

When you include a module,
Ruby inserts a copy of the module

into your class’s superclass linked list:

RClass
super

RClass
super

RClass
super

Mathematician

Person

Another
Superclass

Object

RClass
super

Included
class

RClass
super

Professor

copy

Ruby saves your class’s ancestors
using a linked list of super pointers:

Figure 6-2: Including a module into a class

You can see the Mathematician class at the top-left corner of Figure 6-2.
Below it and along the left side, you see its superclass chain: Mathematician’s
superclass is Person, whose superclass is Another Superclass, and so on. The
super pointer in each RClass structure (actually, each rb_classext_struct
structure) points down to the next superclass.

Now to the Professor module on the right side of Figure 6-2. When
we include this module into the Mathematician class, Ruby changes the
super pointer of Mathematician to point to a copy of Professor and the super
pointer of this copy of Professor to point to Person, the original superclass
of Mathematician.

Ruby Under a Microscope
© 2013 by Pat Shaughnessy

138 Chapter 6

NOTE 	 Ruby implements extend in exactly the same way, except the included class becomes
the superclass of the target class’s class, or metaclass. Thus, extend allows you to add
class methods to a class.

Ruby’s Method Lookup Algorithm
Whenever you call a method, whenever you “send a message to a receiver”
to use object-oriented programming jargon, Ruby needs to determine
which class implements that method. Sometimes this is obvious: The
receiver’s class might implement the target method. However, this isn’t
often the case. It might be that some other module or class in your system
implements the method. Ruby uses a very precise algorithm to search
through the modules and classes in your program in a particular order to
find the target method. An understanding of this process is essential for
every Ruby developer, so let’s take a close look at it.

The flowchart in Figure 6-3 gives you a graphical picture of Ruby’s
method lookup algorithm.

method
found?

look through
method table in

current class

set current
class to

superclass of
current class

call method

set current
class to
receiver

found

not
found

Figure 6-3: Ruby’s method lookup algorithm

This algorithm is remarkably simple, isn’t it? As you can see, Ruby simply
follows the super pointers until it finds the class or module that contains

Ruby Under a Microscope
© 2013 by Pat Shaughnessy

Method Lookup and Constant Lookup 139

the target method. You might imagine that Ruby would have to distinguish
between modules and classes using some special logic—that it would have
to handle the case where there are multiple included modules, for example.
But no, it’s just a simple loop on the super pointer linked list.

A Method Lookup Example
In a moment we’ll walk through this algorithm to be sure we understand it
thoroughly. But first, let’s set up an example we can use that has a class, a
superclass, and a module. This will allow us to see how classes and modules
work together inside of Ruby.

Listing 6-2 shows the Mathematician class with the accessor methods
first_name and last_name.

class Mathematician
 attr_accessor :first_name
 attr_accessor :last_name
end

Listing 6-2: A simple Ruby class, repeated from Listing 5-1

Now let’s introduce a superclass. In Listing 6-3, at u we set Person as the
superclass of Mathematician.

class Person
end

u class Mathematician < Person
 attr_accessor :first_name
 attr_accessor :last_name
end

Listing 6-3: Person is the superclass of Mathematician.

We’ll move the name attributes to the Person superclass because not only
mathematicians have names. We end up with the code shown in Listing 6-4.

class Person
 attr_accessor :first_name
 attr_accessor :last_name
end

class Mathematician < Person
end

Listing 6-4: Now the name attributes are in the Person superclass.

Finally, we’ll include the Professor module into the Mathematician class
at u. Listing 6-5 shows the completed example.

Ruby Under a Microscope
© 2013 by Pat Shaughnessy

140 Chapter 6

class Person
 attr_accessor :first_name
 attr_accessor :last_name
end

module Professor
 def lectures; end
end

class Mathematician < Person
u include Professor

end

Listing 6-5: Now we have a class that includes a module and has a superclass.

The Method Lookup Algorithm in Action
Now that we have our example set up, we’re ready to see how Ruby finds a
method we call. Every time you call any method in one of your programs,
Ruby follows the same process we’re about to see here.

To kick things off, let’s call a method. Using this code, we create a new
mathematician object and set its first name:

ramanujan = Mathematician.new
ramanujan.first_name = "Srinivasa"

To execute this code, Ruby needs to find the first_name= method. Where
is this method? How does Ruby find it exactly?

First, Ruby gets the class from the ramanujan object via the klass pointer,
as shown in Figure 6-4.

RObject
klass

RClass
m_tbl

Mathematician

ramanujan

Figure 6-4: Ruby first looks for the first_name= method in the object’s class.

Next, Ruby checks to see whether Mathematician implements first_name=
directly by looking through its method table, as shown in Figure 6-5.

[empty]
RClass

m_tbl

Mathematician

Figure 6-5: Ruby first looks for first_name= in the class’s
method table.

Ruby Under a Microscope
© 2013 by Pat Shaughnessy

Method Lookup and Constant Lookup 141

Because we’ve moved all of the methods down into the Person super-
class, the first_name= method is no longer there. Ruby continues through
the algorithm and gets the superclass of Mathematician using the super
pointer, as shown in Figure 6-6.

RClass
super

RClass
m_tbl

Copy of
Professor moduleMathematician

lectures

Figure 6-6: The superclass of Mathematician is the copy of the Professor module.

