
4
S C R A P I N G Y O U R O W N

F A C E B O O K D A T A

Social media is becoming a digital vault
for our lives and our memories; its servers

store a history of our behavior that allows us
to remember important events with incredible

precision. A number of social media platforms allow
us to download archives of our social media history as data files or HTML
web pages. These archives may contain posts from our Facebook timelines,
messages we send to each other, or every tweet we’ve ever posted.

In this chapter, you’ll learn how to use Python to get data from our
downloadable Facebook archives using an automated scraper. The scraper
goes through each HTML element that contains the information we want
to collect, extracts this information, structures it in rows, and then writes
every row of data into a list or spreadsheet, just like we did when we wrote
an API in Chapter 3. But this time we’ll use a slightly different method
to populate our spreadsheet: we’ll be using a data dictionary to structure
our data before we write it to a .csv file. This is a very helpful and widely
adopted way to organize data, and it will expand your knowledge of the
csv library we used in the previous chapter.

64 Chapter 4

Your Data Sources
From the day you register an account, most (if not all) social media compa-
nies start storing data about you. You can see some of this data by scrolling
backward on your Facebook and Twitter timelines or your Instagram feed.

Although most platforms allow users to download a lot of their personal
data, it is often unclear how complete these data archives are. Social media
companies determine how much and what kind of data they want to release
to their users, just like they determine how much data they want to release
publicly through an API. And on top of that, it can be a little tricky to fig-
ure out how to download your own data archive: options can be buried in
the fine print of our user settings, and are not often visually distinguished.

Access to data archives varies from platform to platform and can be
almost shockingly granular or similarly sparse. In May of 2018 the European
Union’s General Data Protection Regulation (GDPR) went into effect, requir-
ing companies across the world to protect the privacy of their users, in part
by giving them more control over their own data. While the laws were intro-
duced to largely benefit users in the European Union, many social media
companies have created easier pathways for anyone, in Europe or not, to
download and view their own data.

In this chapter, we’ll only tap into the data that’s publicly available in
downloadable social media archives. You’ll learn about web scraping, the pro-
cess of gathering and storing data from the web. Every website presents its
own unique data challenges. For the purposes of this tutorial, we’ll be look-
ing at how to scrape data from Facebook, which is one of the most popular
global platforms and offers various formats for us to analyze. If you do not
have a Facebook account, you can find a sample file to scrape here: https://
github.com/lamthuyvo/social-media-data-book.

Downloading Your Facebook Data
First we need to download our data. Many social media sites contain the
instructions for downloading your archive, but they may be buried deep
within the site. An easy way to find your archive is by entering this formula
into your search engine of choice: platform/language + verb + object. For
example, to find your Facebook archive, you’d search “Facebook down-
load archive” or “Python scrape Facebook archive.”

To download your Facebook archive, follow these steps:

1.	 Click the down arrow at the top right of any Facebook page and
select Settings.

2.	 On the sidebar at the left, click Your Facebook Information below
your General account settings.

3.	 Navigate to Download Your Information and click View.

4.	 This should open a new page with an option to create a file containing
your archive. Keep the default settings (Date Range: All of my data;
Format: HTML; and Media Quality: Medium). Click Create File.

Scraping Your Own Facebook Data 65

Next, you should be prompted to enter your account credentials (con-
firming your password), and then Facebook should email you the link to a
downloadable file.

The archive should download as a ZIP file. Place this file inside the
folder you’ll use for all the files related to this project. Unzip the down-
loaded file, and you should see multiple files and folders in a folder titled
facebook-<yourname>. In my case, this folder is called facebook-lamthuyvo.

Double-click the file titled index.html, and your default browser should
open the page. In your browser, you should see categories for the informa-
tion you downloaded (ads, messages, friends, and so on) on the left side of
the menu and an overview of your account information on the right side,
as shown in Figure 4-1.

Figure 4-1: A Facebook archive profile page

This folder represents a more complete archive than what you might
see when scrolling through your Facebook account online. Here, you’ll find
information like all of the telephone numbers you’ve ever registered with
Facebook, a code associated with the facial recognition data Facebook uses
to tag you and your friends, and the ads that you’ve clicked in the past three
months. The archive profile page should give you an idea about the kind of
information Facebook stores about your activities and online presence for
its own purposes.

