
With some disassembly background under
our belts, and before we begin our dive

into the specifics of Ghidra, it will be useful
to understand some of the other tools that are

used for reverse engineering binaries. Many of these
tools predate Ghidra and continue to be useful for
quick glimpses into files as well as for double-checking the work that Ghidra
does. As we will see, Ghidra rolls many of the capabilities of these tools into
its user interface to provide a single, integrated environment for reverse
engineering.

Classification Tools
When first confronted with an unknown file, it is often useful to answer
simple questions such as, “What is this thing?” The first rule of thumb when
attempting to answer that question is to never rely on a filename extension to
determine what a file actually is. That is also the second, third, and fourth

2
R E V E R S I N G A N D

D I S A S S E M B LY T O O L S

14 Chapter 2

rules of thumb. Once you have become an adherent of the file extensions are
meaningless line of thinking, you may wish to familiarize yourself with one
or more of the following utilities.

file
The file command is a standard utility, included with most *nix-style oper-
ating systems as well as the Windows Subsystems for Linux1 (WSL). This
command is also available to Windows users by installing either Cygwin2
or MinGW.3 The file command attempts to identify a file’s type by examin-
ing specific fields within the file. In some cases, file recognizes common
strings such as #!/bin/sh (a shell script) and <html> (an HTML document).
Files containing non-ASCII content present somewhat more of a challenge.
In such cases, file attempts to determine whether the content appears to be
structured according to a known file format. In many cases, it searches for
specific tag values (often referred to as magic numbers4) known to be unique
to specific file types. The following hex listings show several examples of
magic numbers used to identify some common file types.

Windows PE executable file
00000000 4D 5A 90 00 03 00 00 00 04 00 00 00 FF FF 00 00 MZ..............
00000010 B8 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00@.......
Jpeg image file
00000000 FF D8 FF E0 00 10 4A 46 49 46 00 01 01 01 00 60JFIF.....`
00000010 00 60 00 00 FF DB 00 43 00 0A 07 07 08 07 06 0A .`.....C........
Java .class file
00000000 CA FE BA BE 00 00 00 32 00 98 0A 00 2E 00 3E 082......>.
00000010 00 3F 09 00 40 00 41 08 00 42 0A 00 43 00 44 0A .?..@.A..B..C.D.

The file command has the capability to identify a large number of file
formats, including several types of ASCII text files and various executable
and data file formats. The magic number checks performed by file are
governed by rules contained in a magic file. The default magic file varies by
operating system, but common locations include /usr/share/file/magic, /usr/
share/misc/magic, and /etc/magic. Please refer to the documentation for file
for more information concerning magic files.

In some cases, file can distinguish variations within a given file type.
The following listing demonstrates file’s ability to identify not only sev-
eral variations of ELF binaries but also information pertaining to how the

1. See https://docs.microsoft.com/en-us/windows/wsl/about.

2. See http://www.cygwin.com/.

3. See http://www.mingw.org/.

4. A magic number is a special tag value required by some file format specifications whose
presence indicates conformance to such specifications. In some cases, humorous reasons
surround the selection of magic numbers. The MZ tag in MS-DOS executable file headers
represents the initials of Mark Zbikowski, one of the original architects of MS-DOS, while the
hex value 0xcafebabe, the well-known magic number associated with Java .class files, was cho-
sen because it is an easily remembered sequence of hex digits.

Reversing and Disassembly Tools 15

binary was linked (statically or dynamically) and whether the binary was
stripped or not.