Remember, this is not the Person class; it’s the included class, which is a
copy of the Professor module. Because it’s a copy, Ruby looks through the
method table for Professor. Recall from Listing 6-5 that Professor contains
only the single method lectures. Ruby won’t find the first_name= method.

NOTE 	 Notice that because Ruby inserts modules above the original superclass in the super-
class chain, methods in an included module override methods present in a superclass.
In this case, if Professor also had a first_name= method, Ruby would call it and not
the method in Person.

Because Ruby doesn’t find first_name= in Professor, it continues to iterate
over the super pointers, but this time it uses the super pointer in Professor, as
shown in Figure 6-7.

RClass
super

RClass
m_tbl

Copy of
Professor module first_name=

Person

first_name

last_name=

last_name

Figure 6-7: The Person class is the superclass of the included copy of the Professor module.

Note that the superclass of the Professor module—or more precisely,
the superclass of the included copy of the Professor module—is the Person
class. This was the original superclass of Mathematician. Finally, Ruby sees the
first_name= method in the method table for Person. Because it has identified
which class implements first_name=, Ruby can now call the method using the
method dispatch process we learned about in Chapter 4.

Multiple Inheritance in Ruby
What is most interesting here is that internally, Ruby implements module
inclusion using class inheritance. Essentially, there is no difference between
including a module and specifying a superclass. Both procedures make new

Ruby Under a Microscope
© 2013 by Pat Shaughnessy

142 Chapter 6

methods available to the target class, and both use the class’s super pointer
internally. Including multiple modules into a Ruby class is equivalent to
specifying multiple superclasses.

Still, Ruby keeps things simple by enforcing a single list of ancestors.
While including multiple modules does create multiple superclasses inter-
nally, Ruby maintains them in a single list. The result? As a Ruby developer,
you get the benefits of multiple inheritance (adding new behavior to a class
from as many different modules as you would like) while keeping the sim-
plicity of the single inheritance model.

Ruby benefits from this simplicity as well! By enforcing this single list
of superclass ancestors, its method lookup algorithm can be very simple.
Whenever you call a method on an object, Ruby simply has to iterate through
the superclass linked list until it finds the class or module that contains the
target method.

The Global Method Cache
Depending on the number of superclasses in the chain, method lookup
can be time consuming. To alleviate this, Ruby caches the result of a
lookup for later use. It records which class or module implemented the
method that your code called in two caches: a global method cache and
an inline method cache.

Let’s learn about the global method cache first. Ruby uses the global
method cache to save a mapping between the receiver and implementer
classes, as shown in Table 6-1.

Table 6-1: An Example of What the Global Method Cache Might Contain

klass defined_class

Fixnum#times Integer#times

Object#puts BasicObject#puts

etc... etc...

The left column in Table 6-1, klass, shows the receiver class; this is the
class of the object you call a method on. The right column, defined_class,
records the result of the method lookup. This is the implementer class, or
the class that implements the method Ruby was looking for.

Let’s take the first row of Table 6-1 as an example; it reads Fixnum#times
and Integer#times. In the global method cache, this information means
that Ruby’s method lookup algorithm started to look for the times method
in the Fixnum class but actually found it in the Integer class. In a similar way,
the second row of Table 6-1 means that Ruby started to look for the puts
method in the Object class but actually found it in the BasicObject class.

The global method cache allows Ruby to skip the method lookup pro-
cess the next time your code calls a method listed in the first column of the
global cache. After your code has called Fixnum#times once, Ruby knows that
it can execute the Integer#times method, regardless of from where in your
program you call times.

Ruby Under a Microscope
© 2013 by Pat Shaughnessy

Method Lookup and Constant Lookup 143

The Inline Method Cache
Ruby uses another type of cache, called an inline method cache, to speed up
method lookup even more. The inline cache saves information alongside
the compiled YARV instructions that Ruby executes (see Figure 6-8).

putobject 10
send <callinfo!mid:times, argc:0,
 block:block in <compiled>> Integer#times

Figure 6-8: The YARV instructions on the left should call the implementation of
Integer#times on the right.

On the left side of this figure, we see the compiled YARV instructions
that correspond to the code 10.times do... end. First, putobject 10 pushes
the Fixnum object 10 onto YARV’s internal stack. This is the receiver of the
times method call. Next, send calls the times method, as indicated by the text
between the angle brackets.

The rectangle on the right side of the figure represents the Integer#times
method, which Ruby found using its method lookup algorithm (after look-
ing up the times method among the Fixnum class and its superclasses). Ruby’s
inline cache enables it to save the mapping between the times method
call and the Integer#times implementation right in the YARV instructions.
Figure 6-9 shows how the inline cache might look.

putobject 10

send Integer#times Integer#times

Figure 6-9: The inline cache saves the result of method lookup next to the send
instruction that needs to call the method.

If Ruby executes this line of code again, it will immediately execute
Integer#times without having to call the method lookup algorithm.

Clearing Ruby’s Method Caches
Because Ruby is a dynamic language, you can define new methods when
you like. In order for you to be able to do so, Ruby must clear the global and
inline method caches, because the results of method lookups might change.
For example, if we add a new definition of the times method to the Fixnum
or Integer classes, Ruby would need to call the new times method, not the
Integer#times method that it was previously using.

In effect, whenever you create or remove (undefine) a method, include
a module into a class, or perform a similar action, Ruby clears the global
and inline method caches, forcing a new call to the method lookup code.
Ruby also clears the cache when you use refinements or employ other types

Ruby Under a Microscope
© 2013 by Pat Shaughnessy

144 Chapter 6

of metaprogramming. In fact, clearing the cache happens quite frequently
in Ruby. The global and inline method caches might remain valid for only a
short time.

