
4
Making Your
Robot Move
At this stage, you have a
sweet-looking Raspberry
Pi robot that doesn’t do
anything. . . yet! To unlock
the capabilities of all the
hardware you just wired
up, you’ll have to sink
your teeth into some
more programming.

80 • chapter 4

In this chapter, I’ll show you how to use the Python programming
language to make your robot move. We’ll cover basic movement,
making your robot remote-controlled, and varying its motor speed.

The Parts List
Most of this chapter will be about coding the robot, but to enable
remote control you’ll need a couple of parts later:

•	 Nintendo Wii remote

•	 Bluetooth dongle if you’re using a Pi older than a Model 3 or
Zero W

Understanding the H-Bridge
Most single-motor controllers are based around an electronics con-
cept called an H-bridge. The L293D motor driver chip we’re using
contains two H-bridges, permitting you to control the two motors of
your robot through a single chip.

An H-bridge is an electronic circuit that allows a voltage to be
applied across a load, usually a motor, in either direction. For the
purposes of robotics, this means that an H-bridge circuit can drive a
motor both forward and backward.

A single H-bridge is made of four electronic switches, built
from transistors, arranged like S1, S2, S3, and S4 in Figure 4-1. By
manipulating these electronic switches, an H-bridge controls the
forward and backward voltage flow of a single motor.

VIN

GND

MOTOR

S1

S2 S4

S3

Figure 4-1

A single H-bridge circuit

81 • chapter 4

When all the switches are open, no voltage is applied to the
motor and it doesn’t move. When only S1 and S4 are closed, there
is a flow of current in one direction through the motor, making it spin.
When only S3 and S2 are closed, a current flows in the opposite
direction, making the motor spin the other way.

The design of the L293D means that we can’t close S1 and S2
at the same time. This is fortunate, as doing so would short-circuit
the power, causing damage! The same is true of S3 and S4.

The L293D abstracts this one step further and requires only two
inputs for one motor (four inputs for a pair of motors, like you wired
up in Chapter 3). The behavior of the motor depends on which inputs
are high and which are low (1 or 0, respectively). Table 4-1 summa-
rizes the different input options for the control of one motor.

Input 1 Input 2 Motor behavior

0 0 Motor off

0 1 Motor rotates in one direction

1 0 Motor rotates in other direction

1 1 Motor off

We’ll use the GPIO Zero Python library to interface with the Pi’s
GPIO pins and motor controller. There are several functions in the
library for controlling basic movement, so you won’t have to worry
about turning specific GPIO pins on and off yourself.

First Movement
Now for the most exciting step of your robotics journey yet: moving
your robot! You’ll eventually make your robot entirely remote-controlled
and even able to follow your instructions, but before that let’s master
some basic motor functionality. You’ll start by programming your robot
to move along a predefined route.

Programming Your Robot with a
Predefined Route
Boot up your Raspberry Pi on your robot and log in over SSH. While
your robot is stationary and being programmed, it is best to dis-
connect your batteries and power your Pi from a micro USB cable
connected to a wall outlet. This will save your batteries for when they
are really needed.

Table 4-1

Motor Behavior Based

on Inputs

82 • chapter 4

From the terminal, navigate from your home directory into the
folder you are using to store your code. For me, I’ll navigate into my
robot projects folder like so:

pi@raspberrypi:~ $ cd robot

Next, create a new Python program and edit it in the Nano
text editor with the following command; I have called my pro-
gram first_move.py:

pi@raspberrypi:~/robot $ nano first_move.py

Now you need to come up with a predefined route to program!
With the DC motors we’re using, you can’t rotate them a specific
distance or number of steps, but you can power them on and off for
a certain amount of time. This means that any path will be a rough
approximation of where you want your robot to go rather than a
precise plan.

To start, let’s keep things simple and make your robot drive
around in a square, with a route like the one shown in Figure 4-2.

Figure 4-2

The robot’s planned

route

83 • chapter 4

In your first_move.py file, enter the code in Listing 4-1 to pro-
gram a square route.

import gpiozero
import time

u robot = gpiozero.Robot(left=(17,18), right=(27,22))

v for i in range(4):
 w robot.forward()
 x time.sleep(0.5)
 y robot.right()
 z time.sleep(0.25)

The program starts by importing familiar Python libraries:
gpiozero and time. Then you create a variable called robot u, to
which you assign a Robot object from the GPIO Zero library.