ghidrabook# file ch2_ex_*
ch2_ex.exe: MS-DOS executable PE for MS Windows (console)
Intel 80386 32-bit
ch2_ex_upx.exe: MS-DOS executable PE for MS Windows (console)
Intel 80386 32-bit, UPX compressed
ch2_ex_freebsd: ELF 32-bit LSB executable, Intel 80386,
version 1 (FreeBSD), for FreeBSD 12.0,
dynamically linked (uses shared libs),
FreeBSD-style, not stripped
ch2_ex_freebsd_static: ELF 32-bit LSB executable, Intel 80386,
version 1 (FreeBSD), for FreeBSD 12.0,
statically linked, FreeBSD-style, not stripped
ch2_ex_freebsd_static_strip: ELF 32-bit LSB executable, Intel 80386,
version 1 (FreeBSD), for FreeBSD 12.0,
statically linked, FreeBSD-style, stripped
ch2_ex_linux: ELF 32-bit LSB executable, Intel 80386,
version 1 (SYSV), for GNU/Linux 3.2.0,
dynamically linked (uses shared libs),
not stripped
ch2_ex_linux_static: ELF 32-bit LSB executable, Intel 80386,
version 1 (SYSV), for GNU/Linux 3.2.0,
statically linked, not stripped
ch2_ex_linux_static_strip: ELF 32-bit LSB executable, Intel 80386,
version 1 (SYSV), for GNU/Linux 3.2.0,
statically linked, stripped
ch2_ex_linux_stripped: ELF 32-bit LSB executable, Intel 80386,
version 1 (SYSV), for GNU/Linux 3.2.0,
dynamically linked (uses shared libs), stripped

The file utility and similar utilities are not foolproof. It is quite pos-
sible for a file to be misidentified simply because it happens to bear the
identifying marks of some file format. You can see this for yourself by using
a hex editor to modify the first 4 bytes of any file to the Java magic number
sequence: CA FE BA BE. The file utility will incorrectly identify the newly
modified file as compiled Java class data. Similarly, a text file containing only

T HE W SL E N V IRONME N T

The Windows Subsystem for Linux provides a GNU/Linux command-line
environment directly within Windows without the need to create a virtual
machine. During WSL installation, users choose a Linux distribution and can
then run it on the WSL. This provides access to common command-line free
software (grep, awk), compilers (gcc, g++), interpreters (Perl, Python, Ruby),
networking utilities (nc, ssh), and many others. Once WSL has been installed,
many programs written for use with Linux can be compiled and executed on
Windows systems.

16 Chapter 2

the two characters MZ will be identified as an MS-DOS executable. A good
approach to take in any reverse engineering effort is to never fully trust the
output of any tool until you have correlated that output with several tools
and manual analysis.

S T R IPPING BIN A RY E X ECU TA BL E F IL E S

Stripping a binary is the process of removing symbols from the binary file.
Binary object files contain symbols as a result of the compilation process.
Some of these symbols are utilized during the linking process to resolve refer-
ences between files when creating the final executable file or library. In other
cases, symbols may be present to provide additional information for use with
debuggers. Following the linking process, many of the symbols are no longer
required. Options passed to the linker can cause the linker to remove the
unnecessary symbols at build time. Alternatively, a utility named strip may be
used to remove symbols from existing binary files. While a stripped binary will
be smaller than its unstripped counterpart, the behavior of the stripped binary
will remain unchanged.

PE Tools
PE Tools5 is a collection of tools useful for analyzing both running pro-
cesses and executable files on Windows systems. Figure 2-1 shows the pri-
mary interface offered by PE Tools, which displays a list of active processes
and provides access to all of the PE Tools utilities.

From the process list, users can dump a process’s memory image to a
file or utilize the PE Sniffer utility to determine what compiler was used to
build the executable or whether the executable was processed by any known
obfuscation utilities. The Tools menu offers similar options for analysis of
disk files. Users can view a file’s PE header fields by using the embedded PE
Editor utility, which also allows for easy modification of any header values.
Modification of PE headers is often required when attempting to recon-
struct a valid PE from an obfuscated version of that file.

5. See https://github.com/petoolse/petools.

Reversing and Disassembly Tools 17

Figure 2-1: The PE Tools utility

BIN A RY F IL E OBF USC AT ION

Obfuscation is any attempt to obscure the true meaning of something. When
applied to executable files, obfuscation is any attempt to hide the true behavior
of a program. Programmers may employ obfuscation for a number of reasons.
Commonly cited examples include protecting proprietary algorithms and
obscuring malicious intent. Nearly all forms of malware utilize obfuscation
in an effort to hinder analysis. Tools are widely available to assist program
authors in generating obfuscated programs. Obfuscation tools and techniques
and their associated impact on the reverse engineering process will be dis-
cussed further in Chapter 21.