Including Two Modules into One Class
While Ruby’s method lookup algorithm may be simple, the code that it
uses to include modules is not. As we saw above, when you include a mod-
ule into a class, Ruby inserts a copy of the module into the class’s ancestor
chain. This means that if you include two modules, one after the other, the
second module appears first in the ancestor chain and is found first by Ruby’s
method lookup logic.

For example, suppose we include two modules into Mathematician, as
shown in Listing 6-6.

class Mathematician < Person
 include Professor
 include Employee
end

Listing 6-6: Including two modules into one class

Now Mathematician objects have methods from the Professor module, the
Employee module, and the Person class. But which methods does Ruby find
first and which methods override which?

Figures 6-10 and 6-11 show the order of precedence. Because we include
the Professor module first, Ruby inserts the included class corresponding
to the Professor module as a superclass first.

RClass
super

RClass
super

Mathematician

Person

RClass
super

Included
class

RClass
super

Professor

copy

Figure 6-10: In Listing 6-6 we include the Professor module first.

Now, when we include the Employee module, the included class for the
Employee module is inserted above the included class for the Professor mod-
ule, as shown in Figure 6-11.

Ruby Under a Microscope
© 2013 by Pat Shaughnessy

Method Lookup and Constant Lookup 145

RClass
super

RClass
super

Mathematician

Included class
for Professor

RClass
super

Included class
for Employee

RClass
super

Employee

copy

RClass
superPerson

Figure 6-11: In Listing 6-6 we include the Employee module second, after including
Professor.

Because Employee appears above Professor in the superclass chain, as
shown along the left side of Figure 6-11, methods from Employee override
methods from Professor, which in turn override methods from Person, the
actual superclass.

Including One Module into Another
Modules don’t allow you to specify superclasses. For example, we can’t write
the following:

module Professor < Employee
end

But we can include one module into another, as shown in Listing 6-7.

module Professor
 include Employee
end

Listing 6-7: One module including another module

What if we include Professor, a module with other modules included
into it, into Mathematician? Which methods will Ruby find first? As shown in
Figure 6-12, when we include Employee into Professor, Ruby creates a copy of
Employee and sets it as the superclass of Professor.

Ruby Under a Microscope
© 2013 by Pat Shaughnessy

146 Chapter 6

RClass

super

Professor

RClass
super

Included class
for Employee

RClass
super

Employee

copy

Figure 6-12: When you include one module
into another, Ruby sets it as the superclass
of the target module.

Modules can’t have a superclass in your code, but they can inside Ruby
because Ruby represents modules with classes internally!

Finally, when we include Professor into Mathematician, Ruby iterates over
the two modules and inserts them both as superclasses of Mathematician, as
shown in Figure 6-13.

RClass
super

RClass
super

Mathematician

Person

RClass
super

RClass
super

Included
class #2

for Employee

Included class
for Professor

RClass
super

Professor

RClass
super

Included class
for Employee

RClass
super

Employee

copy

copy copy

Figure 6-13: Including two modules into a class at the same time

Now Ruby will find the methods in Professor first and Employee second.

A Module#prepend Example
In Figure 6-2 we saw how Ruby includes a module into a class. Specifically,
we saw how Ruby inserts a copy of the module’s RClass structure into the
superclass chain for the target class, between the class and its superclass.

Ruby Under a Microscope
© 2013 by Pat Shaughnessy

Method Lookup and Constant Lookup 147

Beginning with version 2.0, Ruby now allows you to “prepend” a mod-
ule into a class. We’ll use the Mathematician class to explain, as shown in
Listing 6-8.

class Mathematician
u attr_accessor :name

end

poincaré = Mathematician.new
poincaré.name = "Henri Poincaré"

v p poincaré.name
 => "Henri Poincaré"

Listing 6-8: A simple Ruby class with a name attribute

First, we define the Mathematician class with just the single attribute name
at u. Then, we create an instance of Mathematician, set its name, and display
it at v.

Now suppose we make all of our mathematicians professors by includ-
ing the Professor module into the Mathematician class again, as shown at u in
Listing 6-9.

module Professor
end

class Mathematician
 attr_accessor :name

u include Professor
end

Listing 6-9: Including the Professor module into the Mathematician class

Figure 6-14 shows the superclass chain for Mathematician and Professor.

RClass
super

RClass
super

Mathematician

Included class
for Professor

RClass
superObject

Figure 6-14: Professor is a superclass
of Mathematician.

Ruby Under a Microscope
© 2013 by Pat Shaughnessy

148 Chapter 6

If we decide to display the title Prof. in front of each mathematician’s
name, we can just add that behavior to the Mathematician class, as shown in
Listing 6-10.

module Professor
end

class Mathematician
 attr_writer :name
 include Professor

u def name
 "Prof. #{@name}"
 end
end

Listing 6-10: An ugly way to display the Prof. title before each mathematician’s name

But this is a very ugly solution: The Mathematician class has to do the work
of displaying the professor title at u. What if other classes include Professor?
Shouldn’t they display the Prof. title also? If Mathematician contains the code
for showing Prof., then any other classes that include Professor would be
missing this code.