Objects in Python are a way of holding variables (pieces of infor-
mation) and functions (predefined sets of instructions that perform
tasks) in a single entity. This means that when we assign an object to
a variable, that variable then has a range of predefined things that it
knows and can do. An object gets these capabilities from its class.
Each class has its own functions (called methods) and variables
(called attributes). These are advanced features of Python and you
don’t have to worry about them too much at this stage. Just know
that we’re using some predefined classes from Python libraries, like
GPIO Zero, to make it easier for us.

The GPIO Zero library has an inbuilt Robot class that features a
variety of functions for moving a two-wheeled robot in different direc-
tions. Notice the two sets of values in the parentheses assigned to
left and right u. These represent the input pins of the L293D you
have wired up. If you followed my exact wiring from Chapter 3, then
the four GPIO pins should be: 17, 18 and 27, 22.

This program also uses a new type of loop called a for loop v.
In Chapter 2, while making LEDs flash on and off and getting inputs
from buttons, you used a while loop. A while loop keeps repeating
its contents indefinitely while a certain condition is met, but a for loop
repeats a block of code a fixed number of times. The syntax of this
loop, for i in range(4):, means “do the following four times.”

The for loop commands your robot to start going forward w
and then wait for half a second x to allow some time for the robot
to move. The result is that both motors move in a single direction
(forward) for half a second.

Listing 4-1

Programming your robot to

move in a square

84 • chapter 4

You then instruct your robot to turn right y and wait for a quar-
ter of a second as this happens z. By telling the robot to turn right,
you replace the forward command issued half a second ago with a
new command for the motors.

Once this has been executed once, the “go forward, then turn
right” process starts again and continues for a total of four times. You
are trying to make your robot go in a square, and squares have four
sides, hence the specific repetition.

Once you’ve finished writing your program, exit Nano by press-
ing ctrl-X and save your work like usual. Next, we’ll run the program
to make the robot move!

The GPIO Zero Robot class has commands for all directions and

basic functionality, summarized in Table 4-2.

Command Functionality

robot.forward() Run both motors forward.

robot.backward() Run both motors backward.

robot.left() Run the right motor forward and the left
motor backward.

robot.right() Run the left motor forward and the right
motor backward.

robot.reverse() Reverse the robot’s current motor
directions. For example: if going forward,
go backward. If going left, go right. This

is not the same as going backward!

robot.stop() Stop both motors.

Table 4-2

The Robot Class

Commands

Running Your Program: Make Your Robot Move
Before you execute your program, ensure your robot is disconnected
from the wall power outlet and the batteries are connected and
turned on. You should also place your robot on a relatively large, flat
surface clear of obstacles and hazards. Rough surfaces, like carpets,
may cause your robot to become stuck or struggle to move. Try to
avoid this, as struggling motors draw more current, and when their
movement is completely blocked (or stalled) you might even damage
your electronics! The flatter the surface, the better your robot will run.

85 • chapter 4

It is also a good idea to be in a position to “catch” your robot in
case either it or something/someone is in peril. It may try to go down
the stairs, for example, or the cat may be in the way.

To run your program, wirelessly access the terminal of your Pi
using SSH and enter:

pi@raspberrypi:~/robot $ python3 first_move.py

Your robot should burst into life and start to move. If all has
gone well, it will move on a square-based path and then come to a
stop, and your program will end by itself. If you need to stop your
robot at any point, press ctrl-C on your keyboard to kill the motors
immediately.

Troubleshooting Guide:
Robot Not Working Properly?

If your robot isn’t functioning as it should be, don’t worry. Usually

malfunctions fall into some common categories and should be easy

to fix! The following quick guide will help you resolve most issues

you might have.

Robot Moving Erratically
The most common problem after you execute the first_move.py

program is that your robot moves, but not in the right pattern.

Instead of going forward, it goes backward; or instead of turning

right, it turns left. You may even find that it just spins on the spot!

This behavior can be easily fixed. As we discussed, DC motors

have two terminals with no particular polarity. This means that if you

change the direction of current flowing through the motor, the motor

spins the other way. Consequently, if one or both of your motors is

going in the opposite direction of your commands, you can swap

the wires connected to the output pins of your motor controller to

reverse this. For example, swap the wires connected to Output 1

with Output 2 of your L293D. Refer to Chapter 3 for guidance and

relevant diagrams.

