Practical Deep Learning with Python (Sample) © 2021 by Ronald T. Kneusel

WORKING WITH DATA

Developing a proper dataset is the single
most important part of building a success-
ful machine learning model. Machine learn-

ing models live and die by the phrase “garbage
in, garbage out.” As you saw in Chapter 1, the model
uses the training data to configure itself to the prob-
lem. If the training data is not a good representation
of the data the model will receive when it is used, we
can’t expect our model to perform well. In this chap-
ter, we’ll learn how to create a good dataset that repre-
sents the data the model will encounter in the wild.

Classes and Labels

In this book, we’re exploring classification: we’re building models that put
things into discrete categories, or classes, like dog breed, flower type, digit,
and so on. To represent classes, we give each input in our training set an
identifier called a label. A label could be the string “Border Collie” or, better
still, a number like 0 or 1.

52

Practical Deep Learning with Python (Sample) © 2021 by Ronald T. Kneusel

Models don’t know what their inputs represent. They don’t care whether
the input is a picture of a border collie or the value of Google stock. To the
model, it’s all numbers. The same is true of labels. Because the label for the
input has no intrinsic meaning to the model, we can represent classes how-
ever we choose. In practice, class labels are usually integers starting with 0.
So, if there are 10 classes, the class labels are 0, 1,2, ...,9. In Chapter 5, we’ll
work with a dataset that has 10 classes representing images of different real-
world things. We’ll simply map them to the integers as in Table 4-1.

Table 4-1: Label Classes with
Integers: O, 1, 2, ...

Label Actual class

airplanes
cars
birds
cats

deer
dogs
frogs
horses
ships
trucks

NVoONOOULNMNWN—O

With that labeling, every training input that is a dog is labeled 5, while
every input that is a truck is labeled 9. But what exactly is it that we’re label-
ing? In the next section, we’ll cover features and feature vectors, the very
lifeblood of machine learning.

Features and Feature Vectors

Chapter 4

Machine learning models take features as inputs and deliver, in the case of
a classifier, a label as output. So what are these features and where do they
come from?

For most models, features are numbers. What the numbers represent
depends upon the task at hand. If we’re interested in identifying flowers
based on measurements of their physical properties, our features are those
measurements. If we’re interested in using the dimensions of cells in a med-
ical sample to predict whether a tumor is breast cancer or not, the features
are those dimensions. With modern techniques, the features might be the
pixels of an image (numbers), or a sound’s frequency (numbers) or even
how many foxes were counted by a camera trap over a two-week period
(numbers).

Features, then, are whatever numbers we want to use as inputs. The goal
of training the model is to get it to learn a relationship between the input
features and the output label. We assume that a relationship exists between
the input features and output label before training the model. If the model
fails to train, it might be that there is no relationship to learn.

Practical Deep Learning with Python (Sample) © 2021 by Ronald T. Kneusel

After training, feature vectors with unknown class labels are given to the
model, and the model’s output predicts the class label based on the relation-
ships it discovered during training. If the model is repeatedly making poor
predictions, one possibility is that the selected features are not sufficiently
capturing that relationship. Before we go into what makes a good feature,
let’s take a closer look at the features themselves.

Types of Features

To recap, features are numbers representing something that is measured

or known, and feature vectors are sets of these numbers used as inputs to the

model. There are different kinds of numbers you could use as features, and
as you'll see, they’re not all created equal. Sometimes you’ll have to manipu-
late them before you can input them into your model.

Floating-Point Numbers

In Chapter 5, we’ll be building a historic flower dataset. The features of that
dataset are actual measurements of things like a flower’s sepal width and
height (in centimeters). A typical measurement might be 2.33 cm. This is a
floating-point number—a number with a decimal point, or, if you remember
your high school math courses, a real number. Most models want to work
with floating-point numbers, so you can just use the measurements as they
are. Floating-point numbers are continuous, meaning there are an infinite
number of values between one integer and the next, so we have a smooth
transition between them. As we’ll see later on, some models expect continu-
ous values.

Interval Values

Floating-point numbers don’t work for everything, however. Clearly, flow-
ers cannot have 10.14 petals, though they might have 9, 10, or 11. These
numbers are integers: whole numbers without a fractional part or a decimal
point. Unlike floating-point numbers, they are discrete, which means they
pick out only certain values, leaving gaps in between. Fortunately for us, in-
tegers are just special real numbers, so models can use them as they are.

In our petal example, the difference between 9, 10, and 11 is meaning-
ful in that 11 is bigger than 10, and 10 is bigger than 9. Not only that, but 11
is bigger than 10 in exactly the same way that 10 is bigger than 9. The differ-
ence, or interval, between the values is the same: 1. This value is called an
interval value.

The pixels in an image are interval values, because they represent the
(assumed linear) response of some measurement device, like a camera or
an MRI machine, to some physical process like intensity and color of visi-
ble light or the number of hydrogen protons in free water in tissue. The key
point is that if value x is the next number in the sequence after value y, and
value z is the number before value y, then the difference between x and y is
the same difference as between y and z.

Working with Data 53

54

Chapter 4

Practical Deep Learning with Python (Sample) © 2021 by Ronald T. Kneusel

Ordinal Values

Sometimes the interval between the values is not the same. For example,
some models include someone’s educational level to predict whether or
not they will default on a loan. If we encode someone’s educational level

by counting their years of schooling, we could use that safely since the dif-
ference between 10 years of schooling and 8 is the same as the difference
between 8 years of schooling and 6. However, if we simply assign 1 for “com-
pleted high school,” 2 for “has an undergraduate degree,” and 3 for “has a
doctorate or other professional degree,” we’d probably be in trouble; while
3 > 2 > 1lis true, whether or not meaningful for our model, the difference
between the values represented by 3 and 2 and 2 and 1 is not the same. Fea-
tures like these are called ordinal because they express an ordering, but the
differences between the values are not necessarily always the same.

Categorical Valves

Sometimes we use numbers as codes. We might encode sex as 0 for male
and 1 for female, for example. In this case, 1 is not understood to be greater
than 0 or less than 0, so these are not interval or ordinal values. Instead,
these are categorical values. They express a category but say nothing about
any relationship between the categories.

Another common example, perhaps relevant to classifying flowers, is
color. We might use 0 for red, 1 for green, and 2 for blue. Again, no rela-
tionship exists between 0, 1, or 2 in this case. This doesn’t mean we can’t use
categorical features with our models, but it does mean that we usually can’t
use them as they are since most types of machine learning models expect at
least ordinal, if not interval numbers.

We can make categorical values at least ordinal by using the following
trick. If we wanted to use a person’s sex as an input, instead of saying 0 for
male and 1 for female, we would create a two-element vector, one element
for each possibility. The first digit in the vector will indicate whether the in-
put is male by signaling either 0 (meaning they’re not male) or 1 (meaning
they are). The second digit will indicate whether or not they are female. We
map the categorical values to a binary vector, as shown in Table 4-2.

Table 4-2: Representing Categories as Vectors

Categorical value Vector representation

0 - 10
1 — 01

Here a 0 in the “is male” feature is meaningfully less than a 1 in that fea-
ture, which fits the definition of an ordinal value. The price we pay is to ex-
pand the number of features in our feature vector, as we need one feature
for each of the possible categorical values. With five colors, for example,
we’d need a five-element vector; with five thousand, a five-thousand-element
vector.

Practical Deep Learning with Python (Sample) © 2021 by Ronald T. Kneusel

To use this scheme, the categories must be mutually exclusive, mean-
ing there will be only one 1 in each row. Because there’s always only one
nonzero value per row, this approach is sometimes called a one-hot encoding.

Feature Selection and the Curse of Dimensionality

This section is about feature selection, the process of selecting which features
to use in your feature vectors, and why you shouldn’t include features you
don’t need. Here’s a good rule of thumb: the feature vector should contain
only features that capture aspects of the data that allow the model to gener-
alize to new data.