PEiD
PEiD6 is another Windows tool whose primary purposes are to identify the
compiler used to build a particular Windows PE binary and to identify any
tools used to obfuscate a Windows PE binary. Figure 2-2 shows the use of
PEiD to identify the tool (ASPack in this case) used to obfuscate a variant
of the Gaobot7 worm.

6. See https://github.com/wolfram77web/app-peid.

7. See https://www.trendmicro.com/vinfo/us/threat-encyclopedia/malware/GAOBOT/.

18 Chapter 2

Figure 2-2: The PEiD utility

Many additional capabilities of PEiD overlap those of PE Tools, includ-
ing the ability to summarize PE file headers, collect information on run-
ning processes, and perform basic disassembly.

Summary Tools
Since our goal is to reverse engineer binary program files, we are going to
need more sophisticated tools to extract detailed information following
initial classification of a file. The tools discussed in this section, by neces-
sity, are far more aware of the formats of the files that they process. In most
cases, these tools understand a very specific file format, and the tools are
utilized to parse input files to extract very specific information.

nm
When source files are compiled to object files, compilers must embed infor-
mation regarding the location of any global (external) symbols so that the
linker will be able to resolve references to those symbols when it combines
object files to create an executable. Unless instructed to strip symbols from
the final executable, the linker generally carries symbols from the object
files over into the resulting executable. According to the man page, the nm
utility “lists symbols from object files.”

When nm is used to examine an intermediate object file (a .o file rather
than an executable), the default output yields the names of any functions
and global variables declared in the file. Sample output of the nm utility is
shown next:

ghidrabook# gcc -c ch2_nm_example.c
ghidrabook# nm ch2_nm_example.o
 U exit
 U fwrite

Reversing and Disassembly Tools 19

000000000000002e t get_max
 U _GLOBAL_OFFSET_TABLE_
 U __isoc99_scanf
00000000000000a6 T main
0000000000000000 D my_initialized_global
0000000000000004 C my_uninitialized_global
 U printf
 U puts
 U rand
 U srand
 U __stack_chk_fail
 U stderr
 U time
0000000000000000 T usage
ghidrabook#

Here we see that nm lists each symbol, along with some information
about the symbol. The letter codes are used to indicate the type of symbol
being listed. In this example, we see the following letter codes:

U  An undefined symbol (usually an external symbol reference).

T  A symbol defined in the text section (usually a function name).

t  A local symbol defined in the text section. In a C program, this usu-
ally equates to a static function.

D  An initialized data value.

C  An uninitialized data value.

N O T E 	 Uppercase letter codes are used for global symbols, whereas lowercase letter codes are
used for local symbols. More information including a full explanation of the letter
codes can be found in the man page for nm.

Somewhat more information is displayed when nm is used to display sym-
bols from an executable file. During linking, symbols are resolved to virtual
addresses (when possible), which results in more information being avail-
able when nm is run. Truncated sample output from nm used on an execut-
able is shown here:

ghidrabook# gcc -o ch2_nm_example ch2_nm_example.c
ghidrabook# nm ch2_nm_example
--- SOME CONTENT OMITTED FOR BREVITY ---
 U fwrite@@GLIBC_2.2.5
0000000000000938 t get_max
0000000000201f78 d _GLOBAL_OFFSET_TABLE_
 w __gmon_start__
0000000000000c5c r __GNU_EH_FRAME_HDR
0000000000000730 T _init
0000000000201d80 t __init_array_end
0000000000201d78 t __init_array_start
0000000000000b60 R _IO_stdin_used
 U __isoc99_scanf@@GLIBC_2.7
 w _ITM_deregisterTMCloneTable

20 Chapter 2

 w _ITM_registerTMCloneTable
0000000000000b50 T __libc_csu_fini
0000000000000ae0 T __libc_csu_init
 U __libc_start_main@@GLIBC_2.2.5
00000000000009b0 T main
0000000000202010 D my_initialized_global
000000000020202c B my_uninitialized_global
 U printf@@GLIBC_2.2.5
 U puts@@GLIBC_2.2.5
 U rand@@GLIBC_2.2.5
0000000000000870 t register_tm_clones
 U srand@@GLIBC_2.2.5
 U __stack_chk_fail@@GLIBC_2.4
0000000000000800 T _start
0000000000202020 B stderr@@GLIBC_2.2.5
 U time@@GLIBC_2.2.5
0000000000202018 D __TMC_END__
000000000000090a T usage
ghidrabook#