(continued)

86 • chapter 4

Motors Not Moving
If your program successfully executes, but your robot’s wheels don’t

move or only one motor starts to move, then you could have an

issue related to your wiring. Go back to the previous chapter and

check that you’ve connected everything as per the instructions.

Ensure the connections to the motors are solid and that none of

the wires have become loose. If you’re convinced that you’ve wired

everything correctly, check whether your batteries are charged and

that they can provide enough power for your specific motors.

If your Raspberry Pi crashes when the motors start to turn, you

most likely have a power issue. Check how you have set up your

buck converter. If you are using a different converter than mine,

you may run into problems. Go back a chapter for guidance and

recommendations.

Robot Moving Very Slowly
A slow robot is usually a sign that not enough power is being

provided to the motors. Check the voltage requirements of your

motors and make sure you’re supplying them with what they need.

Often motors will accept a range of voltages—for example, from 3 V

to 9 V. If your motors do, try a higher voltage that stays within the

recommended range. Bear in mind that if you change your batteries

and any of the voltages, you’ll need to check and reset your buck

converter to ensure that you don’t feed more than 5.1 V into your

Raspberry Pi.

Alternatively, the motors themselves may just have a slow,

geared RPM. If that’s the case, while your robot may be slow, it will

probably have a lot of torque, which is a fair trade-off.

Robot Not Following the Programmed Path
If your robot successfully executes the program and starts to move

at a suitable speed, but doesn’t follow the exact path you had

planned, don’t fret! Every motor is different and will need adjust-

ments for the program to work the way you want. For example,

0.25 seconds may not be enough time for the motors to make your

robot turn approximately 90 degrees. Edit the program and play

around with the sleep() and robot() statements inside the for loop

to adjust.

87 • chapter 4

Making Your Robot
Remote-Controlled
Making a robot come to life and move is an exciting first step in
robotics, and the natural next step is to make your robot remote-
controlled. This means it will no longer be limited to a predefined
path, so you’ll be able to control it in real time!

The aim of this project is to program your robot so you can use
a wireless controller to guide it. You’ll be able to instantaneously
change your robot’s movements without going back into your code.

The Wiimote Wireless Controller
In order to control your robot with a wireless controller, first you’ll
need one! The perfect remote for our robot is a Nintendo Wii remote,
also known as a Wiimote, like the one in Figure 4-3.

A Wiimote is a pretty nifty little Bluetooth controller with a set of
buttons and some sensors that are able to detect movement. The
Wiimote was originally created for the Nintendo Wii games console,
but fortunately there’s an open source Python library, called cwiid,
that allows Linux computers, like your Raspberry Pi, to connect and
communicate with Wiimotes. We’ll use cwiid to manipulate the data
from a Wiimote to control your robot’s motors.

If you don’t have a Wiimote already, you’ll need to get your
hands on one. These are widely available online, both new and used.
I recommend picking up a cheap used one on a site like eBay or from
a secondhand shop—mine cost me less than $15.

Figure 4-3

My much-loved Nintendo

Wiimote

Warning

To guarantee compat-

ibility with your Raspberry

Pi, make sure that your

Wiimote is a Nintendo-

branded official model.

Over the years a consider-

able number of third-party

Wiimotes have become

available to buy. Though

usually cheaper than an

official Wiimote, these

aren’t guaranteed to work

with the cwiid library.

88 • chapter 4

You’ll use Bluetooth to pair your Wiimote with the Raspberry Pi
on your robot. Bluetooth is a wireless radio technology that many
modern devices, like smartphones, use to communicate and transfer
data over short distances. The latest Raspberry Pi models, like the Pi
Zero W and Raspberry Pi 3 Model B+, come with Bluetooth capabili-
ties built in. All models prior to the Raspberry Pi 3 Model B, like the
original Raspberry Pi and Pi 2, do not, and consequently you’ll need
to get a Bluetooth USB adapter (or dongle), like the one pictured in
Figure 4-4, to connect to a Wiimote.

These are available for less than $5 online; just search for
“Raspberry Pi compatible Bluetooth dongle.” Before you proceed,
make sure you have plugged the dongle into one of the USB ports of
your Pi.

Installing and Enabling Bluetooth
Before you start to write the next Python script, you’ll need to make
sure that Bluetooth is installed on your Pi and that the cwiid library is
set up. Power your Raspberry Pi from a wall outlet and then, from the
terminal, run this command:

pi@raspberrypi:~ $ sudo apt-get update

And then run this one:

pi@raspberrypi:~ $ sudo apt-get install bluetooth

If you have Bluetooth installed already, you should see a dialogue
that states bluetooth is already the newest version. If you don’t
get this message, go through the Bluetooth installation process.