In other words, features should capture aspects of the data that help the
model separate the classes. It’s impossible to be more explicit, since the set
of best features are always dataset specific, unknowable in advance. But that
doesn’t mean we can’t say things that might be helpful in guiding us toward
a useful set of features for whatever dataset we’re working with.

Like many things in machine learning, selecting features comes with
trade-offs. We need enough features to capture all the relevant parts of the
data so that the model has something to learn from, but if we have too many
features, we fall victim to the curse of dimensionality.

To explain what this means, let’s look at an example. Suppose our fea-
tures are all restricted to the range [0, 1). That’s not a typo; we’re using in-
terval notation, where a square bracket means the bound is included in the
range, and a parenthesis means the bound is excluded. So here 0 is allowed
but 1 isn’t. We’ll also assume our feature vectors are either two-dimensional
or three-dimensional. That way, we can plot each feature vector as a point in
a 2D or 3D space. Finally, we’ll simulate datasets by selecting feature vectors,
2D or 3D, uniformly at random so that each element of the vector is in [0, 1).

Let’s fix the number of samples at 100. If we have two features, or a 2D
space, we can represent 100 randomly selected 2D vectors as the left side
of Figure 4-1. Now, if we have three features, or a 3D space, those same 100
features look like the right side of Figure 4-1.

08 . . .

0.6 .

02 . o

o
30 02 04 06 08 10 s 08
2 10 00

Figure 4-1: One hundred random samples in 2D space (left) and in 3D space (right)

Since we’re assuming our feature vectors can come from anywhere in
the 2D or 3D space, we want our dataset to sample as much of that space as

Working with Data 55

56

Practical Deep Learning with Python (Sample) © 2021 by Ronald T. Kneusel

possible so that it represents the space well. We can get a measure of how
well the 100 points are filling the space by splitting each axis into 10 equal
sections. Let’s call these sections bins. We’ll end up with 100 bins in the 2D
space, because it has two axes (10 x 10), and 1,000 in the 3D space, because it
has three axes (10 x 10 x 10). Now, if we count the number of bins occupied
by at least one point and divide that number by the total number of bins,
we’ll get the fraction of bins that are occupied.

Doing this gives us 0.410 (out of a maximum of 1.0) for the 2D space
and 0.048 for the 3D space. This means that 100 samples were able to sam-
ple about half of the 2D feature space. Not bad! But 100 samples in the
3D feature space sampled only about 5 percent of the space. To fill the 3D
space to the same fraction as the 2D space, we’d need about 1,000—or 10
times as many as we have. This general rule applies as the dimensionality in-
creases: a 4D feature space would need about 10,000 samples, while a 10D
feature space would need about 10,000,000,000! As the number of features
increases, the amount of training data we need to get a representative sam-
pling of the possible feature space increases dramatically, approximately as
107, where d is the number of dimensions. This is the curse of dimensional-
iy, and it was the bane of machine learning for decades. Fortunately for us,
modern deep learning has overcome this curse, but it’s still relevant when
working with traditional models like the ones we will explore in Chapter 6.

For example, a typical color image on your computer might have 1024
pixels on a side where each pixel requires 3 bytes to specify the color as a
mix of red, green, and blue. If we wanted to use this image as input to a
model, we’d need a feature vector with d = 1024 x 1024 x 3 = 3,145,728
elements. This means we’d need some 103145728 samples to populate our
feature space. Clearly, this is not possible. We’ll see in Chapter 12 how to
overcome this curse by using a convolutional neural network.

Now that we know about classes, features, and feature vectors, let’s de-
scribe what it means to have a good dataset.

Features of a Good Dataset

Chapter 4

The dataset is everything. This is no exaggeration, since we build the model
from the dataset. The model has parameters—be they the weights and biases
of a neural network, the probabilities of each feature occurring in a Naive
Bayes model, or the training data itself in the case of Nearest Neighbors.
The parameters are what we use the training data to find out: they encode
the knowledge of the model and are learned by the training algorithm.

Let’s back up a little bit and define the term dataset as we we’ll use it in
this book. Intuitively, we understand what a dataset is, but let’s be more sci-
entific and define it as a collection of pairs of values, {X, Y}, where X is an
input to the model and Y'is a label. Here X is some set of values that we’ve
measured and grouped together, like length and width of flower parts, and
Y'is the thing we want to teach the model to tell us, such as which flower or
which animal the data best represents.

Practical Deep Learning with Python (Sample) © 2021 by Ronald T. Kneusel

For supervised learning, we act as the teacher, and the model acts as the
student. We are teaching the student by presenting example after example,
saying things like “this is a cat” and “this is a dog,” much as we would teach
a small child with a picture book. In this case, the dataset is a collection of
examples, and ¢raining consists of showing the examples to the model re-
peatedly, until the model “gets it"—that is, until the parameters of the model
are conditioned and adjusted to minimize the error made by the model for
this particular dataset. This is the learning part of machine learning.

Interpolation and Extrapolation

Interpolation is the process of estimating within a certain known range. Ex-
trapolation occurs when we use the data we have to estimate outside the known
range. Generally speaking, our models are more accurate when they in some
sense interpolate, which means we need a dataset that is a comprehensive
representation of the range of values that could be used as inputs to the
model.

As an example, let’s look at world population, in billions, from 1910 to
1960 (Table 4-3). We have data for every 10 years in our known range, 1910
to 1960.

Table 4-3: The World Population

by Decade
Year Population (billions)
1910 1.750
1920 1.860
1930 2.070
1940 2.300
1950 2.557
1960 3.042

If we find the “best fitting” line to plot through this data, we can use it as

a model to predict values. This is called linear regression, and it allows us to
estimate the population for any year we choose. We’ll skip the actual fitting
process, which you can do simply with online tools, and jump right to the
model:

p =0.02509y - 46.28
For any year, y, we can get an estimate of the population, p. What was the

world population in 1952? We don’t have actual data for 1952 in our table,
but using the model, we can estimate it like so:

p =0.02509(1952) - 46.28 = 2.696 billion
By checking the actual world population data for 1952, we know that it was
2.637 billion, so our estimate of 2.696 billion was only some 60 million off.

The model seems to be pretty good!

Working with Data 57

58

Chapter 4

Practical Deep Learning with Python (Sample) © 2021 by Ronald T. Kneusel

In using the model to estimate the world population in 1952, we per-
formed interpolation. We made an estimate for a value that was between
data points we had, and the model gave us a good result. Extrapolation, on
the other hand, is measuring beyond what is known, outside the range of
our data.

Let’s use our model to estimate world population in 2000, 40 years after
the data we used to build our model ends:

p=0.02509(2000) - 46.28 = 3.900 billion

According to the model, it should be close to 3.9 billion, but we know from
actual data that the world population in 2000 was 6.089 billion. Our model
is off by over 2 billion people. What happened here is that we applied the
model to input it wasn’t suited for. If we remain in the range of inputs that
the model is “trained” to know about, namely, dates from 1910 through
1960, then the model performs well enough. Once we went beyond the
model’s training, however, it fell apart because it assumed knowledge we
didn’t possess.

When we interpolate, the model will see examples that are similar to
the set of examples it saw during training. Perhaps unsurprisingly, it will do
better on these examples than when we extrapolate and ask the model to go
beyond its training.

When it comes to classification, it’s essential we have comprehensive
training data. Let’s assume we’re training a model to identify dog breeds. In
our dataset, we have hundreds of images of classic black-and-white border
collies like the one on the left in Figure 4-2. If we then give the model a new
image of a classic border collie, we will, hopefully, get back a correct label:
“Border Collie.” This is akin to asking the model to interpolate: it’s working
with something is has already seen before because the “Border Collie” label
in the training data included many examples of classic border collies.

Figure 4-2: A border collie with classic markings (left), a border collie with liver-colored
markings (middle], an Australian shepherd (right), (Left image, author’s own,; middle and
right images, Creative Commons license.)