It makes more sense to include the code for displaying the title in
the Professor module, as shown in Listing 6-11. This way every class that
includes Professor will be able to display the title Prof. along with its
class name.

module Professor
u def name

 "Prof. #{super}"
 end
end

class Mathematician
 attr_accessor :name

v include Professor
end

poincaré = Mathematician.new
poincaré.name = "Henri Poincaré"

w p poincaré.name
 => "Henri Poincaré"

Listing 6-11: How can we get Ruby to call the module’s name method?

At u we define a name method inside Professor that will display the Prof.
title before the actual name (assuming that name is defined in a superclass).
At v we include Professor into Mathematician. Finally, at w we call the name
method, but we get the name Henri Poincaré without the Prof. title. What
went wrong?

Ruby Under a Microscope
© 2013 by Pat Shaughnessy

Method Lookup and Constant Lookup 149

The problem, as shown in Figure 6-14, is that Professor is a super-
class of Mathematician, not the other way around. This means when I
call poincaré.name at w in Listing 6-11, Ruby finds the name method from
Mathematician, not from Professor. Figure 6-15 shows visually what Ruby’s
method lookup algorithm finds when I call poincaré.name.

RClass
super

RClass
super

Mathematician

Included class
for Professor

RClass
superObject

def name
 "Prof. #{super}"
end

attr_accessor :name

Figure 6-15: Ruby calls the attr_accessor method before finding
the name method from Professor.

When we call name at w in Listing 6-11, Ruby finds the first name method
that it sees in the superclass chain starting from the top and moving down.
As you can see in Figure 6-15, the first name method is the simple attr_accessor
method in Mathematician.

However, if we prepend Professor instead of including it, we get the
behavior we were hoping for, as shown in Listing 6-12.

module Professor
 def name
 "Prof. #{super}"
 end
end

class Mathematician
 attr_accessor :name

u prepend Professor
end

poincaré = Mathematician.new
poincaré.name = "Henri Poincaré"

v p poincaré.name
 => "Prof. Henri Poincaré"

Listing 6-12: Using prepend, Ruby finds the module’s name method first.

The only difference here is the use of prepend at u.

Ruby Under a Microscope
© 2013 by Pat Shaughnessy

150 Chapter 6

How Ruby Implements Module#prepend
When you prepend a module to a class, Ruby places it before the class in
the superclass chain, as shown in Figure 6-16.

def name
 "Prof. #{super}"
end

RClass
super

RClass
super

Included class
for Professor

Mathematician

RClass
superObject

attr_accessor :name

Figure 6-16: Using prepend, Ruby places the module before the
target class in the superclass chain.

But there is something odd here. When we call name on a mathematician
object, how does Ruby find the module’s method? That is, at v in Listing 6-12,
we’re calling name on the Mathematician class, not on the Professor module.
Ruby should find the simple attr_accessor method, not the version from the
module, but that’s not the case. Does Ruby look backward up the superclass
chain to find the module? If so, how does it do this when the super pointers
point down?

The secret is that internally Ruby uses a trick to make it seem as if
Mathematician is the superclass of Professor when it’s not, as shown in Figure 6-17.
Prepending a module is like including a module. Mathematician is at the top
of the superclass chain, and moving down the chain, we see that Ruby still
sets the included class for Professor to be the superclass of Mathematician.

But below Professor in Figure 6-17 we see something new, the origin class
for Mathematician. This is a new copy of Mathematician that Ruby creates to
make prepend work.

When you prepend a module, Ruby creates a copy of the target class
(called the origin class internally) and sets it as the superclass of the prepended
module. Ruby uses the origin pointer that we saw in the rb_classext_struct
structure in Figures 6-1 and 6-2 to track this new origin copy of the class.
In addition, Ruby moves all of the methods from the original class to the
origin class, which means that those methods may now be overridden by
methods with the same name in the prepended module. In Figure 6-17 you
can see that Ruby moved the attr_accessor method down from Mathematician
to the origin class.

Ruby Under a Microscope
© 2013 by Pat Shaughnessy

Method Lookup and Constant Lookup 151

RClass
super

RClass
super

Included class
for Professor

Mathematician
“origin” class

RClass
superObject

RClass

super

Mathematician origin

def name

 "Prof. #{super}"
end

attr_accessor :name

Figure 6-17: Ruby creates a copy of the target class and sets it as
the superclass of the prepended module.

Experiment 6-1: Modifying a Module After
Including It
Following a suggestion by Xavier Noria, this experiment will explore what
happens when you modify a module once it’s been included into a class.
We’ll use the same Mathematician class and the Professor module but with dif-
ferent methods, as shown in Listing 6-13.

module Professor
 def lectures; end
end

class Mathematician
u attr_accessor :first_name

 attr_accessor :last_name
v include Professor

end

Listing 6-13: Another example of including a module into a class

Ruby Under a Microscope
© 2013 by Pat Shaughnessy

152 Chapter 6

This time the Mathematician class contains the accessor methods at u for
@first_name and @last_name, and we’ve included the Professor module again
at v. If we inspect the methods of a mathematician object, as shown in
Listing 6-14, we should see the attribute methods, such as first_name= and
the lectures method from Professor.

fermat = Mathematician.new
fermat.first_name = 'Pierre'
fermat.last_name = 'de Fermat'

p fermat.methods.sort
 => [... :first_name, :first_name=, ... :last_name, :last_name=, :lectures ...]

Listing 6-14: Inspecting the methods of a mathematician object

No surprise; we see all the methods.