Figure 4-4

A $3 Raspberry Pi–

compatible

Bluetooth dongle

89 • chapter 4

Next, you’ll need to download and install the cwiid library for
Python 3. We’ll grab this code from GitHub, a website where pro-
grammers and developers share their software.

Run the following command in the home folder of your Pi:

pi@raspberrypi:~ $ git clone https://github.com/azzra/
python3-wiimote

You should now have the source code of the cwiid library
downloaded to your Raspberry Pi, stored in a new folder called
python3-wiimote. Before we can get to our next Python program, the
source code must first be compiled, a process that makes and read-
ies software for use on a device.

You also need to install four other software packages before you
can proceed. Enter the following command to install all four at once:

pi@raspberrypi:~ $ sudo apt-get install bison flex automake
libbluetooth-dev

If you’re prompted to agree to continue, press Y (which is the
default). Once this command has finished executing, change into the
newly downloaded directory containing your Wiimote source code:

pi@raspberrypi:~ $ cd python3-wiimote

Next, you must prepare to compile the library by entering each
of the following commands, one after the other. This is all part of the
compilation process—you don’t have to worry about the specifics of
each command! The first two commands won’t output anything, but
the rest of them will. I’ll show the start of each output here:

pi@raspberrypi:~/python3-wiimote $ aclocal

pi@raspberrypi:~/python3-wiimote $ autoconf

pi@raspberrypi:~/python3-wiimote $./configure
checking for gcc... gcc
checking whether the C compiler works... yes
checking for C compiler default output file name... a.out
checking for suffix of executables...
--snip--

90 • chapter 4

pi@raspberrypi:~/python3-wiimote $ make
make -C libcwiid
make[1]: Entering directory '/home/pi/python3-wiimote/libcwiid'
--snip--

And then finally, to install the cwiid library, enter:

pi@raspberrypi:~/python3-wiimote $ sudo make install
make install -C libcwiid
make[1]: Entering directory '/home/pi/python3-wiimote/libcwiid'
install -D cwiid.h /usr/local/include/cwiid.h
--snip--

After that, cwiid should work in Python 3! Now you can navigate
out of the python3-wiimote directory and back to where you have all
of your other code.

Programming Remote Control Functionality
Now create and open a new Python program to store the Wiimote
code. I have called mine remote_control.py:

pi@raspberrypi:~/robot $ nano remote_control.py

In general, before you start to code, it is important to first plan
what exactly you want to do. In our case, we want to think about
how we want the Wiimote to control the robot exactly. Let’s make
a plan.

The Wiimote has 11 digital buttons, which is more than we’ll
need for this simple project. Interestingly for us, 4 of those buttons
belong to the D-pad—the four-way directional control buttons at the
top of your Wiimote, shown in Figure 4-5.

Note

If you have trouble with the

Python 3 cwiid installa-

tion, check out the book’s

website to see whether the

process has been updated:

https://nostarch.com/

raspirobots/.

Figure 4-5

The four-way D-pad of

a Wiimote

https://nostarch.com/raspirobots/
https://nostarch.com/raspirobots/

91 • chapter 4

That’s perfect for our purposes: we can use up to make the
robot go forward, right to make the robot go right, down to make
the robot go backward, and left to make the robot go left. This is very
similar to the program we wrote earlier, except that now we read our
inputs from the Wiimote rather than them being programmed in.

We also need something to make the robot stop. The “B” trigger
button on the underside of the Wiimote would be well suited to this.
Let’s write some code in Nano that executes the plan we’ve made;
see Listing 4-2. I have saved this program as remote_control.py.

import gpiozero
import cwiid

u robot = gpiozero.Robot(left=(17,18), right=(27,22))

print("Press and hold the 1+2 buttons on your Wiimote simultaneously")
v wii = cwiid.Wiimote()

print("Connection established")
w wii.rpt_mode = cwiid.RPT_BTN

while True:
 x buttons = wii.state["buttons"]

 y if (buttons & cwiid.BTN_LEFT):
 robot.left()
 if (buttons & cwiid.BTN_RIGHT):
 robot.right()
 if (buttons & cwiid.BTN_UP):
 robot.forward()
 if (buttons & cwiid.BTN_DOWN):
 robot.backward()
 if (buttons & cwiid.BTN_B):
 robot.stop()

As before, you start by importing gpiozero as well as the new
cwiid library. A Robot object is then set up u.