However, not every border collie has the classic border collie markings.
Some are marked like the collie in the middle of Figure 4-2. Since we didn’t
include images like this in the training set, the model must now try to go be-
yond what it was trained to do and give a correct output label for an instance

Practical Deep Learning with Python (Sample) © 2021 by Ronald T. Kneusel

of a class it was trained on but of a type it was not trained with. It will likely
fail, giving a false output like “Australian Shepherd,” a breed similar to a bor-
der collie, as seen on the right of Figure 4-2.

The key concept to remember, however, is that the dataset must cover
the full range of variation within the classes the model will see when the
model is predicting labels for unknown inputs.

The Parent Distribution

The dataset must be representative of the classes it’s modeling. Buried in
this idea is the assumption that our data has a parent distribution, an unknown
data generator that created the particular dataset we’re using.

Consider this parallel from philosophy. The ancient Greek philosopher
Plato uses the concept of ideals. In his view, there was an ideal chair some-
where “out there,” and all existing chairs were more or less perfect copies
of that ideal chair. This is what we mean by the relationship between the
dataset we are using, the copy, and the parent distribution, the ideal genera-
tor. We want the dataset to be a representation of the ideal.

We can think of a dataset as a sample from some unknown process
that produces data according to the parent distribution. The type of data it
produces—the values and ranges of the features—will follow some unknown,
statistical rule. For example, when you roll a die, each of the six values is
equally likely in the long run. We call this a uniform parent distribution. If you
make a bar graph of the number of times each value appears as you roll the
die many times, you will get a (more or less) horizontal line since each value
is equally likely to happen. We see a different distribution when we measure
the height of adults. The distribution of heights will have a form with two
humps, one around mean male height and another around mean female
height.

The parent distribution is what generates this overall shape. The train-
ing data, the test data, and the data you give the model to make decisions
must all come from the same parent distribution. This is a fundamental as-
sumption models make, and one that shouldn’t seem too surprising to us.
Still, sometimes it’s easy to mix things up and train with data from one par-
ent distribution while testing or using the model with data from a different
parent distribution. (How to train with one parent distribution and use that
model with data from a different distribution is a very active research area at
the moment. Search for “domain adaptation.”)

Prior Class Probabilities

The prior class probability is the probability with which each class in the dataset
appears in the wild.

In general, we want our dataset to match the prior probabilities of the
classes. If class A appears 85 percent of the time and class B only 15 percent
of the time, then we want class A to appear 85 percent of the time and class
B to appear 15 percent of the time in our training set.

Working with Data 59

60

Chapter 4

Practical Deep Learning with Python (Sample) © 2021 by Ronald T. Kneusel

There are exceptions, however. Say one of the classes we want the model
to learn is rare, showing up only once for every 10,000 inputs. If we make
the dataset strictly follow the actual prior probabilities, the model might
not see enough examples of the rare class to learn anything helpful about
it. And, worse yet, what if the rare class is the class we are most interested in?

For example, let’s pretend we’re building a robot that locates four-leaf
clovers. We'll assume that we already know that the input to the model is a
clover; we just want to know whether it has three or four leaves. We know
that an estimated 1 in every 5,000 clovers is a four-leaf clover. Building a
dataset with 5,000 three-leaf clovers for every instance of a four-leaf clover
seems reasonable until we realize that a model that simply says every input
is a three-leaf clover will be right, on average, 4,999 times out of 5,000! It
will be an extremely accurate but completely useless model because it never
finds the class we’re interested in.

Instead, we might use a 10:1 ratio of three-leaf to four-leaf clovers. Or,
when training the model, we might start with an even number of three- and
four-leaf clovers, and then, after training for a time, change to a mix that is
increasingly closer to the actual prior probability. This trick doesn’t work for
all model types, but it does work for neural networks. Why this trick works is
poorly understood but, intuitively, we can imagine the network learning first
about the visual difference between a three-leaf and four-leaf clover and then
learning something about the actual likelihood of encountering a four-leaf
clover as the mix changes to be closer to the actual prior probabilities.

In reality, the trick is used because it often results in better-performing
models. For much of machine learning, especially deep learning, empirical
tricks and techniques are well in advance of any theory to back them up. “It
just works better; that’s why” is still a valid, though ultimately unsatisfying,
answer to many questions about why a particular approach works well.

How to work with imbalanced data is something the research commu-
nity is still actively investigating. Some choose to start with a more balanced
ratio of classes; others use data augmentation (see Chapter 5) to boost the
number of samples from the underrepresented class.

Confusers

We said that we need to include examples in our dataset that reflect all the
natural variation in the classes we want to learn. This is definitely true, but at
times it is particularly important to include training samples that are similar
to one or more of our classes but really are not examples of that class.
Consider two models. The first learns the difference between images of
dogs and images of cats. The second learns the difference between images
of dogs and images that are not dogs. The first model has it easy. The input
is either a dog or a cat, and the model is trained using images of dogs and
images of cats. The second model, however, has it rougher. It’s obvious that
we need images of dogs for training. But, what should the “not dog” images
be? Given the preceding discussion, we should be starting to intuit that we’ll
need images that cover the space of images the model will see in the wild.

Practical Deep Learning with Python (Sample) © 2021 by Ronald T. Kneusel

We can take this one step further. If we want to tell the difference be-
tween dogs and not dogs, we should be sure to include wolves in the “not a
dog” class when training. If we don’t, the model might not learn enough to
tell the difference when it encounters a wolf and will return a “dog” classifi-
cation. If we build the dataset by using hundreds of “not dog” images that
are all pictures of penguins and parrots, should we be surprised if the model
decides to call a wolf a dog?

In general, we need to make sure the dataset includes confusers, or hard
negatives—examples that are similar enough to other classes to be mistaken
for them, but don’t belong in the class. Confusers give the model a chance
to learn the more precise features of a class. Hard negatives are particularly
useful when distinguishing between something and everything else, as in
“dog” versus “not dog.”

Dataset Size

So far we’ve talked about what kind of data to include in a dataset, but how
much of it do we need? “All of it” is a temptingly cheeky answer. For our
model to be as precise as possible, we should use as many examples as possi-
ble. But it’s rarely possible to get all of the data.

Choosing the size of your dataset means considering a trade-off between
accuracy and the time and energy it takes to acquire the data. Acquiring
data can be expensive or slow, or, as we saw with our clover example, some-
times the key class of the dataset is rare and seldom encountered. Because
labeled data is generally expensive and slow to acquire, we should have some
idea of how much we need before we get started.

Unfortunately, the truth is that there is no formula that answers the
question of how much data is enough data. After a certain point, there are
diminishing returns on the benefit of additional data. Moving from 100 ex-
amples to 1,000 examples might boost the accuracy of the model drama-
tically, but moving from 1,000 to 10,000 examples might offer only a small
increase in accuracy. The increased accuracy needs to be balanced against
the effort and expense of acquiring an additional 9,000 training examples.

Another factor to consider is the model itself. Models have a capacity,
which determines the complexity they can support relative to the amount
of training data available. The capacity of a model is directly related to its
number of parameters. A larger model with more parameters will require
a lot of training data to be able to find the proper parameter settings. And
though it’s often a good idea to have more training examples than model
parameters, deep learning can work well when there is less training data
than parameters. For example, if the classes are very different from each
other—think buildings versus oranges—and it’s easy for us to tell the differ-
ence, the model likely will also learn the difference quickly, so we can get
away with fewer training examples. On the other hand, if we’re trying to sep-
arate wolves from huskies, we might need a lot more data. We will discuss
what to do when you don’t have a lot of training data in Chapter 5, but none
of those tricks are a good substitute for simply getting more data.

Working with Data 61

62

Practical Deep Learning with Python (Sample) © 2021 by Ronald T. Kneusel

The only correct answer to the question of how much data is needed is
“all of it.” Get as much as is practical, given the constraints of the problem:
expense, time, rarity, and so forth.