At this point, some of the symbols (main, for example) have been assigned
virtual addresses, new ones (__libc_csu_init) have been introduced as a result
of the linking process, some (my_unitialized_global) have had their symbol
type changed, and others remain undefined as they continue to reference
external symbols. In this case, the binary we are examining is dynamically
linked, and the undefined symbols are defined in the shared C library.

ldd
When an executable is created, the location of any library functions ref-
erenced by that executable must be resolved. The linker has two methods
for resolving calls to library functions: static linking and dynamic linking.
Command-line arguments provided to the linker determine which of the
two methods is used. An executable may be statically linked, dynamically
linked, or both.8

When static linking is requested, the linker combines an application’s
object files with a copy of the required library to create an executable file.
At runtime, there is no need to locate the library code because it is already
contained within the executable. Advantages of static linking are that (1) it
results in slightly faster function calls and (2) distribution of binaries is easier
because no assumptions need be made regarding the availability of library
code on users’ systems. Disadvantages of static linking include (1) larger
resulting executables and (2) greater difficulty upgrading programs when
library components change. Programs are more difficult to update because
they must be relinked every time a library is changed. From a reverse engi-
neering perspective, static linking complicates matters somewhat. If we are
faced with the task of analyzing a statically linked binary, there is no easy way

8. For more information on linking, consult John R. Levine’s Linkers and Loaders (San
Francisco: Morgan Kaufmann, 1999)

Reversing and Disassembly Tools 21

to answer the questions “Which libraries are linked into this binary?” and
“Which of these functions is a library function?” Chapter 13 will discuss the
challenges encountered while reverse engineering statically linked code.

Dynamic linking differs from static linking in that the linker has no need
to make a copy of any required libraries. Instead, the linker simply inserts ref-
erences to any required libraries (often .so or .dll files) into the final execut-
able, usually resulting in much smaller executable files. Upgrading library
code is much easier when dynamic linking is utilized. Since a single copy of
a library is maintained and that copy is referenced by many binaries, replac-
ing the single outdated library with a new version results in any new process
based on a binary that dynamically links to that library using the updated
version. One of the disadvantages of using dynamic linking is that it requires
a more complicated loading process. All of the necessary libraries must be
located and loaded into memory, as opposed to loading one statically linked
file that happens to contain all of the library code. Another disadvantage of
dynamic linking is that vendors must distribute not only their own executable
file but also all library files upon which that executable depends. Attempting
to execute a program on a system that does not contain all the required
library files will result in an error.

The following output demonstrates the creation of dynamically and
statically linked versions of a program, the size of the resulting binaries,
and the manner in which file identifies those binaries:

ghidrabook# gcc -o ch2_example_dynamic ch2_example.c
ghidrabook# gcc -o ch2_example_static ch2_example.c -static
ghidrabook# ls -l ch2_example_*
-rwxrwxr-x 1 ghidrabook ghidrabook 12944 Nov 7 10:07 ch2_example_dynamic
-rwxrwxr-x 1 ghidrabook ghidrabook 963504 Nov 7 10:07 ch2_example_static
ghidrabook# file ch2_example_*
ch2_example_dynamic: ELF 64-bit LSB executable, x86-64, version 1 (SYSV),
dynamically linked, interpreter /lib64/l, for GNU/Linux 3.2.0,
BuildID[sha1]=e56ed40012accb3734bde7f8bca3cc2c368455c3, not stripped
ch2_example_static: ELF 64-bit LSB executable, x86-64, version 1 (GNU/Linux),
statically linked, for GNU/Linux 3.2.0,
BuildID[sha1]=430996c6db103e4fe76aea7d578e636712b2b4b0, not stripped
ghidrabook#