In the next section of code v, you set up the Wiimote. As with
the Robot object, we assign the Wiimote object to a variable called
wii. When this code runs and execution reaches this line, there will
be a pairing handshake between the Raspberry Pi and Wiimote. The
user will need to press and hold buttons 1 and 2 on the Wiimote at
the same time to put the Wiimote in a Bluetooth-discoverable mode.
We add a print() statement here to tell the user when to press the
buttons.

If the pairing is successful, the code prints a positive message
for the user. We then turn on the Wiimote’s reporting mode w,

Listing 4-2

Programming your robot

to respond to the D-pad of

your Wiimote

92 • chapter 4

which permits Python to read the values of the different buttons
and functions.

After this, we use an infinite while loop to tell the robot what to
do when each button is pressed. First, the loop reads the current
status of the Wiimote x, meaning it checks what buttons have been
pressed. This information is then stored in a variable called buttons.

Finally, we start the last chunk of the program y: a variety of if
statements and conditions that allocate an action to each button.
To look at one example, the first if statement ensures that if the left
button of the D-pad has been pressed, the robot is instructed to turn
left. Over the next lines, the same sort of logic is applied: if the right
button of the D-pad has been pressed, the robot is instructed to turn
right, and so on.

As usual, once you have finished writing your program, exit Nano
and save your work.

Running Your Program: Remote-Control
Your Robot
Place your robot on a large surface and have your Wiimote handy. If
your Pi requires a Bluetooth dongle, don’t forget to plug it into one of
the USB ports. To run your program, use an SSH terminal to enter:

pi@raspberrypi:~/robot $ python3 remote_control.py

Soon after program execution, a prompt will appear in the
terminal asking you to press and hold the 1 and 2 buttons on your
Wiimote simultaneously. You should hold these buttons until you
get a success message, which can take up to 10 seconds. The
Bluetooth handshake process can be fussy, so try to press them as
soon as the program instructs you to do so.

If the pairing was successful, another message stating Connection
established will appear. Alternatively, if the pairing was unsuccessful,
an error message saying that No Wiimotes were found will be displayed,
and your program will crash. If this is the case, and you are using an
official Nintendo-branded Wiimote, then you most likely were not fast
enough pressing the 1 and 2 buttons! Rerun the program with the
same command and try again.

With your Wiimote now successfully connected, you should be
able to make your robot dash around in any direction you want at the
touch of a button! Remember that you can stop both motors at any
point by pressing B on the underside of your Wiimote. As usual, you
can kill the program by pressing ctrl-C.

93 • chapter 4

Varying the Motor Speed
Up until now your robot has been able to go at two speeds: 0 mph,
or top speed! You might have noticed that this isn’t the most con-
venient. Traveling at full speed makes precise maneuvers almost
impossible, and you probably crashed into things a few times.
Fortunately, it doesn’t always have to be this way. Let’s give your
robot some control over its speed.

In this project, we’ll build upon the previous example and cre-
ate a remote control robot with variable motor speed. To do this I’ll
introduce a technique called pulse-width modulation (PWM), and
I’ll explain how to use it inside the Python GPIO Zero library. We’ll
also put a special sensor called an accelerometer in your Wiimote
to good use to create a much improved version of the remote
control program!

Understanding How PWM Works
The Raspberry Pi is capable of providing digital outputs but not
analog outputs. A digital signal can be either on or off, and nothing in
between. An analog output, in contrast, is one that can be set at no
voltage, full voltage, or anything in between. On the Raspberry Pi, at
any given time a GPIO pin is either on or off, which is no voltage or
full voltage. By this logic, motors connected to a Pi’s GPIO can only
either stop moving or go full speed.

That means that it is impossible to set a Pi’s GPIO pin to “half
voltage” for half the motor speed, for example. Fortunately, the PWM
technique allows us to approximate this behavior.

To understand PWM, first take a look at the graph in Figure 4-6.
It depicts the state of a digital output changing from low to high. This
is what happens when you turn on one of your Pi’s GPIO pins: it goes
from 0 V to 3.3 V.