Data Preparation

Chapter 4

Before we move on to building actual datasets, we’re going to cover two sit-
uations you'll likely encounter before you can feed your dataset to a model:
how to scale features, and what to do if a feature value is missing.

Scaling Features

A feature vector built from a set of different features might have a variety
of ranges. One feature might take on a wide range of values, say, ~1000 to
1000, while another might be restricted to a range of 0 to 1. Some models
will not work well when this happens, as one feature dominates the others
because of its range. Also, some model types are happiest when features
have a mean value that is close to 0.

The solution to these issues is scaling. We’ll assume for the time be-
ing that every feature in the feature vector is continuous. We’ll work with
a fake dataset consisting of five features and 15 samples. This means that
our dataset has 15 samples—feature vectors and their labels—and each of the
feature vectors has five elements. We’ll assume there are three classes. The
dataset looks like Table 4-4.

Table 4-4: A Hypothetical Dataset

Sample x, X; Xg X3 X4 Label
0 6998 0.1361 0.3408 0.00007350 78596048 O
I 6580 0.4908 3.0150 0.00004484 38462706 1
2 7563 0.9349 4.3465 0.00001003 6700340 2
3 8355 0.6529 2.1271 0.00002966 51430391 O
4 2393 0.4605 2.7561 0.00003395 27284192 O
5 9498 0.0244 2.7887 0.00008880 78543394 2
6 4030 0.6467 4.8231 0.00000403 19101443 2
7 5275 0.3560 0.0705 0.00000899 96029352 O
8 8094 0.7979 3.9897 0.00006691 7307156 1
9 843 0.7892 0.9804 0.00005798 10179751 1
10 1221 0.9564 2.3944 0.00007815 14241835 O
11 5879 0.0329 2.0085 0.00009564 34243070 2
12 923 0.4159 1.7821 0.00002467 52404615 1
13 5882 0.0002 1.5362 0.00005066 18728752 2
14 1796 0.7247 2.3190 0.00001332 96703562 1

As this is the first dataset covered in the book, let’s go over it thorough-
ly to introduce some notation and see what is what. The first column in
Table 4-4 is the sample number. The sample is an input, in this case a col-
lection of five features representing a feature vector. Notice that the num-
bering starts at 0. As we’ll be using Python arrays (NumPy arrays) for data,

we’ll start counting at 0 in all cases.

Practical Deep Learning with Python (Sample) © 2021 by Ronald T. Kneusel

The next five columns are the features in each sample, labeled x(through
x4, again starting indices at 0. The final column is the class label. Since there
are three classes, the labels run from 0 through 2. There are five samples
from class 0, five from class 1, and five from class 2. Therefore, this is a small
but balanced dataset; the prior probability of each class is 33 percent, which
should, ideally, be close to the actual prior probability of the classes appear-
ing in the wild.

If we had a model, then each row would be its own input. Writing
{x0,x1,%9,x3,%4} to refer to these is tedious, so instead, when we are refer-
ring to a full feature vector, we’ll use an uppercase letter. For example, we’d
refer to Sample 2 as Xo for dataset X. We’ll also sometimes use matrices—2D
arrays of numbers—that are also labeled with uppercase letters, for clarity.
When we want to refer to a single feature, we’ll use a lowercase letter with
subscript, for example, x3.

Let’s look at the ranges of the features. The minimum, maximum, and
range (the difference between the maximum and minimum) of each feature
are shown in Table 4-5.

Table 4-5: The Minimum, Maximum, and Range of the Features

in Table 4-4
Feature Minimum Maximum Range
X0 843.0 9498.0 8655.0
X7 0.0002 0.9564 0.9562
X2 0.0705 4.8231 4.7526
X3 4.03e-06 9.564e-05 9.161e05
X4 6700340.0 96703562.0 90003222.0

Note the use of computer notation like 9.161e-05. This how computers
represent scientific notation: 9.161 x 1070 = 0.00009161. Notice, also, that
each feature covers a very different range. Because of this, we’ll want to scale
the features so their ranges are more similar. Scaling is a valid thing to do
prior to training a model as long as you scale all new inputs the same way.

Mean Centering

The simplest form of scaling is mean centering. This is easy to do: from each

feature, simply subtract the mean (average) value of the feature over the en-
tire dataset. The mean over a set of values, x; ¢ = 0, 1,2, ... is simply the sum
of each value divided by the number of values:

N
1
X—N X;

=0

Working with Data 63

64

Chapter 4

Practical Deep Learning with Python (Sample) © 2021 by Ronald T. Kneusel

The mean value for feature x(is 5022, so to center x(, we replace each
value like so:

xiexi—5022, i=0,1,2,...

where in this case the ¢ index is across the samples, not the other elements
of the feature vector.

Repeating the preceding steps for the mean value of all the other fea-
tures will center the entire dataset. The result is that the mean value of each
feature, over the dataset, is now 0, meaning the feature values themselves are
all above and below 0. For deep learning, mean centering is often done by
subtracting a mean image from each input image.

Changing the Standard Deviation to 1

Mean centering helps, but the distribution of values around 0 remains the
same as before the mean was subtracted. All we did was shift the data down
toward 0. The spread of values around the mean has a formal name: it’s
called the standard deviation, and it’s computed as the average difference of
the data values and the mean:

The letter o (sigma) is the usual name for the standard deviation in math-
ematics. You don’t need to memorize this formula. It’s there to show us
how to calculate a measure of the spread, or range, of the data relative to
the mean value of the data.

Mean centering changes x to 0, but it does not change o. Sometimes we
want to go further and, along with mean centering, change the spread of
the data so that the ranges are the same, meaning the standard deviation for
each feature is 1. Fortunately, doing this is straightforward. We replace each
feature value, x, with

X=X

g

where x and ¢ are the mean and standard deviation of each feature across
the dataset. For example, the preceding toy dataset can be stored as a 2D
NumPy array

x= [

[6998, 0.1361, 0.3408, 0.00007350, 78596048],
[6580, 0.4908, 3.0150, 0.00004484, 38462706],
(7563, 0.9349, 4.3465, 0.00001003, 6700340],
[8355, 0.6529, 2.1271, 0.00002966, 51430391],
[2393, 0.4605, 2.7561, 0.00003395, 27284192],
[9498, 0.0244, 2.7887, 0.00008880, 78543394],
[4030, 0.6467, 4.8231, 0.00000403, 19101443],

Practical Deep Learning with Python (Sample) © 2021 by Ronald T. Kneusel

[5275, 0.3560, 0.0705, 0.00000899, 96029352],
[8094, 0.7979, 3.9897, 0.00006691, 7307156],
[843, 0.7892, 0.9804, 0.00005798, 10179751],
[1221, 0.9564, 2.3944, 0.00007815, 14241835],
[5879, 0.0329, 2.0085, 0.00009564, 34243070],
[923, 0.4159, 1.7821, 0.00002467, 52404615],
[5882, 0.0002, 1.5362, 0.00005066, 18728752],
[1796, 0.7247, 2.3190, 0.00001332, 96703562],

]

so that the entire dataset can be processed in one line of code:

x = (x - x.mean(axis=0)) / x.std(axis=0)

This approach is called standardization or normalizing, and you should
do it to most datasets, especially when using one of the traditional models
discussed in Chapter 6. Whenever possible, standardize your dataset so that
the features have 0 mean and a standard deviation of 1.

If we standardize the preceding dataset, what will it look like? Subtract-
ing, per feature, the mean value of that feature and dividing by the standard
deviation gives us a new dataset (Table 4-6). Here, we’ve shortened the num-
bers to four decimal digits for display and have dropped the label.