66 Chapter 4

Reviewing the Data and Inspecting the Code
To introduce the process of scraping, we’ll begin by looking at the ads
you’ve clicked in the past three months.

Scraping generally proceeds as follows:

1.	 Look at the visual display of information in a web browser.

2.	 Inspect the code that contains this information.

3.	 Instruct your scraper to grab the information from this code.

So, to start, inside the ads folder of your Facebook archive, open
advertisers_you’ve_interacted_with.html, the page that contains the titles and
timestamps of every advertisement you’ve clicked in the past three months.

Once you’ve looked through your ad data, it’s time to move on to
the second step: inspecting the code. To do this, we’ll use Chrome’s built-
in developer tools (we learned about these in Chapter 1). Start by right-
clicking one of the listed advertisements and, in the drop-down list that
opens, select Inspect. When the Web Inspector opens, it should highlight
the code representing the ad you just right-clicked. Figure 4-2 shows the
Web Inspector view in Chrome.

Figure 4-2: Chrome’s Web Inspector view

Recall that web pages are HTML files that contain information inside of
HTML tags styled with CSS IDs and classes. When a page renders repetitive
content—like posts that are featured on our news feeds or the advertisers
listed in our data archive—it will likely use the same pattern of HTML tags
and CSS classes to display each piece of information. In order to harvest the
data contained in those HTML tags, we have to recognize and understand
these patterns.

Scraping Your Own Facebook Data 67

Structuring Information as Data
In this case, all the ads are inside an overall <div> tag, which has the class
attribute _4t5n and the role attribute main. Listing 4-1 contains HTML code
that displays a sample Facebook ad as it might be stored in an archive.

<div class="_4t5n" role="main">
<div class="pam _3-95 _2pi0 _2lej uiBoxWhite noborder">
 <div class="_3-96 _2pio _2lek _2lel">Clicked Ad</div>
 <div class="_3-96 _2let">Ad name 1</div>
 <div class="_3-94 _2lem">Jul 01, 2019 1:45am</div>
</div>
<div class="pam _3-95 _2pi0 _2lej uiBoxWhite noborder">
 <div class="_3-96 _2pio _2lek _2lel">Clicked Ad</div>
 <div class="_3-96 _2let">Ad name 2</div>
 <div class="_3-94 _2lem">Jul 10, 2019 5:25pm</div>
</div>
<div class="pam _3-95 _2pi0 _2lej uiBoxWhite noborder">
 <div class="_3-96 _2pio _2lek _2lel">Clicked Ad</div>
 <div class="_3-96 _2let">Ad name 3</div>
 <div class="_3-94 _2lem">Jul 11, 2019 5:25pm</div>
</div>

--snip--
</div>

Listing 4-1: Sample code for Facebook ads

Listing 4-1 includes an HTML <div> tag with the classes _3-96 and _2let
(note that each individual class within a pair of quotation marks is separated
by a space). This <div> tag contains the title of the Facebook ad that the user
clicked. A second <div> tag with the classes _3-94 and _2lem contains the time-
stamp indicating when the user clicked on the ad.

If we created a spreadsheet based on this HTML, it might look like
Figure 4-3.

Figure 4-3: A sample spreadsheet after we’ve scraped some of the data

68 Chapter 4

We’ve used two headers, advertisement and timeaccessed, to categorize and
structure the data. Note that there are many ways to do this; we could have
chosen only to look at the titles of the ad, or to separate the timestamp into
date and time_of_day columns. Data collection is a creative process, and the
solution you find will always depend on the specific project and data you’re
working with.

In Figure 4-3 we started creating our spreadsheet by manually copying
the data straight from the web page. Though you can scrape the web like
this, as you can imagine it would take a lot of time and effort. Almost all
web scraping is done automatically. So, in the next section, we’ll use Python
to set up an automatic scraper.

Scraping Automatically
As with a script, you can think of a scraper as a little robot who will per-
form repetitive tasks for you. And like the script we used in Chapter 3, the
scraper fetches data and puts it into a spreadsheet for you—except that it
gets data from HTML pages instead of from an API response.