VOLTAGE

TIME0 V

3.3 V

Figure 4-6

A state change from low

(0 V) to high (3.3 V)

94 • chapter 4

PWM works by turning a GPIO pin on and off so quickly that
the device (in our case, a motor) “notices” only the average volt-
age at any given time. This means that the state is somewhere in
between 0 V and 3.3 V. This average voltage depends on the duty

cycle, which is simply the amount of time the signal is on, versus the
amount of time a signal is off in a given period. It is given as a per-
centage: 25 percent means the signal was high for 25 percent of the
time and low for 75 percent of the time; 50 percent means the signal
was high for 50 percent of the time and low for the other 50 percent,
and so on.

The duty cycle affects the output voltage proportionally, as shown
in Figure 4-7. For example, for the Raspberry Pi, pulse-width modu-
lating a GPIO pin at a 50 percent duty cycle would give a voltage of
50 percent: 3.3 V / 2 = 1.65 V.

25% 75%
VOLTAGE

0

3.3

0

3.3

TIME

TIME

0.825 V

1.65 V

1 DUTY CYCLE
50% 50%

While PWM is not a perfect approximation of an analog signal,
for most cases it works well, especially at this level. Digitally encoding
analog signal levels will allow you to control the exact speed of your
robot’s movement.

The GPIO Zero Python library authors have made it easy to
vary motor speed using PWM, so you don’t need to know the exact
mechanics behind it. All you need to do is provide a value between
0 and 1 in the parentheses of each motor command to represent a
value between 0 percent and 100 percent, as follows:

robot.forward(0.25)
time.sleep(1)
robot.left(0.5)

Figure 4-7

Two different PWM

voltage traces: a duty

cycle of 25 percent (top)

and a duty cycle of 50

percent (bottom)

95 • chapter 4

time.sleep(1)
robot.backward()
time.sleep(1)

This program would command your robot to move forward for
1 second at 25 percent of its full speed, turn left at 50 percent of its full
speed for another second, and then go backward at full speed for a final
second. If you don’t provide a value, Python assumes that the robot
should move at full speed, just the same as if you were to enter a 1.

Understanding the Accelerometer
Before we improve upon the remote control program in the previous
project, let’s learn about the accelerometer in your Wiimote and how
we can use it.

Previously, you used the D-pad of the Wiimote to provide control.
These four buttons are digital and can only detect being pressed on
or off. This isn’t ideal for controlling both speed and direction at once.

Inside each Wiimote, however, there is a sensor called an accel-

erometer that can detect and measure the acceleration the Wiimote is
undergoing at any point. This means that moving a Wiimote in the air
provides sensory data in all three axes: in all three axes: x, y, and z. In
this way, the accelerometer can track the direction of movement, and
the speed of that direction. See Figure 4-8 for a diagram.

+Y

+Z

+X

−Z

−Y

−X

This kind of analog data is ideal for a variable-motor-speed
remote control program. For example, the more you pitch the
Wiimote in the x direction, the faster your robot could move forward.

Note

If your robot has been

zipping around too fast in

the previous examples, feel

free to go back and adjust

the speed in the last two

projects using this method!

Figure 4-8

The axes of motion the

Wiimote’s accelerometer

can detect

96 • chapter 4

Looking at the Data
Before we rework the robot’s program, it would be incredibly helpful
to see the raw data that the accelerometer from the Wiimote out-
puts. Once we have an idea of what that output looks like, we can
think about how to manipulate that data to correspond to the robot’s
movement.

Power the Pi on your robot from a wall outlet, open a new file in
Nano and call it accel_test.py, and then enter the code in Listing 4-3—
this script uses the cwiid library too, so if you haven’t installed that, see
the instructions in “Installing and Enabling Bluetooth” on page 88.

import cwiid
import time

u print("Press and hold the 1+2 buttons on your Wiimote simultaneously")
wii = cwiid.Wiimote()
print("Connection established")

v wii.rpt_mode = cwiid.RPT_BTN | cwiid.RPT_ACC

while True:
 w print(wii.state['acc'])

 time.sleep(0.01)

This simple program prints the Wiimote’s accelerometer data to
the terminal every 0.01 seconds.

The print() statement denotes the start of the Wiimote setup u.
The three following lines are the same as in the prior project, with
the exception of the final line in that code block v, with which we’re
not just turning on a Wiimote’s reporting mode like before, but also
permitting Python to read values from both the buttons and the accel-
erometer. If you haven’t come across it before, the keyboard character
in the middle of this line is called a vertical bar or a pipe. It is likely to be
located on the same key as the backslash on your keyboard.