In order for dynamic linking to function properly, dynamically linked
binaries must indicate which libraries they depend on, along with the spe-
cific resources required from each of those libraries. As a result, unlike stat-
ically linked binaries, it is quite simple to determine the libraries on which
a dynamically linked binary depends. The ldd (list dynamic dependencies) util-
ity is a tool used to list the dynamic libraries required by any executable. In
the following example, ldd is used to determine the libraries on which the
Apache web server depends:

ghidrabook# ldd /usr/sbin/apache2
linux-vdso.so.1 => (0x00007fffc1c8d000)
libpcre.so.3 => /lib/x86_64-linux-gnu/libpcre.so.3 (0x00007fbeb7410000)
libaprutil-1.so.0 => /usr/lib/x86_64-linux-gnu/libaprutil-1.so.0

22 Chapter 2

(0x00007fbeb71e0000)
libapr-1.so.0 => /usr/lib/x86_64-linux-gnu/libapr-1.so.0 (0x00007fbeb6fa0000)
libpthread.so.0 => /lib/x86_64-linux-gnu/libpthread.so.0 (0x00007fbeb6d70000)
libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007fbeb69a0000)
libcrypt.so.1 => /lib/x86_64-linux-gnu/libcrypt.so.1 (0x00007fbeb6760000)
libexpat.so.1 => /lib/x86_64-linux-gnu/libexpat.so.1 (0x00007fbeb6520000)
libuuid.so.1 => /lib/x86_64-linux-gnu/libuuid.so.1 (0x00007fbeb6310000)
libdl.so.2 => /lib/x86_64-linux-gnu/libdl.so.2 (0x00007fbeb6100000)
/lib64/ld-linux-x86-64.so.2 (0x00007fbeb7a00000)
ghidrabook#

The ldd utility is available on Linux and BSD systems. On macOS sys-
tems, similar functionality is available using the otool utility with the -L
option: otool -L filename. On Windows systems, the dumpbin utility, part of
the Visual Studio tool suite, can be used to list dependent libraries: dumpbin
/dependents filename.

BE WA R E YOUR TOOL S!

While ldd may appear to be a simple tool, the ldd man page states that “you
should never employ ldd on an untrusted executable, since this may result in
the execution of arbitrary code.” While this is unlikely in most cases, it provides
a reminder that running even apparently simple software reverse engineering
(SRE) tools may have unintended consequences when examining untrusted
input files. While it is hopefully obvious that executing untrusted binaries is
unlikely to be safe, it is wise to take precautions even when statically analyzing
untrusted binaries, and to assume that the computer on which you perform SRE
tasks may be compromised as a result of SRE activities, along with any data on
it or other hosts connected to it.

objdump
Whereas ldd is fairly specialized, objdump is extremely versatile. The purpose
of objdump is to “display information from object files9.” This is a fairly broad
goal, and in order to accomplish it, objdump responds to a large number
(30+) of command line options tailored to extract various pieces of infor-
mation from object files. objdump can be used to display the following data
(and much more) related to object files:

Section headers  Summary information for each of the sections in the
program file.

Private headers  Program memory layout information and other
information required by the runtime loader, including a list of required
libraries, such as that produced by ldd.

9. See http://www.sourceware.org/binutils/docs/binutils/objdump.html#objdump/.

Reversing and Disassembly Tools 23

Debugging information  Any debugging information embedded in
the program file.

Symbol information  Symbol table information, dumped in a manner
similar to the nm utility.

Disassembly listing  The objdump tool performs a linear sweep disas-
sembly of sections of the file marked as code. When disassembling
x86 code, objdump can generate either AT&T or Intel syntax, and the
disassembly can be captured as a text file. Such a text file is called a
disassembly dead listing, and while these files can certainly be used for
reverse engineering, they are difficult to navigate effectively and even
more difficult to modify in a consistent and error-free manner.

The objdump tool is available as part of the GNU binutils10 tool suite
and can be found on Linux, FreeBSD, and Windows (via WSL or Cygwin).
Note that objdump relies on the Binary File Descriptor library (libbfd), a
component of binutils, to access object files and thus is capable of parsing
file formats supported by libbfd (ELF and PE among others). For ELF-
specific parsing, a utility named readelf is also available. The readelf utility
offers most of the same capabilities as objdump, and the primary difference
between the two is that readelf does not rely upon libbfd.

otool
The otool utility is most easily described as an objdump-like option for macOS,
and it is useful for parsing information about macOS Mach-O binaries. The
following listing demonstrates how otool displays the dynamic library depen-
dencies for a Mach-O binary, thus performing a function similar to ldd.