Unlike JSON, HTML data can be tricky to work with, as it’s not always
structured in data-friendly ways. Going in with a plan, then, will help us
identify which parts of a website may best be structured as data. As we did
with our API script, let’s start by writing down our list of tasks as pseudo-
code, making each task a separate comment, as in Listing 4-2.

import libraries
open our page
grab all the information for the ads
put all the ad data into an list
create a csv file
write each line into a csv file

Listing 4-2: The plan for our script

Next we’ll import the libraries we need, shown in Listing 4-3.

import libraries
import csv

from bs4 import BeautifulSoup

Listing 4-3: Importing our libraries

For this script we need two libraries: csv, which comes built into Python,
and Beautiful Soup, a library an independent developer wrote for other
Python developers to use. Beautiful Soup allows our scraper to read and
understand HTML and CSS.

Because it isn’t built into Python, we’ll need to install Beautiful Soup
separately before using it. We covered the library installation process in
Chapter 1. In this case, you can install the library using the pip command
pip install beautifulsoup4 (beautifulsoup4 refers to the fourth version of
Beautiful Soup, which is the latest and most improved version of the

Scraping Your Own Facebook Data 69

library). After you install any library, the best way to understand and use
it is to look up its documentation. You can find the documentation for
Beautiful Soup at https://www.crummy.com/software/BeautifulSoup/bs4/doc/.

Now that Beautiful Soup is installed and imported, we can put it to use.
Normally, Python doesn’t understand what tags are, so when it opens an
HTML page, the information is just a long string of characters and spaces
like this:

<div class="pam _3-95 _2pi0 _2lej uiBoxWhite noborder">
 <div class="_3-96 _2pio _2lek _2lel">Clicked Ad</div>
 <div class="_3-96 _2let">See how Facebook is changing</div>
 <div class="_3-94 _2lem">Jul 01, 2018 1:45am</div>
</div>

Beautiful Soup takes in HTML and CSS code, extracts the useful
data, and turns it into objects Python can work with—a process known as
parsing. Imagine Beautiful Soup as X-ray goggles that allow our scraper to
see through the HTML coding language and concentrate on the content
we are really interested in (bolded in the following code):

<div class="pam _3-95 _2pi0 _2lej uiBoxWhite noborder">
 <div class="_3-96 _2pio _2lek _2lel">Clicked Ad</div>
 <div class="_3-96 _2let">See how Facebook is changing</div>
 <div class="_3-94 _2lem">Jul 01, 2018 1:45am</div>
</div>

We’ll use Beautiful Soup to turn the HTML code into a list that will
hold the name of each ad and the time it was accessed. First, though, create
a file in the same folder that contains your archive and save it as ad_scraper.py,
then set up the basic structure of your code in ad_scraper.py as shown in
Listing 4-4.

import csv

from bs4 import BeautifulSoup

make an empty array for your data
 rows = []

set foldername
 foldername = "facebook-lamthuyvo"

open messages
with open("%s/ads/advertisers_you've_interacted_with.html" % foldername)
as page:
 soup = BeautifulSoup(page, "html.parser")

Listing 4-4: Creating an empty list and opening our file

First, we create the rows  variable, which we’ll eventually fill with
our data. Then we create the foldername variable  to hold the name of the
folder where our data currently resides, which allows us to easily modify our
script in the future if we want to scrape someone else’s archive . Then we

70 Chapter 4

open the HTML file and store its information in the page variable . Lastly,
we pass page into the BeautifulSoup() function . This function parses the
HTML into a list of elements that we can work with; specifically, it turns the
page into a Beautiful Soup object so the library can differentiate between
HTML and other content. The second argument, "html.parser", which we
passed into BeautifulSoup(), tells Beautiful Soup to process page as HTML.

Analyzing HTML Code to Recognize Patterns
Earlier in this chapter, we saw that each ad name is encased in <div> tags
with the classes _3-96 and _2let. The timestamp associated with the ad is
stored in a <div> tag that has the classes _3-94 and _2lem.

You’ll notice in Listing 4-1 that some of these classes, like _3-96, may be
used for other <div> tags, like the subheading containing the words Clicked
Ad. Because classes are used to style <div> elements that can be used over
and over, we’ll need to identify the CSS classes and tags that are unique to
the type of information we want to scrape. That is, we need to be able to
instruct our script to grab content only from the <div> tags that contain
information about the ads we clicked. If we told our script to grab informa-
tion from <div> tags without specifying classes, we would end up with a lot
of extraneous information since <div> tags are used for numerous content
types across the page.

