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T H E  T E X T - P R O C E S S I N G  P I P E L I N E

Now that you understand the structure of 
an NLP application, it’s time to see these 

underlying concepts in action. In this chap-
ter, you’ll install spaCy and set up your working 

environment. Then you’ll learn about the text-processing 
pipeline, a series of basic NLP operations you’ll use to 
determine the meaning and intent of a discourse. These 
operations include tokenization, lemmatization, part-
of-speech tagging, syntactic dependency parsing, and 
named entity recognition. 
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Setting Up Your Working Environment
Before you start using spaCy, you need to set up a working environment by 
installing the following software components on your machine:

•	 Python 2.7 or later, or 3.4 or later

•	 The spaCy library

•	 A statistical model for spaCy 

You’ll need Python 2.7 or later, or 3.4 or later to use spaCy v2.0. Down
load it at https://www.python.org/downloads/ and follow the instructions to set 
up a Python environment. Next, install spaCy in your Python environment 
using pip by running the following command: 

$ pip install spacy 

If you have more than one Python installation on your system, select 
the pip executable associated with the Python installation you want to use. 
For instance, if you want to use spaCy with Python 3.5, you’d run the follow-
ing command:

$ pip3.5 install spacy 

If you already have spaCy installed on your system, you might want 
to upgrade it to a new release. The examples in this book assume you 
use spaCy v2.0.x or later. You can verify which version of spaCy you have 
installed with the following command: 

$ python -m spacy info

Once again, you might need to replace the python command with the 
command for the python executable used in your particular environment, 
say, python3.5. From now on, we’ll use python and pip regardless of the exe-
cutables your system uses.

If you decide to upgrade your installed spaCy package to the latest ver-
sion, you can do this using the following pip command: 

$ pip install -U spacy

Installing Statistical Models for spaCy
The spaCy installation doesn’t include statistical models that you’ll need 
when you start using the library. The statistical models contain knowledge 
collected about the particular language from a set of sources. You must 
separately download and install each model you want to use.

Several pretrained statistical models are available for different lan-
guages. For English, for example, the following models are available for 
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download from spaCy’s website: en_core_web_sm, en_core_web_md, en_core_web_lg, 
and en_vectors_web_lg. The models use the following naming convention: 
lang_type_genre_size. Lang specifies the language. Type indicates the model’s 
capabilities (for example, core is a general-purpose model that includes 
vocabulary, syntax, entities, and vectors). Genre indicates the type of text 
the model has been trained on: web (such as Wikipedia or similar media 
resources) or news (news articles). Size indicates how large the model is: 
lg is large, md is medium, and sm is small. The larger the model is, the more 
disk space it requires. For example, the en_vectors_web_lg-2.1.0 model takes 
631MB, whereas en_core_web_sm-2.1.0 takes only 10MB.

To follow along with the examples provided in this book, en_core_web_sm 
(the most lightweight model) will work fine. spaCy will choose it by default 
when you use spaCy’s download command: 

$ python -m spacy download en

The en shortcut link in the command instructs spaCy to download and 
install the best-matching default model for the English language. The best-
matching model, in this context, means the one that is generated for the 
specified language (English in this example), a general purpose model, and 
the most lightweight.

To download a specific model, you must specify its name, like this: 

$ python -m spacy download en_core_web_md 

Once installed, you can load the model using this same shortcut you 
specified during the installation:

nlp = spacy.load('en') 

Basic NLP Operations with spaCy
Let’s begin by performing a chain of basic NLP operations that we call a 
processing pipeline. spaCy does all these operations for you behind the 
scenes, allowing you to concentrate on your application’s specific logic. 
Figure 2-1 provides a simplified depiction of this process.

Pipeline

Input
text

Tokenization Lemmatization Tagging Parsing Entity
recognition

Doc
object

Figure 2-1: A high-level view of the processing pipeline
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The processing pipeline typically includes tokenization, lemmatization, 
part-of-speech tagging, syntactic dependency parsing, and named entity 
recognition. We’ll introduce each of these tasks in this section.

Tokenization 
The very first action any NLP application typically performs on a text is 
parsing that text into tokens, which can be words, numbers, or punctuation 
marks. Tokenization is the first operation because all the other operations 
require you to have tokens already in place. 

The following code shows the tokenization process: 

u import spacy
v nlp = spacy.load('en') 
w doc = nlp(u'I am flying to Frisco')
x print([w.text for w in doc])

We start by importing the spaCy library u to gain access to its function-
ality. Then, we load a model package using the en shortcut link v to create 
an instance of spaCy’s Language class. A Language object contains the lan-
guage’s vocabulary and other data from the statistical model. We call the 
Language object nlp. 