ghidrabook# file osx_example
osx_example: Mach-O 64-bit executable x86_64
ghidrabook# otool -L osx_example
osx_example:
/usr/lib/libstdc++.6.dylib (compatibility version 7.0.0, current version 7.4.0)
/usr/lib/libgcc_s.1.dylib (compatibility version 1.0.0, current version 1.0.0)
/usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version 1281.0.0)

The otool utility can be used to display information related to a file’s
headers and symbol tables and to perform disassembly of the file’s code sec-
tion. For more information regarding the capabilities of otool, please refer
to the associated man page.

dumpbin
The dumpbin command line utility is included with Microsoft’s Visual Studio
suite of tools. Like otool and objdump, dumpbin is capable of displaying a wide
range of information related to Windows PE files. The following listing

10. See http://www.gnu.org/software/binutils/.

24 Chapter 2

shows how dumpbin displays the dynamic dependencies of the Windows cal-
culator program in a manner similar to ldd:

$ dumpbin /dependents C:\Windows\System32\notepad.exe
Microsoft (R) COFF/PE Dumper Version 12.00.40629.0
Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file notepad.exe

File Type: EXECUTABLE IMAGE

 Image has the following delay load dependencies:

 ADVAPI32.dll
 COMDLG32.dll
 PROPSYS.dll
 SHELL32.dll
 WINSPOOL.DRV
 urlmon.dll

 Image has the following dependencies:

 GDI32.dll
 USER32.dll
 msvcrt.dll
 …

Additional dumpbin options offer the ability to extract information from
various sections of a PE binary, including symbols, imported function
names, exported function names, and disassembled code. Additional infor-
mation related to the use of dumpbin is available via the Microsoft website.11

c++filt
Languages that allow function overloading must have a mechanism for dis-
tinguishing among the many overloaded versions of a function since each
version has the same name. The following C++ example shows the proto-
types for several overloaded versions of a function named demo:

void demo(void);
void demo(int x);
void demo(double x);
void demo(int x, double y);
void demo(double x, int y);
void demo(char* str);

As a general rule, it is not possible to have two functions with the same
name in an object file. In order to allow overloading, compilers derive unique
names for overloaded functions by incorporating information describing the
type sequence of the function arguments. The process of deriving unique

11. See https://docs.microsoft.com/en-us/cpp/build/reference/dumpbin-command-line.

Reversing and Disassembly Tools 25

names for functions with identical names is called name mangling.12 If we
use nm to dump the symbols from the compiled version of the preceding
C++ code, we might see something like the following (filtered to focus on
versions of demo):

ghidrabook# g++ -o ch2_cpp_example ch2_cpp_example.cc
ghidrabook# nm ch2_cpp_example | grep demo
000000000000060b T _Z4demod
0000000000000626 T _Z4demodi
0000000000000601 T _Z4demoi
0000000000000617 T _Z4demoid
0000000000000635 T _Z4demoPc
00000000000005fa T _Z4demov

The C++ standard does not define a standard name-mangling scheme,
leaving compiler designers to develop their own. In order to decipher the
mangled variants of demo shown here, we need a tool that understands our
compiler’s (g++ in this case) name-mangling scheme. This is precisely the
purpose of the c++filt utility. c++filt treats each input word as if it were a
mangled name and then attempts to determine the compiler that was used
to generate that name. If the name appears to be a valid mangled name, it
outputs the demangled version of the name. When c++filt does not recog-
nize a word as a mangled name, it simply outputs the word with no changes.

If we pass the results of nm from the preceding example through c++filt,
it is possible to recover the demangled function names, as seen here:

ghidrabook# nm ch2_cpp_example | grep demo | c++filt
000000000000060b T demo(double)
0000000000000626 T demo(double, int)
0000000000000601 T demo(int)
0000000000000617 T demo(int, double)
0000000000000635 T demo(char*)
00000000000005fa T demo()

It is important to note that mangled names contain additional informa-
tion about functions that nm does not normally provide. This information
can be extremely helpful in reversing engineering situations, and in more
complex cases, this extra information may include data regarding class
names or function-calling conventions.