Table 4-6: The Data in Table 4-4 Standardized

Sump|e X0 X X9 X3 Xy

0 0.6930 -1.1259 -1.5318 0.9525 1.1824
| 0.5464 -0.0120 0.5051 -0.0192 -0.1141
2 0.8912 1.3826 1.5193 -1.1996 -1.1403
3 1.1690 0.4970 -0.1712 -0.5340 0.3047
4 -0.9221 -0.1071 0.3079 -0.3885 -0.4753
5 1.5699 -1.4767 0.3327 1.4714 1.1807
fo)
7
8
%

-0.3479 0.4775 1.8823 -1.4031 -0.7396
0.0887 -0.4353 -1.7377 -1.2349 1.7456

1.0775 0.9524 1.2475 0.7291 -1.1207
-1.4657 0.9250 -1.0446 0.4262 -1.0279

10 -1.3332 1.4501 0.0323 1.1102 -0.8966
11 0.3005 -1.4500 -0.2615 1.7033 -0.2505
12 -1.4377 -0.2472 -0.4340 -0.7032 0.3362
13 0.3016 -1.5527 -0.6213 0.1780 -0.7517
14 -1.1315 0.7225 -0.0250 -1.0881 1.7674

If you compare the two tables, you'll see that after our manipulations,
the features are more similar than they were in the original set. If we look
at x3, we'll see that the mean of the values is —=1.33¢ - 16 = -1.33 x 10716 =
-0.000000000000000133, which is virtually 0. Good! This is what we want.
If you do the calculations, you’d see that the means of the other features are
similarly close to 0. What about the standard deviation? For x3 it’s 0.99999999,
which is virtually 1—again, this is what we’d like. We’ll use this new, trans-
formed, dataset to train the model.

Working with Data 65

Practical Deep Learning with Python (Sample) © 2021 by Ronald T. Kneusel

Therefore, we must apply the per feature means and standard devia-
tions, as measured on the training set, to any new inputs we’re giving to the
model:

Xnew ~ Xtrain
Xnew A —
Otrain

Here, xpew is the new feature vector we want to apply to the model, and X¢,in
and o,y are the mean and standard deviation, per feature, from the train-
ing set.

Missing Features

Sometimes we don’t have all the features we need for a sample. We might
have forgotten to make a measurement, for example. These are missing fea-
tures, and we need to find a way to correct them, since most models don’t
have the ability to accept missing data.

One solution is to fill in the missing values with values that are outside
of the feature’s range, in the hopes that the model will learn to ignore those
values or make more use of other features. Indeed, some more advanced
deep learning models intentionally zero some of the input as a form of regu-
larization (we’ll see what that means in later chapters).

For now, we’ll learn the second most obvious solution: replacing missing
features with the mean value of features over the dataset. Let’s look again at
our practice dataset from earlier. This time, we’ll have some missing data to
deal with (Table 4-7).

Table 4-7: Our Sample Dataset (Table 4-4) with Some Holes

Sample x, X] Xg X3 X4 Label
0 6998 0.1361 0.3408 0.00007350 78596048 O
| 0.4908 0.00004484 38462706 1
2 7563 0.9349 4.3465 6700340 2
3 8355 0.6529 2.1271 0.00002966 51430391 O
4 2393 0.4605 2.7561 0.00003395 27284192 O
5 9498 2.7887 0.00008880 78543394 2
6 4030 0.6467 4.8231 0.00000403 2
7 5275 0.3560 0.0705 0.00000899 96029352 O
8 8094 0.7979 3.9897 0.00006691 7307156 1
9 0.9804 10179751 1
10 1221 0.9564 2.3944 0.00007815 14241835 O
11 5879 0.0329 2.0085 0.00009564 34243070 2
12 923 0.00002467 1
13 5882 0.0002 1.5362 0.00005066 18728752 2
14 1796 0.7247 2.3190 0.00001332 96703562 1

The blank spaces indicate missing values. The means of each feature, ignor-
ing missing values, are shown in Table 4-8.

66 Chapter 4

Practical Deep Learning with Python (Sample) © 2021 by Ronald T. Kneusel

Table 4-8: The Means for Features in Table 4-7

Xo X1 X2 X3 X4
5223.6 05158 2345 A4.71e05 42957735.0

If we replace each missing value with the mean, we’ll get a dataset we can
standardize and use to train a model.

Of course, real data is better, but the mean is the simplest substitute we
can reasonably use. If the dataset is large enough, we might instead gener-
ate a histogram of the values of each feature and select the mode—the most
common value—but using the mean should work out just fine, especially if
your dataset has a lot of samples and the number of missing features is fairly
small.

Training, Validation, and Test Data

Now that we have a dataset—a collection of feature vectors—we’re ready to
start training a model, right? Well, actually, no. That’s because we don’t
want to use the entire dataset for training. We’ll need to use some of the
data for other purposes, and so we need to split it into at least two subsets,
although ideally we’d have three. We call these subsets the training data, val-
idation data, and test data.

The Three Subsets

The training data is the subset we use to train the model. The important
thing here is selecting feature vectors that well represent the parent distri-
bution of the data.

The test data is the subset used to evaluate how well the trained model
is doing. We never use the test data when training the model; that would
be cheating, because we’d be testing the model on data it has seen before.
Put the test dataset aside, resist the temptation to touch it until the model is
complete, and then use it to evaluate the model.

The third dataset is the validation data. Not every model needs a vali-
dation dataset, but for deep learning models, having one is helpful. We use
the validation dataset during training as though it’s test data to get an idea
of how well the training is working. It can help us decide things like when to
stop training and whether we’re using the proper model.

For example, a neural network has some number of layers, each with
some number of nodes. We call this the architecture of the model. During
training, we can test the performance of the neural network with the valida-
tion data to figure out whether we should continue training or stop and try a
different architecture. We don’t train the model with the validation set, and
we don’t use the validation set to modify model parameters. We also can’t
use validation data when reporting actual model performance, since we used
results based on the validation data to select the model in the first place.
Again, this would make it seem like the model is doing better than it is.

Working with Data 67

68

Chapter 4

Practical Deep Learning with Python (Sample) © 2021 by Ronald T. Kneusel

Figure 4-3 illustrates the three subsets and their relationships to one an-
other. On the left is the whole dataset. This is the entire collection of fea-
ture vectors and associated labels. On the right are the three subsets. The
training data and the validation data work together to train and develop the
model, while the test data is held back until the model is ready for it. The
size of the cylinders reflects the relative amount of data that should fall into
each subset, though in practice the validation and test subsets might be even
smaller.

- Training :
: Validation |
Dataset i~~~ ;
PP :
— Test

\/ ——
Figure 4-3: Relationships among training, validation, and test subsets

To recap: use the training and validation sets to build the model and the
test set to evaluate it.

Partitioning the Dataset

How much data should go into each dataset?

A typical split is 90 percent for training, 5 percent for validation, and
5 percent for testing. For deep learning models, this is fairly standard. If
you’re working with a very large dataset, you could go as low as 1 percent
each for validation and testing. For classic models, which might not learn
as well, we might want to make the test dataset larger to ensure we are able
to generalize to a wide variety of possible inputs. In those cases, you might
try something like 80 percent for training and 10 percent each for valida-
tion and test. If you’re not using validation data, the full 20 percent might
go to testing. These larger test sets might be appropriate for multiclass mod-
els that have classes with low prior probabilities. Or, since the test set is not
used to define the model, you might increase the number of rare classes in
the test set. This might be of particular value should missing the rare class
be a costly event (think missing a tumor in a medical image).

Now that we’ve determined how much data to put into each set, let’s use
sklearn to generate a dummy dataset that we can partition:

>>> import numpy as np
>>> from sklearn.datasets import make_classification
>>> X,y = make_classification(n_samples=10000, weights=(0.9,0.1))
>>> X.shape
(120000, 20)

Practical Deep Learning with Python (Sample) © 2021 by Ronald T. Kneusel

>>> len(np.where(y == 0)[0])
8969

>>> len(np.where(y
1031

1[oD)

Here, we’ve used two classes and 20 features to generate 10,000 sam-
ples. The dataset is imbalanced, with 90 percent of the samples in class 0
and 10 percent in class 1. The output is a 2D array of samples (x) and as-
sociated 0 or 1 labels (y). The dataset is generated from multidimensional
Gaussians that are the analogs of the normal bell curve in more than one di-
mension, but that doesn’t matter to us right now. The useful part for us is
that we have a collection of feature vectors and labels, so that we can look at
ways in which the dataset might be split into subsets.