An infinite while loop prints the status of the accelerometer w.
The next line waits for 0.01 seconds between each iteration of the
while loop so that the outputted data is more manageable. In pro-
gramming, each time a loop goes round and executes again is called
an iteration.

You can run this program with the command:

pi@raspberrypi:~/robot $ python3 accel_test.py

Listing 4-3

The code to print raw

accelerometer data

97 • chapter 4

After you pair your Wiimote, accelerometer data should start
printing to the terminal. The following output is some of the data that
I saw in my terminal:

(147, 123, 136)
(151, 116, 136)
(130, 113, 140)
(130, 113, 140)
(130, 113, 140)

Each line of data is delivered as three values in parentheses,
representing the x-, y-, and z-axes, respectively, which change as
you move the Wiimote in the different axes. Experiment with differ-
ent movements and watch as the figures go up and down. Exit the
program by pressing ctrl-C.

With this raw data, we can put some thought into the next part
of the programming process, namely answering the question: How
can you translate those three figures into instructions for your robot?
The best way to approach this problem is logically and in small steps.

Figuring Out the Remote Movement Control
First, consider the movement of your two-wheeled robot. Because
it moves around only on the floor, and doesn’t fly up and down, its
movement can be expressed in two dimensions: x and y, as shown
in Figure 4-9. We can disregard the z-axis data, which simplifies the
problem substantially.

FORWARD/BACKWARD,
X, (PITCH WIIMOTE FORWARD/BACKWARD)

LEFT/RIGHT,
Y, (TILT WIIMOTE TO SIDE)

Figure 4-9

Only two axes of control

are required for your

two‑wheeled robot.

98 • chapter 4

Second, consider how you wish to hold the Wiimote when
controlling your robot. I have decided to hold it horizontally, with the
1 and 2 buttons close to my right hand, as shown in Figure 4-10.
This is the most common orientation for traditional Wii-based racing
games and is ideal for controlling your robot.

When you’re holding the Wiimote in this way, pitching it back-
ward and forward controls the x values. Tilting it side-to-side controls
the y values.

When you printed your accelerometer data, you may have
noticed that the outputted numbers tended to be between 95 and
145. You can run the test program again to observe this. This is
because the lowest x value is 95, when the Wiimote is pitched all the
way back. This highest value is 145, when it’s pitched entirely forward.

For the y-axes, left to right, the lowest value is 95 and the high-
est is 145. The difference between 145 and 95 is 50, and this gives
us the usable range of data in each axis. See Figure 4-11 for an
illustration of how the Wiimote’s values change.

So far in this chapter, you’ve controlled your robot’s movement
by instructing it to go forward, backward, left, or right at full speed.
We want to change this to vary the speed according to the acceler-
ometer. Luckily, the Robot class from the GPIO Zero Python library
has another way of turning the motors on and setting their speed that
suits our needs.

Figure 4-10

How to hold the

Wiimote in this project

99 • chapter 4

X:145

X:95

Y:145 Y:95

The Robot class has an attribute—a variable that is part of a
class—called value. At any given time, value represents the motion
of the robot’s motors as a pair of numeric values between –1 and 1.
The first value in the pair is for the left motor’s speed, while the second
value is for the right motor’s speed. For example, (–1, –1) represents
full speed backward, whereas (0.5, 0.5) represents half speed forward.
A value of (1, –1) would represent turning full speed right. By setting
the value attribute, you can manipulate your robot in any direction you
wish. This is going to come in super-handy in the upcoming program!

Programming Your Robot for Variable Speed
Now that we’ve broken down this problem and found a neat and
efficient final approach to the program, we can start coding! Use Nano
to create a new program called remote_control_accel.py and input the
code shown in Listing 4-4.

import gpiozero
import cwiid

robot = gpiozero.Robot(left=(17,18), right=(27,22))

print("Press and hold the 1+2 buttons on your Wiimote simultaneously")
wii = cwiid.Wiimote()
print("Connection established")
wii.rpt_mode = cwiid.RPT_BTN | cwiid.RPT_ACC

Figure 4-11

The Wiimote’s extreme

accelerometer values

Listing 4-4

Programming your robot to

respond to the motion of

your Wiimote

1 00 • chapter 4

while True:
 u x = (wii.state["acc"][cwiid.X] - 95) – 25

 y = (wii.state["acc"][cwiid.Y] - 95) – 25

 v if x < -25:
 x = -25
 if y < -25:
 y = -25
 if x > 25:
 x = 25
 if y > 25:
 y = 25

 w forward_value = (float(x)/50)*2
 turn_value = (float(y)/50)*2

 x if (turn_value < 0.3) and (turn_value > -0.3):
 robot.value = (forward_value, forward_value)
 else:
 robot.value = (-turn_value, turn_value)