Grabbing the Elements You Need
To get just the content we want, first we need to add some code that selects
the parent (outer) <div> tag containing all the ad names and timestamps we
want to grab. Then we’ll go into that parent <div> tag and search through
each <div> tag, one by one, to collect the relevant information for each of
the ads we clicked on.

Listing 4-5 shows the script that accomplishes this.

import csv

from bs4 import BeautifulSoup
--snip--
 soup = BeautifulSoup(page, "html.parser")
 # only grab the content that is relevant to us on the page using the class
named "contents"
 contents = soup.find("div", class_="_4t5n")
 # isolate all the lists of ads
  ad_list = contents.find_all("div" , class_="uiBoxWhite")

Listing 4-5: Selecting a specific <div> using Beautiful Soup

First, we look for a <div> tag with the class _4t5n , which we know from
Listing 4-1 will contain all the <div> tags with the ad information we want to
scrape. We look for this tag by applying the find() function to soup, which is
the HTML that we parsed earlier in our code. We’ll then assign (using the
equal sign) the results of this function to the variable contents.

Scraping Your Own Facebook Data 71

To find a <div> tag that has a specific class, the find() function requires
two arguments. First, it needs to know which kind of HTML tag it’s looking
for. In this case, we’re looking for <div> tags, which we specify through the
string "div" (make sure you keep the quotes around the word div).

But if we ran the code with only the "div" argument using soup.find​
("div"), our script would not return the right <div> tag for us. Instead, our
scraper would go through the entire HTML file, find each <div> tag, and
then render only the last one it found.

N O T E 	 The find() function is designed to go through the entire code, identifying every <div>
tag it finds in the code stored in the soup variable until it gets to the end. Thus, because
find() is meant to find only one <div> tag, it keeps only the very last one—not all the
other ones it cycled through.

To find not just any <div> tag but the one that has the _4t5n class, then,
we need to pass a second argument, class_="_4t5n" , into the find() func-
tion. Specifying what class the <div> tag uses helps us grab only the <div> tag
that we’re interested in.

Once we have a <div> containing all the ad <div>s stored in contents, we
can go through contents, select every <div> tag that contains ad information,
and store those <div>s in a list. We can do this by applying the find_all()
function to the contents class . We use find_all(), not find(), to return
every <div> tag with the uiBoxWhite class. The function should now return
the results as a list, which we store in the ad_list variable.

Extracting the Contents
Once we have the list of advertisements, we need to grab each ad’s title and
timestamp. To do this, we’ll loop through each <div> tag in ad_list using a
for loop and extract its contents. Listing 4-6 shows how to do this in Python.

--snip--
 ad_list = contents.find_all("div", class_="uiBoxWhite")

  for item in ad_list:
  advert = item.find("div", class_="_2let").get_text()
  timeaccessed = item.find("div", class_="_2lem").get_text()

Listing 4-6: Extracting the contents of HTML <div> tags

First, we write a statement that introduces the for loop . The line for
item in ad_list: means that we’ll go through the list item by item, storing
the current item in the item variable, and then run the process we specify
in the lines following the for loop. In this case, item holds a <div> tag with
the uiBoxWhite class.

Then we’ll grab a <div> tag with the class _2let from item and store it
in the advert variable . Notice, though, that we didn’t just use find(); we
also chained another function onto find() by calling get_text() at the end
of the line. Python and libraries like Beautiful Soup allow you to modify
the results of one function by calling another function at the end of it, a

72 Chapter 4

process known as chaining. In this case, the find() function allows us to grab
a <div> that may look like this:

<div class="_3-96 _2let">See how Facebook is changing</div>

Then we apply the get_text() function to get the text contained inside
the <div> tag:

See how Facebook is changing

We repeat this process to extract the timestamp information from the
<div> tag that uses the _2lem class .