Classes See Methods Added to a Module Later
Now let’s add some new methods to the Professor module after including it
into the Mathematician class. Does Ruby know that the new methods should
be added to Mathematician as well? Let’s find out by running Listing 6-15
right after Listing 6-14 finishes.

module Professor
 def primary_classroom; end
end

p fermat.methods.sort
u => [... :first_name, :first_name=, ... :last_name, :last_name=, :lectures,

... :primary_classroom, ...]

Listing 6-15: Adding a new method to Professor after including it into Mathematician

As you can see, at u we get all the methods, including the new
primary_classroom method that was added to Professor after it was included
into Mathematician. No surprise here either. Ruby is one step ahead of us.

Classes Don’t See Submodules Included Later
Now for one more test. What if we reopen the Professor module and include
yet another module into it using Listing 6-16?

module Employee
 def hire_date; end
end

module Professor
 include Employee
end

Listing 6-16: Including a new module into Professor after it was included into Mathematician

Ruby Under a Microscope
© 2013 by Pat Shaughnessy

Method Lookup and Constant Lookup 153

This is getting confusing, so let’s review what we did in Listings 6-13
and 6-16:

•	 In Listing 6-13 we included the Professor module into the Mathematician
class.

•	 Then, in Listing 6-16 we included the Employee module into the Professor
module. Therefore, the methods of the Employee module should now be
available on a mathematician object.

Let’s see whether Ruby works as expected:

p fermat.methods.sort
 => [... :first_name, :first_name=, ... :last_name, :last_name=, :lectures ...]

It didn’t work! The hire_date method is not available in the fermat object.
Including a module into a module already included into a class does not
affect that class.

As we’ve learned how Ruby implements modules, this fact shouldn’t
be too hard to understand. Including Employee into Professor changes the
Professor module, not the copy of Professor that Ruby created when we
included it into Mathematician, as shown in Figure 6-18.

RClass
super

Professor

RClass
super

Included class
for Employee

RClass
super

Employee

RClass
super

Mathematician

RClass
super

Included class
for Professor

(copied earlier)

copy

Figure 6-18: The Employee module is included into the original Professor module,
not the included copy used by Mathematician.

Included Classes Share the Method Table with the Original Module
But what about the primary_classroom method we added in Listing 6-15? How
was Ruby able to include the primary_classroom method into Mathematician
even though we added it to Professor after we included Professor into
Mathematician? Figure 6-18 shows that Ruby created a copy of the Professor
module before we added the new method to it. But how does the fermat
object get the new method?

Ruby Under a Microscope
© 2013 by Pat Shaughnessy

154 Chapter 6

As it turns out, when you include a module, Ruby copies the RClass
structure, not the underlying method table, as shown in Figure 6-19.

RClass
super

RClass

Mathematician

Superclass

Included
class Professor

lectures
super

RClass
super
m_tbl

RClass
super
m_tbl

Method table
(not copied)

primary_classroom

copy

Figure 6-19: Ruby doesn’t copy the method table when you include a module.

Ruby doesn’t copy the method table for Professor. Instead, it simply sets
m_tbl in the new copy of Professor, the “included class,” to point to the same
method table. This means that modifying the method table by reopening
the module and adding new methods will change both the module and any
classes into which it was already included.

A Close Look at How Ruby Copie s Modul e s

By looking at Ruby’s C source code directly, you’ll gain a precise understanding
of how Ruby copies modules when you include them and why Ruby behaves as
you’ll see in this experiment. You’ll find the C function that Ruby uses to make a
copy of a module in the class.c file. Listing 6-17 shows a portion of the function
rb_include_class_new.

VALUE
u rb_include_class_new(VALUE module, VALUE super)

{
v VALUE klass = class_alloc(T_ICLASS, rb_cClass);

 --snip--
w RCLASS_IV_TBL(klass) = RCLASS_IV_TBL(module);

 RCLASS_CONST_TBL(klass) = RCLASS_CONST_TBL(module);
x RCLASS_M_TBL(klass) = RCLASS_M_TBL(RCLASS_ORIGIN(module));
y RCLASS_SUPER(klass) = super;

 --snip--
 return (VALUE)klass;
}

Listing 6-17: A portion of the rb_include_class_new C function, from class.c

Ruby Under a Microscope
© 2013 by Pat Shaughnessy

Method Lookup and Constant Lookup 155

At u Ruby passes in module (the target module to copy) and super (the super-
class to use for the new copy of module). By specifying a particular superclass, Ruby
inserts the new copy into the superclass chain at a particular place. If you search
class.c for rb_include_class_new, you’ll find that Ruby calls it from another C function,
include_modules_at, which handles the complex internal logic that Ruby uses to
include modules.

At v Ruby calls class_alloc to create a new RClass structure and saves a refer-
ence to it in klass. Notice the first parameter to class_alloc is the value T_ICLASS,
which identifies the new class as an included class. Ruby uses T_ICLASS throughout its
C source code when dealing with included classes.

At w Ruby copies a series of pointers from the original module’s RClass structure
over to the new copy using three C macros that operate on RClass.

•	 RCLASS_IV_TBL gets or sets a pointer to the instance variable table.

•	 RCLASS_CONST_TBL gets or sets a pointer to the constant variable table.

•	 RCLASS_M_TBL gets or sets a pointer to the method table.