The key to the preceding code is the call to make_classification, which
accepts the number of samples requested and the fraction for each class.
The np.where calls simply find all the class 0 and class 1 instances so that len
can count them.

Earlier, we talked about the importance of preserving—or at least
approaching—the actual prior probabilities of the different classes in our
dataset. If one class makes up 10 percent of real world cases, it would ideally
make up 10 percent of our dataset. Now we need to find a way to preserve
this prior class probability in the subsets we make for training, validation,
and test. There are two main ways to do this: partitioning by class and ran-
dom sampling.

Partitioning by Class
The exact approach, which is suitable when the dataset is small or perhaps
when one class is rare, is to determine the number of samples represent-
ing each class, and then set aside selected percentages of each, by class, be-
fore merging them together. So, if there are 9,000 samples from class 0, and
1,000 samples from class 1, and we want to put 90 percent of the data into
training and 5 percent each into validation and test, we would select 8,100
samples, at random, from the class 0 collection and 900 samples, at random,
from the class 1 collection to make up the training set. Similarly, we would
randomly select 450 of the remaining 900 unused class 0 samples for the val-
idation set along with 50 of the remaining unused class 1 data. The remain-
ing class 0 and class 1 samples become the test set.

Listing 4-1 shows the code to construct the subsets using a 90/5/5 split
of the original data.

import numpy as np
from sklearn.datasets import make classification

a,b = make_classification(n_samples=10000, weights=(0.9,0.1))
idx = np.where(b == 0)[0]

X0 = a[idx,:]

yo = b[idx]

idx = np.where(b == 1)[0]

Working with Data 69

70

Chapter 4

Practical Deep Learning with Python (Sample) © 2021 by Ronald T. Kneusel

x1 = a[idx,:]
yl = b[idx]

idx = np.argsort(np.random.random(yo.shape))

yo = yo[idx]
X0 = x0[idx]
idx = np.argsort(np.random.random(y1.shape))
y1 = y1[idx]
x1 = x1[idx]

ntrno = int(0.9*x0.shape[0])

ntrnl = int(0.9*x1.shape[0])

xtrn = np.zeros((int(ntrno+ntrn1),20))
ytrn = np.zeros(int(ntrno+ntrni))

xtrn[:ntrn0] = x0[:ntrno]
xtrn[ntrno:] = x1[:ntrn1]
ytrn[:ntrno] = yo[:ntrno]
ytrn[ntrno:] = yi[:ntrn1]

no = int(x0.shape[0]-ntrno)

nl = int(x1.shape[0]-ntrn1)

xval = np.zeros((int(no/2+n1/2),20))
yval = np.zeros(int(no/2+n1/2))
xval[:(no//2)] = xo[ntrno: (ntrno+no//2)]
xval[(n0//2):] = xa[ntrni:(ntrni+n1//2)]
yval[:(no//2)] = yo[ntrno:(ntrno+n0//2)]
yval[(n0//2):] = yi[ntrni:(ntrni+n1//2)]

xtst = np.concatenate((x0[(ntrno+n0//2):],x1[(ntrn1+n1//2):]))
ytst = np.concatenate((yo[(ntrno+no//2):],y1[(ntrn1+n1//2):]))

Listing 4-1: Exact construction of training, validation, and test datasets

There’s a lot of bookkeeping in this code. First, we create the dummy
dataset @ and split it into class 0 and class 1 collections, stored in x0,y0 and
x1,y1, respectively. We then randomize the ordering @. This will let us pull
off the first n samples for the subsets without worrying that we might be in-
troducing a bias because of ordering in the data. Because of how sklearn
generates the dummy dataset, this step isn’t required, but it’s always a good
idea to ensure randomness in the ordering of samples.

We use a trick that’s helpful when reordering samples. Because we store
the feature vectors in one array and the labels in another, the NumPy shuffle
methods will not work. Instead, we generate a random vector of the same
length as our number of samples and then use argsort to return the indices
of the vector that would put it in sorted order. Since the values in the vector
are random, the ordering of the indices used to sort it will also be random.
These indices then reorder the samples and labels so that the each label is
still associated with the correct feature vector.

Practical Deep Learning with Python (Sample) © 2021 by Ronald T. Kneusel

Next, we extract the first 90 percent of samples for the two classes and
build the training subset with samples in xtrn and labels in ytrn ®. We do the
same for the 5 percent validation set @ and the remaining 5 percent for the
test set ©.

Partitioning by class is tedious, to say the least. We do know, however,
that the class 0 to class 1 ratio in each of the subsets is exactly the same.

Random Sampling

Must we be so precise? In general, no. The second common method for par-
titioning the full dataset is via random sampling. If we have enough data—
and 10,000 samples is enough data—we can build our subsets by randomiz-
ing the full dataset and then extracting the first 90 percent of samples as the
training set, the next 5 percent as the validation set, and the last 5 percent as
the test set. This is what we show in Listing 4-2.

X,y = make_classification(n_samples=10000, weights=(0.9,0.1))
idx = np.argsort(np.random.random(y.shape[0]))

x = x[idx]

y = ylidx]

ntrn = int(0.9*y.shape[0])
nval = int(0.05*y.shape[0])

xtrn = x[:ntrn]

ytrn = y[:ntrn]

xval = x[ntrn:(ntrn+nval)]
yval = y[ntrn:(ntrn+nval)]
xtst = x[(ntrn+nval):]
ytst = y[(ntrn+nval):]

Listing 4-2: Random construction of training, validation, and test datasets

We randomize the dummy dataset stored in x and y @. We need to know
how many samples to include in each of the subsets. First, the number of
samples for the training set is 90 percent of the total in the dataset ®, while
the number in the validation set is 5 percent of the total. The remainder,
also b percent, is the test set ©.

This method is so much simpler than the one shown in Listing 4-1. What’s
the downside of using it? The possible downside is that the mix of classes in
each of these subsets might not quite be the fractions we want. For example,
imagine we want a training set of 9,000 samples, or 90 percent of the origi-
nal 10,000 samples, with 8,100 of them from class 0, and 900 of them from
class 1. Running the Listing 4-2 code 10 times gives the splits between class 0
and class 1 in the training set that are shown in Table 4-9.

Working with Data 7

72

Chapter 4

Practical Deep Learning with Python (Sample) © 2021 by Ronald T. Kneusel

Table 4-9: Ten Training Splits Generated by
Random Sampling

Run Class 0 Class 1
8058 (89.5] 942 (10.5]
8093 (89.9) 907 (10.1)
8065 (89.6) 935 (10.4)
8081 (89.8) 919 (10.2)
8045 (89.4) 955 (10.6)
8045 (89.4) 955 (10.6)
8066 (89.6) 934 (10.4)
8064 (89.6) 936 (10.4)
8071 (89.7) 929 (10.3)

0 8063 (89.6) 937 (10.4)

— 000N NWN—

The number of samples in class 1 ranges from as few as 907 samples to
as many as 955 samples. As the number of samples of a particular class in
the full dataset decreases, the number in the subsets will start to vary more.
This is especially true of smaller subsets, like the validation and test sets.
Let’s do a separate run, this time looking at the number of samples from
each class in the fest set (Table 4-10).