Next, we apply the object just created w to a sample sentence, creating 
a Doc object instance. A Doc object is a container for a sequence of Token 
objects. spaCy generates it implicitly based on the text you provide it. 

At this point, with just three lines of code, spaCy has generated the 
grammatical structure for the sample sentence. How you’ll use it is entirely 
up to you. In this very simple example, you just print out the text content of 
each token from the sample sentence x. 

The script outputs the sample sentence’s tokens as a list:

['I', 'am', 'flying', 'to', 'Frisco']

The text content—the group of characters that compose the token, such 
as the letters “a” and “m” in the token “am”—is just one of many properties 
of a Token object. You can also extract various linguistic features assigned 
to a token, as you’ll see in the following examples.

Lemmatization
A lemma is the base form of a token. You can think of it as the form in  
which the token would appear if it were listed in a dictionary. For example, 
the lemma for the token “flying” is “fly.” Lemmatization is the process of 
reducing word forms to their lemma. The following script provides a  
simple example of how to do lemmatization with spaCy:

import spacy
nlp = spacy.load('en')
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doc = nlp(u'this product integrates both libraries for downloading and 
applying patches')
for token in doc:
  print(utoken.text, vtoken.lemma_)

The first three lines in the script are the same as those in the previous 
script. Recall that they import the spaCy library, load an English model 
using the en shortcut and create a text-processing pipeline, and apply the 
pipeline to a sample sentence—creating a Doc object through which you 
can access the grammatical structure of the sentence. 

N O T E 	 In grammar, sentence structure is the arrangement of individual words, as well as 
phrases and clauses in a sentence. The grammatical meaning of a sentence depends 
on this structural organization.

Once you have a Doc object containing the tokens from your example 
sentence, you iterate over those tokens in a loop, and then print out a 
token’s text content u along with its corresponding lemma v. This script 
produces the following output (I’ve tabulated it to make it more readable):

this        this
product     product
integrates  integrate
both        both
libraries   library
for         for
downloading download
and         and
applying    apply
patches     patch

The column on the left contains the tokens, and the column on the 
right contains their lemmas. 

Applying Lemmatization for Meaning Recognition
Lemmatization is an important step in the task of meaning recognition. To 
see how, let’s return to the sample sentence from the previous section: 

I am flying to Frisco.

Suppose this sentence was submitted to an NLP application interacting 
with an online system that provides an API for booking tickets for trips. The 
application processes a customer’s request, extracting necessary information 
from it and then passing on that information to the underlying API. This 
design might look like the one depicted in Figure 2-2.
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I am flying to Frisco.
NLP

application

Online ticket booking
API

Form of travel: fly
Destination: San Francisco

Figure 2-2: Using lemmatization in the process of extracting necessary  
information from a customer’s request 

The NLP application tries to get the following information from a cus-
tomer’s request: a form of travel (plane, rail, bus, and so on) and a destina-
tion. The application needs to first determine whether the customer wants 
an air ticket, a railway ticket, or a bus ticket. To determine this, the applica-
tion searches for a word that matches one of the keywords in the predefined 
list. An easy way to simplify the search for these keywords is to first convert 
all the words in a sentence being processed to their lemmas. In that case, the 
predefined list of keywords will be much shorter and clearer. For example, 
you won’t need to include all the word forms of the word fly (such as “fly,” 
“flying,” “flew,” and “flown”) to serve as an indicator that the customer wants 
an air ticket, reducing all possible variants to the base form of the word—
that is, “fly.”

Lemmatization also comes in handy when the application tries to deter-
mine a destination from a submitted request. There are a lot of nicknames 
for the globe’s cities. But the system that books the tickets requires official 
names. Of course, the default Tokenizer that performs lemmatization won’t 
know the difference between nicknames and official names for cities, coun-
tries, and so on. To solve this problem, you can add special case rules to an 
existing Tokenizer instance. 