The program shares the same Wiimote setup process as the
accelerometer test program. Then we set up a while loop to keep
running our code. The first statement u reads the x value from the
accelerometer and then stores it in a variable called x. Within the
variable, the value undergoes two arithmetic operations. First, 95 is
subtracted; this limits the data to a value between 0 and 50, rather
than between 95 and 145, so that it fits within the usable range we
discovered earlier. Second, we subtract a further 25. This ensures
the range of data will be between –25 and +25. Exactly the same
process then happens for the y value, and the result is then stored in
a variable called y.

We need to do this because the value attribute of the Robot
class accepts negative values for backward movement and positive
values for forward movement. This manipulation balances the accel-
erometer data on either side of 0, making it clear which values are for
reverse and which are for forward movement.

The four if statements v eliminate the chance for errors later in
the program. In the unlikely event that the Wiimote’s accelerometer
outputs data that is not within the –25 to +25 range, the if state-
ments catch this occurrence and then round up or down to the
relevant extremity.

Next, the final x-axis value for the robot is determined and
stored in a variable called forward_value w. This calculation divides
the x variable value by 50, providing a new proportional number

Note

Python (and many other

programming languages)

can deal with numbers

in different ways. The

main two number types in

Python are called integers

and floats. Integers are

whole numbers that have

no decimal point. Floats

(floating-point real values)

have decimal points and

can represent both the

integer and fractional

part of a number. For

example, 8 is an inte-

ger, whereas 8.12383

or 8.0 is a float. In the

remote_control_accel.py

program, we need to use

floats, as the movement

of your robot will be gov-

erned by two numbers in

between –1 and 1.

1 0 1 • chapter 4

between –0.5 and 0.5. This result is then multiplied by 2 to get a
value between –1 and 1. The same process is repeated to get the
final y-axis value, which is then stored in a similar variable called
turn_value.

The line at x starts an if/else clause. If the turn_value is
less than 0.3 or greater than –0.3, robot.value is set to be the
forward_value. So, if the Wiimote is tilted by less than 30 percent
to either side, the program will assume that you want the robot to
move forward/backward. This means that your robot won’t turn
in the wrong direction at the slightest tilt of your Wiimote. The
forward/backward speed of your robot is then set according to the
pitch of your Wiimote. For example, if your Wiimote is pitched all
the way forward, it will set robot.value to (1, 1) and your robot will
accelerate forward.

Alternatively, if the Wiimote is tilted by more than 30 percent to
either side, the program will assume that you want the robot to turn
left or right on the spot. The program then turns the robot based on
the angle of your Wiimote tilt. For example, if you have the Wiimote
tilted all the way to the right, your robot will spin very quickly to the
right; but if you have it tilted only slightly to the right, the robot will
turn more slowly and in a more controlled manner.

As usual, after you have finished your program, exit Nano and
save your work.

Running Your Program:
Remote-Control Your Robot with PWM
Disconnect your robot from your wall outlet, and ensure that it is
powered by its batteries. Then place it on a large surface and have
your Wiimote in hand and in a horizontal orientation. To run your
program, enter:

pi@raspberrypi:~/robot $ python3 remote_control_accel.py

After you have gone through the familiar Bluetooth handshake
process, your robot should come to life and start to move as you
change the orientation of your Wiimote. Experiment with driving it
around at different speeds and practice maneuvering!

Challenge Yourself: Refine your
Remote-Controlled Robot
When you have a feel for the behavior of your remote-controlled
robot, take another look at the code and refine it as you see fit. For

1 02 • chapter 4

example, you could try to make the steering more sensitive, limit the
speed of your robot, or even make your robot move in a predefined
pattern when you press a button. The possibilities are endless!

Summary
This chapter has taken you from having a robot-shaped paperweight
to a fully functional Wiimote-controlled little machine! We have covered
a wide range of concepts from H-bridges to PWM to accelerom-
eters. Over the process you have written three programs, each more
advanced than the last.

In the next chapter, I’ll guide you through making your robot a
little bit more intelligent so that it can automatically avoid obstacles!