For example, RCLASS_IV_TBL(klass) = RCLASS_IV_TBL(module) sets the instance
variable table pointer in klass (the new copy) to the instance variable pointer from
module (the target module to copy). Now klass and module use the same instance
variables. In the same way, klass shares constant and method tables with module.
Because they share the same method table, adding a new method to module also
adds it to klass. This explains the behavior we saw in Experiment 6-1: Adding a
method to a module also adds it to each class that includes that module.

Also note at x Ruby uses RCLASS_ORIGIN(module), not module. Normally
RCLASS_ORIGIN(module) is the same as module; however, if you have earlier used
prepend in module, then RCLASS_ORIGIN(module) instead returns the origin class for
module. Recall that when you call Module#prepend, Ruby makes a copy (the origin
class) of the target module and inserts the copy into the superclass chain. By using
RCLASS_ORIGIN(module), Ruby gets the original module’s method table, even if you
prepended it with a different module.

Finally, at y Ruby sets the superclass pointer of klass to the specified superclass
and returns it.

Constant Lookup
We’ve learned about Ruby’s method lookup algorithm and how it searches
through the superclass chain to find the right method to call. Now we’ll
turn our attention to a related process: Ruby’s constant lookup algorithm,
or the process Ruby uses to find a constant value that you refer to in your code.

Clearly method lookup is central to the language, but why study con-
stant lookup? As Ruby developers, we don’t use constants very often in our
code—certainly not as often as we use classes, modules, variables, and blocks.

Ruby Under a Microscope
© 2013 by Pat Shaughnessy

156 Chapter 6

One reason is that constants, like modules and classes, are central to
the way Ruby works internally and to the way we use Ruby. Whenever you
define a module or class, you also define a constant. And whenever you refer
to or use a module or class, Ruby has to look up the corresponding constant.

The second reason has to do with the way Ruby finds a constant that
you refer to in your code. As you may know, Ruby finds constants defined
in a superclass, but it also finds constants in the surrounding namespace
or syntactical scope of your program. Studying how Ruby handles syntacti-
cal scope leads us to some important discoveries about how Ruby works
internally.

Let’s begin by reviewing how constants work in Ruby.

Finding a Constant in a Superclass
One way that Ruby searches for the definition of a constant you refer to
is by using the superclass chain just as it would look for a method defini-
tion. Listing 6-18 shows an example of one class finding a constant in its
superclass.

class MyClass
u SOME_CONSTANT = "Some value..."

end

v class Subclass < MyClass
 p SOME_CONSTANT
end

Listing 6-18: Ruby finds constants you define in a superclass.

In Listing 6-18 we define MyClass with a single constant, SOME_CONSTANT
at u. Then we create Subclass and set MyClass as a superclass at v. When we
print the value of SOME_CONSTANT, Ruby uses the same algorithm it uses to find
a method, as shown in Figure 6-20.

class Subclass < MyClass
 p SOME_CONSTANT
end

class MyClass
 SOME_CONSTANT = "Some value..."
end

RClass: MyClass

SOME_CONSTANT

etc...

constants:

RClass: Subclass

MyClass

superclass:

Figure 6-20: Ruby searches for constants using the superclass chain,
just as it does with methods.

Ruby Under a Microscope
© 2013 by Pat Shaughnessy

Method Lookup and Constant Lookup 157

Here, on the right, you see the code from Listing 6-18 and, on the left,
the RClass structures that correspond to each of the two classes we created.
At the top left of the figure, you see MyClass, which contains the value of
SOME_CONSTANT in its constants table. Below that is Subclass. When we refer
to SOME_CONSTANT from inside Subclass, Ruby uses the super pointer to find
MyClass and the value of SOME_CONSTANT.

How Does Ruby Find a Constant in the Parent Namespace?
Listing 6-19 shows another way to define a constant.

u module Namespace
v SOME_CONSTANT = "Some value..."
w class Subclass
x p SOME_CONSTANT

 end
end

Listing 6-19: Using a constant defined in the surrounding namespace

Using idiomatic Ruby style, we create a module called Namespace at u.
Then, inside this module, we declare the same SOME_CONSTANT value at v.
Next, we declare Subclass inside Namespace at w, and we’re able to refer to
and print the value of SOME_CONSTANT, just as in Listing 6-18.

But how does Ruby find SOME_CONSTANT in Listing 6-19 when we display it
at x? Figure 6-21 shows the problem.

module Namespace

 class Subclass
 p SOME_CONSTANT
 end

end

RClass: Namespace module

SOME_CONSTANT

etc...

constants:

RClass: Subclass

Object

superclass:

?

 SOME_CONSTANT = "Some value..."

Figure 6-21: How does Ruby find constants in the surrounding namespace?

Ruby Under a Microscope
© 2013 by Pat Shaughnessy

158 Chapter 6

On the left side of this figure are two RClass structures, one for the
Namespace module and one for Subclass. Notice that Namespace is not a super-
class of Subclass; the super pointer in Subclass refers to the Object class, Ruby’s
default superclass. Then how does Ruby find SOME_CONSTANT when we refer to
it inside of Subclass? Somehow Ruby allows you to search up the “namespace
chain” to find constants. This behavior is called using lexical scope to find
a constant.