The following script illustrates how you might implement lemmatiza-
tion for the destination cities example. It prints out the lemmas of the 
words composing the sentence. 

import spacy
from spacy.symbols import ORTH, LEMMA
nlp = spacy.load('en')
doc = nlp(u'I am flying to Frisco') 
print([w.text for w in doc])

u special_case = [{ORTH: u'Frisco', LEMMA: u'San Francisco'}]
v nlp.tokenizer.add_special_case(u'Frisco', special_case)
w print([w.lemma_ for w in nlp(u'I am flying to Frisco')])
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You define a special case for the word Frisco u by replacing its default 
lemma with San Francisco. Then you add this special case to the Tokenizer 
instance v. Once added, the Tokenizer instance will use this special case 
each time it’s asked for the lemma of Frisco. To make sure that everything 
works as expected, you print out the lemmas of the words in the sentence w.

The script generates the following output: 

['I', 'am', 'flying', 'to', 'Frisco']
['-PRON-', 'be', 'fly', 'to', 'San Francisco']

The output lists the lemmas for all words occurring in the sentence 
with the exception of Frisco, for which it lists San Francisco. 

Part-of-Speech Tagging
A part-of-speech tag tells you the part-of-speech (noun, verb, and so on) of 
a given word in a given sentence. (Recall from Chapter 1 that a word can 
act as more than one part of speech depending on the context in which it 
appears.) 

In spaCy, part-of-speech tags can include detailed information about a 
token. In the case of verbs, they might tell you the following features: tense 
(past, present, or future), aspect (simple, progressive, or perfect), person 
(1st, 2nd, or 3rd), and number (singular or plural). 

Extracting these verb part-of-speech tags can help identify a user’s intent 
when tokenization and lemmatization alone aren’t sufficient. For instance, 
the lemmatization script for the ticket booking application in the preceding 
section won’t decide how the NLP application chooses words in a sentence to 
compose a request to the underlying API. In a real situation, doing so might 
be quite complicated. For example, a customer’s request might consist of 
more than one sentence: 

I have flown to LA. Now I am flying to Frisco.

For these sentences, the results of lemmatization would be as follows:

['-PRON-', 'have', 'fly', 'to', 'LA', '.', 'now', '-PRON-', 'be', 'fly', 'to', 
'San Francisco', '.']

Performing lemmatization alone isn’t enough here; the application might 
consider the lemmas “fly” and “LA” from the first sentence as the keywords, 
indicating that the customer intends to fly to LA when in fact the customer 
intends to fly to San Francisco. Part of the problem is that lemmatization 
changes verbs to their infinitive forms, making it hard to know the role they 
play in a sentence. 

This is where part-of-speech tags come into play. In English, the core 
parts of speech include noun, pronoun, determiner, adjective, verb, adverb, 
preposition, conjunction, and interjection. (See the linguistic primer in 
the Appendix for more information about these parts of speech.) In spaCy, 
these same categories—plus some additional ones for symbols, punctuation 
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marks, and others—are called coarse-grained parts of speech and are available 
as a fixed set of tags through the Token.pos (int) and Token.pos_ (unicode) 
attributes. 

Also, spaCy offers fine-grained parts of speech tags that provide more 
detailed information about a token, covering morphological features, such 
as verb tenses and types of pronouns. Naturally, the list of fine-grained parts 
of speech contains many more tags than the coarse-grained list. The fine-
grained part-of-speech tags are available as the Token.tag (int) and Token.tag_  
(unicode) attributes.

Table 2-1 lists some of the common part-of-speech tags used in spaCy 
for English models.

Table 2-1: Some Common spaCy Part-of-Speech Tags

TAG (fine-grained 
part of speech)

POS (coarse-grained 
part of speech)

Morphology Description 

NN NOUN Number=sing Noun, singular 
NNS NOUN Number=plur Noun, plural
PRP PRON PronType=prs Pronoun, personal
PRP$ PRON PronType=prs

 Poss=yes
Pronoun, possessive

VB VERB VerbForm=inf Verb, base form
VBD VERB VerbForm=fin

 Tense=past
Verb, past tense

VBG VERB VerbForm=part
 Tense=pres
 Aspect=prog

Verb, gerund, or 
present participle

JJ ADJ Degree=pos Adjective

N O T E 	 You can find the entire list of the fine-grained part-of-speech tags used in spaCy in 
the “Part-of-Speech Tagging” section in the Annotation Specifications manual at 
https://spacy.io/api/annotation#pos-tagging. 