Whew, we just made our scraper do a ton of work! Let’s revisit our
HTML code so we know what information the scraper just parsed:

 <div class="_4t5n" role="main">
 <div class="pam _3-95 _2pi0 _2lej uiBoxWhite noborder">

 <div class="_3-96 _2pio _2lek _2lel">Clicked Ad</div>
  <div class="_3-96 _2let">See how Facebook is changing</div>
  <div class="_3-94 _2lem">Jul 01, 2018 1:45am</div>

</div>
<div class="pam _3-95 _2pi0 _2lej uiBoxWhite noborder">
 <div class="_3-96 _2pio _2lek _2lel">Clicked Ad</div>
 <div class="_3-96 _2let">Ad name 2</div>
 <div class="_3-94 _2lem">Jul 10, 2018 5:25pm</div>
</div>
<div class="pam _3-95 _2pi0 _2lej uiBoxWhite noborder">
 <div class="_3-96 _2pio _2lek _2lel">Clicked Ad</div>
 <div class="_3-96 _2let">Ad name 3</div>
 <div class="_3-94 _2lem">Jul 11, 2018 5:25pm</div>
</div>

--snip--
</div>

To recap: our scraper first found the <div> tag that contained all ads ,
turned each ad into a list item , and then went through each ad, extract-
ing its title  and timestamp  from each nested <div> tag.

Writing Data into a Spreadsheet
Now we know how to use our scraper to get the information we need. But
we haven’t told our little robot what to do with this information just yet.
This is where .csv files can be helpful—it’s time to tell our scraper to turn
the data it’s been reading into a spreadsheet that we humans can read.

Building Your Rows List
We need to instruct our script to write every row of data into a spreadsheet,
just like we did when we wrote an API. But this time we’ll do so by creating

Scraping Your Own Facebook Data 73

a Python dictionary, a data structure that allows us to assign specific data
points (values) to specific data categories (keys). A dictionary is similar to
JSON in that it maps a value to a key.

In its simplest form, a dictionary looks like this:

row = {
 "key_1": "value_1",
 "key_2": "value_2"
 }

In this example, I define a variable called row using a pair of braces ({}).
The data in the dictionary is inside those braces (note that I added some
line breaks and spaces to make the dictionary more legible).

In a dictionary, our values are stored in pairs of keys and values. In
this case, there are two keys, "key_1" and "key_2", and each is paired with a
value, "value_2" and "value_2". Each key-value pair is separated by a comma,
making this a list of two different pairs. Imagine keys as column headers in
a spreadsheet. In this example, the string key_1 would represent the column
header, and value_1 would be one of the cells in that column. If this struc-
ture looks familiar, it’s no accident: this is how JSON data is structured. In
some ways, you can look at Python dictionaries as blueprints for data that
may be structured in the JSON format.

To return to our specific example, let’s create a dictionary for our data
and append it to our .csv file, as shown in Listing 4-7.

--snip--
for item in ad_list:
 advert = item.find("div", class_="_2let").get_text()
 timeaccessed = item.find("div", class_="_2lem").get_text()

  row = {
  "advert": advert,
  "timeaccessed": timeaccessed

 }
  rows.append(row)

Listing 4-7: Writing data to the .csv file

The keys "advert" and "timeaccessed"  are strings that represent the
types of data we want to collect—the equivalent of column headers in our
spreadsheet. Each key is paired with a variable: the "advert" key goes with
the advert variable and the "timeaccessed" key with the timeaccessed vari-
able . Recall that we used these variables earlier to temporarily store the
text we extracted from each HTML element using Beautiful Soup. We store
this dictionary in the row variable .

Once we have our row, we need to store it with the other rows. This is
where the rows variable we defined at the top of our script comes into play.
During each iteration of the for loop, we add another row of data to the
rows list by using the append() function . This allows us to grab the latest
values from each list item, assign those values to the appropriate keys, and

74 Chapter 4

append the keys and values to our rows variable. This entire process allows
us to accumulate a new row of data with each loop, ensuring that we extract
information about every single ad we clicked on and that we populate the
rows list with this data so we can write it into a .csv file in the next step.

Writing to Your .csv File
Last but not least, we need to open a .csv file and write each row to it.
As stated before, this process is a little bit different from what you saw in
Chapter 3. Instead of using the simple writer() function the csv library
offers, we’ll be using DictWriter(), a function that knows how to handle
dictionaries. This should help us avoid any careless mistakes, like acciden-
tally swapping our column values.

Listing 4-8 shows the code to create the .csv file.