Lexical Scope in Ruby
Lexical scope refers to a section of code within the syntactical structure of
your program, rather than within the superclass hierarchy or some other
scheme. For example, suppose we use the class keyword to define MyClass,
as shown in Listing 6-20.

class MyClass
 SOME_CONSTANT = "Some value..."
end

Listing 6-20: Defining a class with the class keyword

This code tells Ruby to create a new copy of the RClass structure, but
it also defines a new scope or syntactical section of your program. This
is the area between the class and end keywords, as shown with shading in
Figure 6-22.

class MyClass

 SOME_CONSTANT = "Some value..."

end

Figure 6-22: The class keyword creates
a class and a new lexical scope.

Think of your Ruby program as a series of scopes, one for each module
or class that you create and another for the default, top-level lexical scope.
To keep track of where this new scope lies inside your program’s lexical
structure, Ruby attaches a couple of pointers to the YARV instruction snip-
pet corresponding to the code it compiles inside this new scope, as shown
in Figure 6-23.

Ruby Under a Microscope
© 2013 by Pat Shaughnessy

Method Lookup and Constant Lookup 159

nd_clss

nd_next

class MyClass

 SOME_CONSTANT =

 "Some value..."

end

RClass: MyClass

SOME_CONSTANT

etc...

constants:

top level

Lexical Scope:

Figure 6-23: For each snippet of compiled code, Ruby uses pointers to track
the parent lexical scope and the current class or module.

This figure shows the lexical scope information attached to the right
side of the Ruby code. There are two important values here:

•	 First, the nd_next pointer is set to the parent or surrounding lexical
scope—the default or top-level scope in this case.

•	 Next, the nd_clss pointer indicates which Ruby class or module corre-
sponds to this scope. In this example, because we just defined MyClass
using the class keyword, Ruby sets the nd_clss pointer to the RClass
structure corresponding to MyClass.

Creating a Constant for a New Class or Module
Whenever you create a class or module, Ruby automatically creates a corre-
sponding constant and saves it in the class or module for the parent lexical
scope.

Let’s return to the “namespace” example from Listing 6-19. Figure 6-24
shows what Ruby does internally when you create MyClass inside Namespace.

RClass: Namespace
module

SOME_CONSTANT

MyClass

constants:

RClass: MyClass

top level

nd_clss

nd_next

module Namespace

 SOME_CONSTANT =

 "Some value..."

end

 class MyClass
 end

Lexical Scope:

Figure 6-24: When you declare a new class, Ruby creates a new RClass
structure and defines a new constant set to the new class’s name.

Ruby Under a Microscope
© 2013 by Pat Shaughnessy

160 Chapter 6

The dashed arrows in this figure show what actions Ruby takes when
you create a new class or module:

•	 First, Ruby creates a new RClass structure for the new module or class,
as shown at the bottom.

•	 Then, Ruby creates a new constant using the new module or class name
and saves it inside the class corresponding to the parent lexical scope.
Ruby sets the value of the new constant to be a reference or pointer to
the new RClass structure. In Figure 6-24 you can see that the MyClass
constant appears in the constants table for the Namespace module.

The new class also gets its own new lexical scope, as shown in Figure 6-25.

top level

RClass: MyClass

Lexical Scope:

RClass: Namespace
module

SOME_CONSTANT

MyClass

constants:
nd_clss

nd_next

module Namespace

 SOME_CONSTANT =

 "Some value..."

nd_clss

nd_next

 class MyClass

 end

end

Figure 6-25: A new class also gets its own lexical scope, shown here as the second
shaded rectangle.

This figure shows a new shaded rectangle for the new scope. Its nd_clss
pointer is set to the new RClass structure for MyClass, and its nd_next pointer
is set to the parent scope that corresponds to the Namespace module.

Finding a Constant in the Parent Namespace Using Lexical Scope
In Listing 6-21 let’s return to the example from Listing 6-19, which prints
the value of SOME_CONSTANT.

module Namespace
 SOME_CONSTANT = "Some value..."
 class Subclass

u p SOME_CONSTANT
 end
end

Listing 6-21: Finding a constant in the parent lexical scope (repeated from Listing 6-19)

Ruby Under a Microscope
© 2013 by Pat Shaughnessy

Method Lookup and Constant Lookup 161

In Figure 6-20 we saw how Ruby iterates over super pointers to find a
constant from a superclass. But in Figure 6-21 we saw that Ruby couldn’t use
super pointers to find SOME_CONSTANT in this example because Namespace is not a
superclass of MyClass. Instead, as Figure 6-26 shows, Ruby can use the nd_next
pointers to iterate up through your program’s lexical scopes in search of
constant values.

top level

RClass: MyClass

RClass: Namespace
module

SOME_CONSTANT

MyClass

constants:
nd_clss

nd_next

module Namespace

 SOME_CONSTANT =

 "Some value..."

nd_clss

nd_next

class MyClass

end

end

 p SOME_CONSTANT

Lexical Scope:

Figure 6-26: Ruby can find SOME_CONSTANT in the parent lexical scope using the
nd_next and nd_clss pointers.

By following the arrows in this figure, you can see how the p SOME_CONSTANT
command at u in Listing 6-21 works:

•	 First, Ruby looks for the value of SOME_CONSTANT in the current
scope’s class, MyClass. In Figure 6-26 the current scope contains the
p SOME_CONSTANT code. You can see how Ruby finds the current scope’s
class on the right using the nd_clss pointer. Here, MyClass has nothing
in its constants table.

•	 Next, Ruby finds the parent lexical scope using the nd_next pointer,
moving up Figure 6-26.