Tense and aspect are perhaps the most interesting properties of verbs 
for NLP applications. Together, they indicate a verb’s reference to a position 
in time. For example, we use the present tense progressive aspect form of a verb 
to describe what is happening right now or what will happen in the near 
future. To form the present tense progressive aspect verb, you add the pres-
ent tense form of the verb “to be” before an -ing verb. For example, in the 
sentence “I am looking into it,” you add “am”—the form of the verb “to be” 
in the first person, present tense—before the -ing verb “looking.” In this 
example, “am” indicates the present tense and “looking” points to the pro-
gressive aspect.

https://spacy.io/api/annotation#pos-tagging
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Using Part-of-Speech Tags to Find Relevant Verbs
The ticket booking application could use the fine-grained part-of speech 
tags available in spaCy to filter the verbs in the discourse, choosing only 
those that could be key to determining the customer’s intent. 

Before moving onto the code for this process, let’s try to figure out what 
kind of utterances a customer might use to express their intention to book 
a plane ticket to, say, LA. We could start by looking at some sentences that 
contain the following combination of lemmas: “fly”, “to”, and “LA”. Here are 
some simple options: 

I flew to LA. 
I have flown to LA. 
I need to fly to LA. 
I am flying to LA. 
I will fly to LA. 

Notice that although all of these sentences would include the “fly to LA” 
combination if reduced to lemmas, only some of them imply the customer’s 
intent to book a plane ticket to LA. The first two definitely aren’t suitable.

A quick analysis reveals that the past and past perfect forms of the verb 
“fly”—the tenses used in the first two sentences—don’t imply the intent we’re  
looking for. Only the infinitive and present progressive forms are suitable.  
The following script illustrates how to find those forms in the sample 
discourse: 

import spacy
nlp = spacy.load('en')
doc = nlp(u'I have flown to LA. Now I am flying to Frisco.')
print([w.text for w in doc if uw.tag_== v'VBG' or w.tag_== w'VB'])

The tag_ property u of a Token object contains the fine-grained part-
of-speech attribute assigned to that object. You use a loop performed over 
the tokens composing the discourse to check whether the fine-grained 
part-of-speech tag assigned to a token is VB (a verb in the base, or infinitive, 
form) w or VBG (a verb in the present progressive form) v. 

In the sample discourse, only the verb “flying” in the second sentence 
meets the specified condition. So you should see the following output: 

['flying']

Of course, fine-grained part-of-speech tags aren’t only assigned to 
verbs; they’re also assigned to the other parts of speech in a sentence. For 
example, spaCy would recognize LA and Frisco as proper nouns—nouns 
that are the names of individuals, places, objects, or organizations—and 
tag them with PROPN. If you wanted, you could add the following line of code 
to the previous script:

print([w.text for w in doc if w.pos_ == 'PROPN'])
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Adding that code should output the following list:

['LA', 'Frisco']

The proper nouns from both sentences of the sample discourse are in 
the list. 

Context Is Important
Fine-grained part-of-speech tags might not always be enough to determine 
an utterance’s meaning. For this, you might still need to rely on context. 
As an example, consider the following utterance: “I am flying to LA.” The 
part-of-speech tagger will assign the VBG tag to the verb “flying” in this 
example, because it’s in the present progressive form. But because we use 
this verb form to describe either what is happening right now or what will 
happen in the near future, the utterance might mean either “I’m already 
in the sky, flying to LA.” or “I’m going to fly to LA.” When submitted to the 
ticket booking NLP application, the application should interpret only one 
of these sentences as “I need an air ticket to LA.” Similarly, consider the 
following discourse: “I am flying to LA. In the evening, I have to be back 
in Frisco.” This most likely implies that the speaker wants an air ticket from 
LA to Frisco for an evening flight. You’ll find more examples about recog-
nizing meaning based on context in “Using Context to Improve the Ticket-
Booking Chatbot” on page 91.

Syntactic Relations
Now let’s combine the proper nouns with the verb that the part-of-speech 
tagger selected earlier. Recall that the list of verbs you could potentially 
use to identify the intent of the discourse contains only the verb “flying” in 
the second sentence. How can you get the verb/proper noun pair that best 
describes the intent behind the discourse? A human would obviously com-
pose the verb/proper noun pairs from words found in the same sentence. 
Because the verb “flown” in the first sentence doesn’t meet the condition 
specified (remember that only infinitive and present progressive forms 
meet the condition), you’d be able to compose such a pair for the second 
sentence only: “flying, Frisco.” 

To handle these situations programmatically, spaCy features a syntactic 
dependency parser that discovers syntactic relations between individual tokens  
in a sentence and connects syntactically related pairs of words with a 
single arc. 