--snip--
 with open("../output/%s-all-advertisers.csv" % foldername, "w+") as csvfile :
  fieldnames = ["advert", "timeaccessed"]

 writer = csv.DictWriter(csvfile, fieldnames=fieldnames) w
 writer.writeheader() x
 for row in rows: 
 writer.writerow(row) z

Listing 4-8: Turning data into a .csv file

First, we create and open a new file  using the string facebook-<lamthuyvo>​
-all-advertisers.csv (you replaced my username, lamthuyvo, with yours earlier,
as shown in Listing 4-4), which is a concatenation of the foldername variable
and the name of the folder containing the .csv file. Then we open the .csv file
and refer to it as csvfile. Next, we create a variable called fieldnames to store
a list of strings , which correspond to the keys we defined in our dictionary
in Listing 4-7. This is important because we then use the DictWriter() func-
tion  to instruct Python to write data based on a dictionary containing the
keys we specified in fieldnames. The DictWriter() function requires the param-
eter fieldnames to know what the column headers of our .csv file will be and
which parts of our data rows it should access. In other words, the field names
that we list and store in our fieldnames variable represent the parts of the data
we want the DictWriter() function to write into our .csv file.

We then use the writeheader() function  to write the first row of our
.csv file, the headers for each column. Since writer already knows those field
names from the previous line, we don’t need to specify anything, and our
.csv file should now look like this:

advert,metadata

All that’s left is to add our data. By looping through each row in rows ,
we can write each row of data into our spreadsheet .

Finally, once we stitch all the pieces together, our script should look like
Listing 4-9.

Scraping Your Own Facebook Data 75

import csv

from bs4 import BeautifulSoup

rows = []
foldername = "facebook-lamthuyvo"

with open("%s/ads/advertisers_you've_interacted_with.html" % foldername) as
page:
 soup = BeautifulSoup(page, "html.parser")
 contents = soup.find("div", class_="_4t5n")
 ad_list = contents.find_all("div" , class_="uiBoxWhite")

 for item in ad_list:
 advert = item.find("div", class_="_2let").get_text()
 metadata = item.find("div", class_="_2lem").get_text()
 row = { "advert": advert,
 "metadata": metadata
 }
 rows.append(row)

with open("%s-all-advertisers.csv" % foldername, "w+") as csvfile:
 fieldnames = ["advert", "metadata"]
 writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
 writer.writeheader()

 for row in rows:
 writer.writerow(row)

Listing 4-9: The complete scraper script

Looks good! Let’s try it out.

Running the Script
At the beginning of this chapter, you saved your file as a script called
ad_scraper.py in the same folder that contains your Facebook archive. Now
you can run it like you would any other Python script. In the console, navi-
gate to that specific folder. For Mac users, run the following command:

python3 ad_scraper.py

On Windows machines, run this code instead:

python ad_scraper.py

Once you run the script, your scraper should go through every ad
you’ve clicked in the past three months, and you should see a file whose
name ends with -all-advertisers.csv. This file should contain the title and
timestamp for every ad listed in the archive page advertisers_you’ve_interacted
_​with.html. This data will help you better understand your behavior on

76 Chapter 4

Facebook; for example, you can use it to learn on what days or in which
months you clicked on a lot of ads. Or you could look into what ads you
may have clicked multiple times.

The example in this chapter represents a very simple version of web
scraping: the HTML page we scraped was one we could download (not one
we had to open by connecting to the internet), and the amount of data we
scraped from the page was not large.

Scraping simple HTML pages like those of our archive is a good intro-
duction to the basic principles of web scraping. Hopefully, this exercise
will help you transition to scraping websites that are more complicated—
whether it’s web pages that are hosted online and that change frequently,
or HTML pages with much more complicated structures.

Summary
In this chapter, you learned how to inspect an HTML page from your
Facebook archive to find patterns in the code that allow you to structure
what you see on the page as data. You learned how to use the Beautiful
Soup library to read in the HTML page, identify and grab the <div> tags
that contain the information you want to collect, store that information in
rows of data using a dictionary, and lastly, write that dictionary to a .csv file
using the DictWriter() function. But more importantly, you learned how to
extract information from a web page and write it into a data file that you
can feed into various analytical tools like Google Sheets or into a Python-
rendering web app like Jupyter Notebook—two tools we’ll see in later chap-
ters. This means we have now taken information that was locked into a web
page and transformed it into a format that is much easier to analyze!

In the next chapter, we’ll build on what you’ve learned here by applying
similar processes to scrape a website that is live on the internet.