Table 4-10: Ten Test Splits Generated
by Random Sampling

Run Class 0 Class 1
746 (89.2] 54 (10.9)
450 (90.0) 50 (10.0)
444 (88.8) 56 (11.2)
450 (90.0) 50 (10.0)
451(90.2) 49 (9.8)
462 (92.4) 38 (7.6)
441 (88.2) 59 (11.8)
449 (89.8) 51(10.2)
449 (89.8) 51 (10.2)

0 438(87.6) 62(12.4)

— 00O NO O A WN —

In the test set, the number of samples from class 1 ranges from 38 to 62.
Will these differences influence how the model learns? Probably not,
but they might make the test results look better than they are, as most mod-
els struggle to identify the classes that are least common in the training set.
The possibility exists of a pathological split that results in having no exam-
ples from a particular class, but in practice, it’s not really that likely unless
your pseudorandom number generator is particularly poor. Still, it’s worth
keeping the possibility in mind. If concerned, use the exact split approach in
Listing 4-1. In truth, the better solution is, as always, to get more data.

Practical Deep Learning with Python (Sample) © 2021 by Ronald T. Kneusel

Algorithmically, the steps to produce the training, validation, and test
splits are as follows:

1. Randomize the order of the full dataset so that classes are evenly
mixed.

2. Calculate the number of samples in the training (ntrn) and valida-
tion (nval) sets by multiplying the number of samples in the full
dataset by the desired fraction. The remaining samples will fall into
the test set.

3. Assign the first ntrn samples to the training set.
4. Assign the next nval samples to the validation set.

5. Finally, assign the remaining samples to the test set.

At all times, ensure that the order of the samples is truly random, and
that when reordering the feature vectors, you’re sure to reorder the labels
in the exact same sequence. If this is done, this simple splitting process will
give a good split unless the dataset is very small or some classes are very rare.

We neglected to discuss one consequence of this approach. If the full
dataset is small to begin with, partitioning it will make the training set even
smaller. In Chapter 7, we’ll see a powerful approach to dealing with a small
dataset, one that’s used heavily in deep learning. But first, let’s look at a
principled way to work with a small dataset to get an idea of how well it will
perform on new data.

k-Fold Cross Validation

Modern deep learning models typically need very large datasets, and there-
fore, you're able to use a single training/validation/test split as described
previously. More traditional machine learning models, like those in Chap-
ter 6, however, often work with datasets that are too small (in general) for
deep learning models. If we use a single training/validation/test split on
those datasets, we might be holding too much data back for testing, or else
have too few samples in the test set to get a meaningful measurement of how
well the model is working.

One way to address this issue is to use k-fold cross validation, a technique
that ensures each sample in the dataset is used at some point for training
and testing. Use this technique for small datasets intended for traditional
machine learning models. It can also be helpful as a way to decide between
different models.

To do k-fold cross validation, first partition the full, randomized dataset
into k non-overlapping groups, x(, X1, X9, . ..,X;-1. Your k value is arbitrary,
though it typically ranges from 5 to 10. Figure 4-4a shows this split, imagin-
ing the entire dataset laid out horizontally.

Working with Data 73

74

Chapter 4

Practical Deep Learning with Python (Sample) © 2021 by Ronald T. Kneusel

We can train a model by holding xy back as test data and using the other
groups, x1,X9, . . ., X;—1 as training data. We’ll ignore validation data for the
time being; after building the current training data, we can always hold some
of it back as validation data if we want. Call this trained model m(. You can
then start over from scratch, this time holding back x; as test data and train-
ing with all the other groups, including xy. We’ll get a new trained model.
Call it m1. By design, mg and m are the same #ype of model. What we are in-
terested in here is multiple instances of the same type of model trained with
different subsets of the full dataset.

Repeat this process for each of the groups, as in Figure 4-4b, and we’ll
have k models trained with (k- 1)/k of the data each, holding 1/k of the data
back for testing. What k should be depends upon how much data is in the
full dataset. Larger k£ means more training data but less test data. If the per
model training time is low, tend toward a larger k as this increases the per
model training set size.

(a)
| full dataset =
X, X, X, X, X, X X,

fold
(b)

test, 1rc1in0

fr(:lin1 test, train]

trc1in2 test, 'rrc:in2

Figure 4-4: k-fold cross validation. Partitioning the dataset into non-overlapping regions,
k=7(a). The first three train/test splits using first xq for test, then x; for test, and so on (b).

Once the k models are trained, you can evaluate them individually and
average their metrics to get an idea of how a model trained on the full dataset
would behave. See Chapter 11 to learn about ways to evaluate a model. If us-
ing k-fold cross validation to select among two or more models (say, between
using k-NN or a Support Vector Machinel), repeat the full training and eval-
uation process for each type of model and compare their results. Once we
have an idea of how well the model is performing on the averaged evalua-

1. These are examples of classical machine learning models. We’ll learn more about them later
in the book.

Practical Deep Learning with Python (Sample) © 2021 by Ronald T. Kneusel

tion metrics, we can start over again and train the selected model type using
all of the dataset for training. This is the advantage of k-fold cross validation:
it lets you have your cake and eat it, too.

Look at Your Data

It’s quite easy to assemble features and feature vectors, and then go ahead
and put the training, validation, and test sets together without pausing to
look at the data to see if it makes sense. This is especially true with deep
learning models using huge collections of images or other multidimensional
data. Here are a few problems you’ll want to look out for:

Mislabeled data Assume we’re building a large dataset—one with hun-
dreds of thousands of labeled samples. Further, assume that we’re go-
ing to use the dataset to build a model that will be able to tell the dif-
ference between dogs and cats. Naturally, we need to feed the model
many, many dog images and many, many cat images. No problem, you
say; we’ll just collect a lot of images using something like Google Images.
Okay, that’ll work. But if you simply set up a script to download image
search results matching “dog” and “cat,” you’ll also get a lot of other im-
ages that are not of dogs or cats, or images that contain dogs and cats
along with other things. The labels won’t be perfect. While it is true that
deep learning models can be resistant to such label noise, you want to
avoid it whenever possible.

Missing or outlier data Imagine you have a collection of feature vec-
tors, and you have no idea how common it is that features are missing. If
alarge percentage of a particular feature is missing, that feature will be-
come a hindrance to the model and you should eliminate it. Or, if there
are extreme outliers in the data, you might want to remove those sam-
ples, especially if you’re going to standardize, since outliers will strongly
affect the mean subtracted from the feature values.

Searching for Problems in the Data

How can we look for these problems in the data? Well, for feature vectors,
we can often load the dataset into a spreadsheet, if it isn’t too large. Or we
could write a Python script to summarize the data, feature by feature, or
bring the data into a statistics program and examine it that way.

Typically, when summarizing values statistically, we look at the mean
and standard deviation, both defined previously, as well as the largest value
and the smallest value. We could also look at the median, which is the value
we get when we sort the values from smallest to largest and pick the one in
the middle. (If the number of values is even, we’d average the two middle
values.) Let’s look at one of the features from our earlier example. After
sorting the values from smallest to largest, we can summarize the data in the
following way.

Working with Data 75

76

Chapter 4

Practical Deep Learning with Python (Sample) © 2021 by Ronald T. Kneusel

X2

0.0705
0.3408
0.9804

1.5362 3
1.7821 Mean ()
2.0085 Standard deviation (o)

21271 Standard error (SE)

2'3]90 Medion
23944 Minimum
27561 Maximum
2.7887

3.0150

3.9897

4.3465

4.8231

2.3519
1.3128
0.3390
2.3190
0.0705
4.8231

We’ve already explored the concepts of mean, minimum, maximum,
and standard deviation. The median is there, as well; I've highlighted it in
the list of features on the left. Notice that after sorting, the median appears
in the exact middle of the list. It’s often known as the 50th percentile, because
the same amount of data is above it as below.

There is also a new value listed, the standard error, also called the stan-
dard error of the mean. This is the standard deviation divided by the square
root of the number of values in the dataset:

g
SE=—
vn

The standard error is a measure of the difference between our mean value,
X, and the mean value of the parent distribution. The basic idea is this: if we
have more measurements, we’ll have a better idea of the parent distribution
that is generating the data, and so the mean value of the measurements will
be closer to the mean value of the parent distribution.