Like lemmas and part-of-speech tags discussed in the previous sec-
tions, syntactic dependency labels are linguistic features that spaCy assigns 
to the Token objects that make up a text contained in a Doc object. For 
example, the dependency label dobj stands for “direct object.” We could 
illustrate the syntactic relation it represents as an arrow arc, as shown in 
Figure 2-3.
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A syntactic dependency label describes the type of syntactic relation between 
two words in a sentence. In such a pair, one word is the syntactic governor 
(also called the head or parent) and the other is the dependent (also called 
the child). spaCy assigns a syntactic dependency label to the pair’s depen-
dent. For example, in the pair “need, ticket,” extracted from the sentence “I 
need a plane ticket,” the word “ticket” is the child and word “need” is the 
head, because “need” is the verb in what’s called a verb phrase. In this same 
sentence, “a plane ticket” is a noun phrase: the noun “ticket” is the head, and 
“a” and “plane” are its children. To learn more, consult the linguistic primer in 
“Dependency Grammars vs. Phrase Structure Grammars” on page 185.

Each word in a sentence has exactly one head. Consequently, a word can 
be a child only to one head. The opposite is not always the case. The same 
word can act as a head in none, one, or several pairs. The latter means that 
the head has several children. This explains why a dependency label is always 
assigned to the child. 

need ticket

VERB NOUN

dobj

Coarse-grained
part-of-speech tags

Head Child

Dependency label

Figure 2-3: A graphical representation of  
a syntactic dependency arc 

The dobj label is assigned to the word “ticket” because it’s the child 
of the relation. A dependency label is always assigned to the child. In 
your script, you can determine the head of a relation using the Token.head 
attribute.

You might also want to look at the other head/child relations in the 
sentence, like the ones shown in Figure 2-4.

I need plane ticket

dobj

det
nsubj

a

compound

Figure 2-4: Head/child relations in an entire sentence
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As you can see, the same word in a sentence can participate in several 
syntactic relations. Table 2-2 lists some of the most commonly used English 
dependency labels. 

Table 2-2: Some Common Dependency Labels

Dependency label Description

acomp Adjectival complement
amod Adjectival modifier
aux Auxiliary
compound Compound
dative Dative
det Determiner
dobj Direct object
nsubj Nominal subject
pobj Object of preposition
ROOT Root

The ROOT label marks the token whose head is itself. Typically, spaCy 
assigns it to the main verb of the sentence (the verb that is at the heart of 
the predicate). Every complete sentence should have a verb with the ROOT  
tag and a subject with the nsubj tag. The other elements are optional. 

N O T E 	 Most of the examples in this book will assume that the submitted text is a complete 
sentence and use the ROOT tag to locate the sentence’s main verb. Keep in mind that 
this won’t work for every possible input.

The following script illustrates how to access the syntactic dependency 
labels of the tokens in the discourse from the example in the “Part-of-Speech 
Tagging” on page 21: 

import spacy
nlp = spacy.load('en')
doc = nlp(u'I have flown to LA. Now I am flying to Frisco.')
for token in doc:
  print(token.text, utoken.pos_, vtoken.dep_)

The script outputs the coarse-grained part-of-speech tags u (see 
Table 2-1) and dependency labels assigned to the tokens v composing the 
sample discourse:  

I      PRON  nsubj
have   VERB  aux
flown  VERB  ROOT
to     ADP   prep
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LA     PROPN pobj
.      PUNCT punct
Now    ADV   advmod
I      PRON  nsubj
am     VERB  aux
flying VERB  ROOT
to     ADP   prep
Frisco PROPN pobj
.      PUNCT punct

But what it doesn’t show you is how words are related to each other in a 
sentence by means of the commonly called dependency arcs explained at the 
beginning of this section. To look at the dependency arcs in the sample dis-
course, replace the loop in the preceding script with the following one: 

for token in doc:
  print(utoken.head.text, token.dep_, token.text)

The head property of a token object u refers to the syntactic head of 
this token. When you print this line, you’ll see how words in the discourse 
sentences are connected to each other by syntactic dependencies. If they 
were presented graphically, you would see an arc for each line in the fol-
lowing output, except for the ROOT relation. The reason is that the word to 
which this label is assigned is the only word in a sentence that doesn’t have 
a head:

flown   nsubj  I
flown   aux    have
flown   ROOT   flown
flown   prep   to
to      pobj   LA
flown   punct  .
flying  advmod Now
flying  nsubj  I
flying  aux    am
flying  ROOT   flying
flying  prep   to
to      pobj   Frisco
flying  punct  .