•	 Ruby repeats the process, searching the current scope’s class using
the nd_clss pointer. This time the current scope’s class is the Namespace
module, at the top right of Figure 6-26. Now Ruby finds SOME_CONSTANT
in Namespace’s constants table.

Ruby Under a Microscope
© 2013 by Pat Shaughnessy

162 Chapter 6

Ruby’s Constant Lookup Algorithm
The flowchart in Figure 6-27 summarizes how Ruby iterates over the lexical
scope chain while looking for constants.

constant
found?

look through
constant table
for cref’s class

set cref parent
lexical scope

done

set cref to
current lexical

scope

found

not
found

Figure 6-27: Part of Ruby’s constant lookup algorithm

Notice that this figure is very similar to Figure 6-3. Ruby iterates over
the linked list formed by the nd_next pointers in each lexical scope while
looking for a constant, just as it iterates over the super pointers while look-
ing for a method. Ruby uses superclasses to find methods and parent lexical
scopes to find constants.

However, this is just part of Ruby’s constant lookup algorithm. As we saw
earlier in Figure 6-20, Ruby also looks through superclasses for constants.

Experiment 6-2: Which Constant Will Ruby Find First?
We’ve just learned that Ruby iterates over a linked list of lexical scopes in
order to look up constant values. However, we saw earlier in Figure 6-20
that Ruby also uses the superclass chain to look up constants. Let’s use
Listing 6-22 to see how this works in more detail.

class Superclass
u FIND_ME = "Found in Superclass"

end

Ruby Under a Microscope
© 2013 by Pat Shaughnessy

Method Lookup and Constant Lookup 163

module ParentLexicalScope
v FIND_ME = "Found in ParentLexicalScope"

 module ChildLexicalScope

 class Subclass < Superclass
 p FIND_ME
 end

 end
end

Listing 6-22: Does Ruby search the lexical scope chain first? Or does it search the super-
class chain first? (find-constant.rb)

Notice here that I’ve defined the constant FIND_ME twice—at u and at v.
Which constant will Ruby find first? Will Ruby first iterate over the lexical
scope chain and find the constant at v? Or will it iterate over the superclass
chain and find the constant value at u?

Let’s find out! When we run Listing 6-22, we get the following:

$ ruby find-constant.rb
"Found in ParentLexicalScope"

You can see that Ruby looks through the lexical scope chain first.
Now let’s comment out the second definition at v in Listing 6-22 and

try the experiment again:

module ParentLexicalScope
v #FIND_ME = "Found in ParentLexicalScope"

When we run the modified Listing 6-22, we get the following:

$ ruby find-constant.rb
"Found in Superclass"

Because now there is only one definition of FIND_ME, Ruby finds it by iter-
ating over the superclass chain.

Ruby’s Actual Constant Lookup Algorithm
Unfortunately, things aren’t quite so simple; there are some other quirks in
Ruby’s behavior with regard to constants. Figure 6-28 is a simplified flow-
chart showing Ruby’s entire constant lookup algorithm.

Ruby Under a Microscope
© 2013 by Pat Shaughnessy

164 Chapter 6

for each scope’s
class, check for

autoload

search through
lexical scope chain

search through
superclass chain

for each superclass,
check for autoload

call
const_missing

Figure 6-28: A high-level summary of Ruby’s
constant lookup algorithm

At the top, you can see that Ruby begins by iterating up the lexical
scope chain, as we saw in Listing 6-22. Ruby always finds constants, includ-
ing classes or modules, that are defined in a parent lexical scope. However,
as Ruby iterates up the scope chain, it looks to see whether you used the
autoload keyword, which instructs it to open and read in a new code file if
a given constant is undefined. (The Rails framework uses autoload to allow
you to load models, controllers, and other Rails objects without having to
use require explicitly.)

If Ruby loops through the entire lexical scope chain without finding
the given constant or a corresponding autoload keyword, it then iterates
up the superclass chain, as we saw in Listing 6-18. This allows you to load
constants defined in a superclass. Ruby once again honors any autoload key-
word that might exist in any of those superclasses, loading an additional file
if necessary.

Finally, if all else fails and the constant still isn’t found, Ruby calls the
const_missing method on your module if you provided one.

Ruby Under a Microscope
© 2013 by Pat Shaughnessy

Method Lookup and Constant Lookup 165

Summary
In this chapter we’ve learned two very different ways to look at your Ruby
program. On the one hand, you can organize your code by class and super-
class, and on the other, you can organize it by lexical scope. We saw how
internally Ruby uses different sets of C pointers to keep track of these two
trees as it executes your program. The super pointers found in the RClass
structures form the superclass tree, while the nd_next pointers from the lexi-
cal scope structures form the namespace or lexical scope tree.

We studied two important algorithms that use these trees: how Ruby
looks up methods and constants. Ruby uses the class tree to find the methods
that your code (and Ruby’s own internal code) calls. Similarly, Ruby uses
both the lexical scope tree and the superclass hierarchy to find constants
that your code refers to. Understanding the method and constant lookup
algorithms is essential. They allow you to design your program and organize
your code using these two trees in a way that is appropriate for the problem
you are trying to solve.

At first glance, these two organizational schemes seem completely
orthogonal, but in fact they are closely related by the way Ruby’s classes
behave. When you create a class or module, you add both to the superclass
and lexical scope hierarchy, and when you refer to a class or superclass, you
instruct Ruby to look up a particular constant using the lexical scope tree.

Ruby Under a Microscope
© 2013 by Pat Shaughnessy