Notice also that the mean and the median are relatively close to each
other. The phrase relatively close has no rigorous mathematical meaning, of
course, but we can use it as an ad hoc indicator that the data might be nor-
mally distributed, meaning we could reasonably replace the missing values
by the mean (or median), as we saw previously.

The preceding values were computed easily using NumPy, as seen in
Listing 4-3.

import numpy as np

.F

[0.3408,3.0150,4.3465,2.1271,2.7561,
2.7887,4.8231,0.0705,3.9897,0.9804,
2.3944,2.0085,1.7821,1.5362,2.3190]

np.array(f)

-+
n

Practical Deep Learning with Python (Sample) © 2021 by Ronald T. Kneusel

print
print("mean = %0.4f" % f.mean())
print("std = %0.4f" % f.std())

N

print("SE = %0.4f"
print("median= %0.4f"
print("min = %0.4f"
print("max = %0.4f"

(f.std()/np.sqrt(f.shape[0])))
np.median(f))

f.min())

f.max())

3R 3R X

Listing 4-3: Calculating basic statistics. See feature_stats.py.

After loading NumPy, we manually define the xg features (f) and turn

them into a NumPy array @. Once the data is a NumPy array, calculating the

desired values is straightforward, as all of them, except the standard error,

are simple method or function calls. The standard error is calculated via the
preceding formula @ where the first element of the tuple NumPy returns for

the shape is the number of elements in a vector.

Numbers are nice, but pictures are often better. You can visualize the
data with a box plot in Python. Let’s generate one to view the standardized
values of our dataset. Then we’ll discuss what the plot is showing us. The
code to create the plot is in Listing 3-2.

import numpy as np
import matplotlib.pyplot as plt
d = [[0.6930, -1.1259, -1.5318, 0.9525, 1.1824],
.5464, -0.0120, 0.5051, -0.0192, -0.1141],
.8912, 1.3826, 1.5193, -1.1996, -1.1403],
.1690, 0.4970, -0.1712, -0.5340, 0.3047],
.9221, -0.1071, 0.3079, -0.3885, -0.4753],
.5699, -1.4767, 0.3327, 1.4714, 1.1807],
.3479, 0.4775, 1.8823, -1.4031, -0.7396],
.0887, -0.4353, -1.7377, -1.2349, 1.7456],
.0775, 0.9524, 1.2475, 0.7291, -1.1207],
.4657, 0.9250, -1.0446, 0.4262, -1.0279],
.3332, 1.4501, 0.0323, 1.1102, -0.8966],
.3005, -1.4500, -0.2615, 1.7033, -0.2505],
.4377, -0.2472, -0.4340, -0.7032, 0.3362],
.3016, -1.5527, -0.6213, 0.1780, -0.7517],
[-1.1315, 0.7225, -0.0250, -1.0881, 1.7674]]
d = np.array(d)
plt.boxplot(d)
plt.show()

L N B B e e T e B B T e B B I B
|
O r O FRr P P OORKr OFr OO O

Listing 4-4: A box plot of the standardized toy dataset. See box_plot.py.

Working with Data

77

78

Chapter 4

Practical Deep Learning with Python (Sample) © 2021 by Ronald T. Kneusel

The values themselves are in Table 4-6. We can store the data as a 2D ar-
ray and make the box plot using Listing 4-4. We manually define the array @
and then plot it @. The plot is interactive, so experiment with the environ-
ment provided until you feel comfortable with it. The old-school floppy disk
icon will store the plot to your disk.

The box plot generated by the program is shown in Figure 4-5.

2.0
T
T I
I I
I I

_

15 T I
I I
I I
l I

0.5F

-1.5} - —_

-2.0 : : : : :
1 2 3 4 5
Figure 4-5: The box plot produced by Listing 4-4

How do we interpret the box plot? I'll show you by examining the box
representing the standardized feature xo, shown in Figure 4-6.

The lower box line, Q1, marks the end of the first quartile. This means
that 25 percent of the data values for a feature are less than this value. The
median, Q2, is the 50 percent mark, and therefore is the end of the second
quartile. Half the data values are less than this value. The upper box line,
Q3, is the 75 percent mark. The remaining 25 percent of the data values are
above Q3.

Practical Deep Learning with Python (Sample) © 2021 by Ronald T. Kneusel

2.0 .
—
Outlier
1.5}F o Q3+ 1.5*IQR
1
1
10F 1
1
1
05} 1
Q3
or IQR Median (Q2)
-0.5} T Q]
1
“10} :
1
1
-1.5} |
—1— Q1 - 1.5*IQR
-2.0

1
Figure 4-6: The standardized feature xo from our dataset

Also shown are two lines above and below the box. These are the whiskers.
(Matplotlib calls them fliers, but this is an unconventional term.) The whiskers
are the values at Q1 - 1.5 x IQR and Q3 + 1.5 x IQR. By convention, values
outside this range are considered outliers.

Looking at outliers can be helpful, because you might realize they’re
mistakes in data entry and drop them from the dataset. Whatever you do
with the outliers, however, be prepared to justify it should you ever plan
on publishing or otherwise presenting results based on the dataset. Simi-
larly, you might be able to drop samples with missing values, but make sure
there’s no systematic error causing the missing data, and check that you’re
not introducing bias into the data by dropping those samples. In the end,
common sense should override slavish adherence to convention.

Cautionary Tales

So, at the risk of being repetitive, look at your data. The more you work with
it, the more you will understand it, and the more effectively you will be able
to make reasonable decisions about what goes in and what comes out, and
why. Recall that the goal of the dataset is to faithfully and completely capture
the parent distribution, or what the data will look like in the wild when the
model is used.

Working with Data 79

80

Practical Deep Learning with Python (Sample) © 2021 by Ronald T. Kneusel

Two quick anecdotes come to mind. They both illustrate ways models
may well learn things we did not intend or even consider.

The first was told to me as an undergraduate student in the 1980s. In
this story, an early form of neural network was tasked with detecting tank
and non-tank images. The neural network seemed to work well in testing,
but when used in the field, the detection rate dropped rapidly. The research-
ers realized that the tank images were taken on a cloudy day, and the non-
tank were taken on a sunny day. The recognition system had not learned the
difference between tanks and non-tanks at all; instead, it had learned the dif-
ference between cloudy and sunny days. The moral of this story is that the
training set needs to include all of the conditions the model will see in the
wild.

The second anecdote is more recent. I heard it in a talk at the Neural
Information Processing Systems (NIPS) 2016 conference in Barcelona,
Spain, and later found it repeated in the researchers’ paper.? In this case,
the authors, who were demonstrating their technique for getting a model
to explain its decisions, trained a model that claimed to tell the difference
between images of huskies and images of wolves. The model appeared to
work rather well, and during the talk, the authors polled the audience com-
posed of machine learning researchers about how believable the model was.
Most thought it was a good model. Then, using their technique, the speaker
revealed that the network had not learned much, if anything, about the dif-
ference between huskies and wolves. Instead, it had learned that the wolf
pictures had snow in the background and the husky pictures did not.

Think about your data and be on the lookout for unintended conse-
quences. Models are not human. We bring a lot of preconceived notions
and unintended biases to the dataset.

Summary

Chapter 4

In this chapter, we described the components of a dataset (classes, labels,
features, feature vectors) and then characterized a good dataset, emphasiz-
ing the importance of ensuring that the dataset well represents the parent
distribution. We then described basic data preparation techniques includ-
ing how to scale data and one approach for dealing with missing features.
After that, we learned how to separate the full dataset into training, valida-
tion, and test subsets and how to apply k-fold cross validation, which is espe-
cially useful with small datasets. We ended the chapter with tips on how to
simply examine the data to make sure it makes sense.

In the next chapter, we’ll take what we have learned in this chapter and
apply it directly to construct the datasets we will use throughout the remain-
der of this book.

2. Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. “Why Should I Trust You?: Ex-
plaining the Predictions of Any Classifier.” In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 1135-1144. ACM, 2016.