Looking at the earlier list of syntactic dependencies, let’s try to figure 
out what labels point to the tokens that could potentially best describe the 
customer’s intent: in other words, you need to find a pair that would alone 
appropriately describe the customer’s intent. 

You might be interested in the tokens marked with the ROOT and pobj 
dependency labels, because in this example they’re key in intent recogni-
tion. As stated earlier, the ROOT label marks the main verb of the sentence, 
and pobj, in this example, marks the entity that—in conjunction with the 
verb—summarizes the meaning of the entire utterance.
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The following script locates words that are assigned those two depen-
dency labels:

import spacy
nlp = spacy.load('en')
doc = nlp(u'I have flown to LA. Now I am flying to Frisco.')

u for sent in doc.sents:
  v print([w.text for w in sent wif w.dep_ == 'ROOT' or w.dep_ == 'pobj'])

In this script, you shred the discourse u to separate the sentences with 
the doc.sents property, which iterates over the sentences in the document. 
Shredding a text into separate sentences can be useful when you need to 
find, for example, certain parts of speech in each sentence of the discourse. 
(We’ll discuss doc.sents in the next chapter, where you’ll see an example of 
how to refer to the tokens in a document with sentence-level indices.) This 
allows you to create a list of potential keywords for each sentence based on 
specific dependency labels assigned to the tokens v. The filter conditions 
used in this example are chosen based on the examination of the syntacti-
cally related pairs generated by the previous script. In particular, you pick 
up the tokens with ROOT and pobj dependency labels w, because these tokens 
form the pairs you’re interested in.

The script’s output should look as follows:

['flown', 'LA']
['flying', 'Frisco']

In both sentence pairs, the output nouns are the ones labeled as pobj. 
You could use this in your ticket booking application to choose the noun 
that best belongs with the verb. In this case, that would be “flying,” which 
goes with “Frisco.” 

This is a simplified example of information extraction using depen-
dency labels. In the following chapters, you’ll be given more sophisticated 
examples of how to iterate over the dependency tree of a sentence or even 
an entire discourse, extracting necessary pieces of information.  

Try It Yourself
Now that you know how to take advantage of lemmatization, part-of-speech 
tags, and syntactic dependency labels, you can put them all together to do 
something useful. Try combining the examples from the preceding sections 
into a single script that correctly identifies a speaker’s intent to fly to San 
Francisco. 

Your script should generate the following output:

 ['fly', 'San Francisco'] 

To achieve this, start with the latest script from this section and 
enhance the conditional clause in the loop, adding the conditions to 
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account for fine-grained part-of-speech tags, as discussed in “Part-of-Speech 
Tagging” on page 21. Then add the lemmatization functionality to your 
script, as discussed in “Lemmatization” on page 18.

Named Entity Recognition
A named entity is a real object that you can refer to by a proper name. It can be 
a person, organization, location, or other entity. Named entities are impor-
tant in NLP because they reveal the place or organization the user is talking 
about. The following script finds named entities in the sample discourse used 
in the previous examples:

import spacy
nlp = spacy.load('en')
doc = nlp(u'I have flown to LA. Now I am flying to Frisco.')
for token in doc:

  u if token.ent_type != 0:
    print(token.text, vtoken.ent_type_)

If the ent_type attribute of a token is not set to 0 u, then the token is 
a named entity. If so, you print the ent_type_ attribute of a token v, which 
contains the type of named entity in unicode. As a result, the script should 
output the following:

LA      GPE
Frisco  GPE

Both LA and Frisco are marked as GPE, the acronym for “geopolitical 
entity” and includes countries, cities, states, and other place names.

Summary 
In this chapter, you set up a working environment for using spaCy. Then 
you learned simple scripts that illustrate how to use spaCy’s features to per-
form the basic NLP operations for extracting important information. These 
operations included tokenization, lemmatization, and identifying syntactic 
relations between individual tokens in a sentence. The examples provided 
in this chapter are simplified and don’t reflect real-world scenarios. To write 
a more sophisticated script using spaCy, you’ll need to implement an algo-
rithm to derive the necessary tokens from a dependency tree, using the lin-
guistic features assigned to tokens. We’ll return to extracting and using 
linguistic features in chapter 4, and we’ll cover dependency trees in detail 
in chapter 6. 

In the next chapter, you’ll look at the key objects of spaCy’s API, includ-
ing containers and processing pipeline components. Also, you’ll learn to 
use spaCy’s C-level data structures and interfaces to create Python modules 
capable of processing large amounts of text.
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