Deep Inspection Tools
So far, we have discussed tools that perform a cursory analysis of files based
on minimal knowledge of those files’ internal structure. We have also seen
tools capable of extracting specific pieces of data from files based on very
detailed knowledge of a file’s structure. In this section, we discuss tools

12. For an overview of name mangling, refer to http://en.wikipedia.org/wiki/Name_mangling.

26 Chapter 2

designed to extract specific types of information independently of the type
of file being analyzed.

strings
It is occasionally useful to ask more generic questions regarding file con-
tent—questions that don’t necessarily require any specific knowledge of a
file’s structure. One such question is “Does this file contain any embedded
strings?” Of course, we must first answer the question “What exactly con-
stitutes a string?” Let’s loosely define a string as a consecutive sequence of
printable characters. This definition is often augmented to specify a mini-
mum length and a specific character set. Thus, we could specify a search
for all sequences of at least four consecutive ASCII printable characters
and print the results to the console. Searches for such strings are generally
not limited in any way by the structure of a file. You can search for strings
in an ELF binary just as easily as you can search for strings in a Microsoft
Word document.

The strings utility is designed specifically to extract string content from
files, often without regard for the format of those files. Using strings with
its default settings (7-bit ASCII sequences of at least four characters) might
yield something like the following:

ghidrabook# strings ch2_example
/lib64/ld-linux-x86-64.so.2
libc.so.6
exit
srand
__isoc99_scanf
puts
time
__stack_chk_fail
printf
stderr
fwrite
__libc_start_main
GLIBC_2.7
GLIBC_2.4
GLIBC_2.2.5
_ITM_deregisterTMCloneTable
__gmon_start__
_ITM_registerTMCloneTable
usage: ch4_example [max]
A simple guessing game!
Please guess a number between 1 and %d.
Invalid input, quitting!
Congratulations, you got it in %d attempt(s)!
Sorry too low, please try again
Sorry too high, please try again
GCC: (Ubuntu 7.4.0-1ubuntu1~18.04.1) 7.4.0
…

Reversing and Disassembly Tools 27

Unfortunately, while we see some strings that look like they might
be output by the program, other strings appear to be function names
and library names. We should be careful not to jump to any conclusions
regarding the behavior of the program. Analysts often fall into the trap of
attempting to deduce the behavior of a program based on the output of
strings. Remember, the presence of a string within a binary in no way indi-
cates that the string is ever used in any manner by that binary.

Here are some final notes on the use of strings:

•	 By default, strings gives no indication of where, within a file, a string is
located. Use the -t command-line argument to have strings print file
offset information for each string found.

•	 Many files utilize alternate character sets. Utilize the -e command-line
argument to cause strings to search for wide characters such as 16-bit
Unicode.

Disassemblers
As mentioned earlier, a number of tools are available to generate dead list-
ing–style disassemblies of binary object files. PE, ELF, and Mach-O binaries
can be disassembled using dumpbin, objdump, and otool, respectively. None of
those, however, can deal with arbitrary blocks of binary data. You will occa-
sionally be confronted with a binary file that does not conform to a widely
used file format, in which case you will need tools capable of beginning the
disassembly process at user-specified offsets.

Two examples of such stream disassemblers for the x86 instruction set
are ndisasm and diStorm.14 ndisasm is a utility included with the Netwide
Assembler (NASM).15 The following example illustrates the use of ndis-

14. See https://github.com/gdabah/distorm.

15. See http://www.nasm.us.

W H Y DID S T R INGS CH A NGE?

Historically, when strings was used on executable files it would, by default, only
search for character sequences in the loadable, initialized data sections of the
binary file. This required that strings parse the binary file to find those sections,
using libraries such as libbfd. When it was used for parsing untrusted binaries, vul-
nerabilities in libraries13 could potentially result in arbitrary code execution. As a
result, the default behavior for strings was changed to examine the entire binary
file without parsing for loadable initialized data sections (synonymous with the use
of the -a flag.) The historical behavior can be invoked using the -d flag.

13. See CVE-2014-8485 and http://lcamtuf.blogspot.com/2014/10/psa-dont-run-strings-on-untrusted​
-files.html.

28 Chapter 2

asm to disassemble a piece of shellcode generated using the Metasploit
framework.16

ghidrabook# msfvenom -p linux/x64/shell_find_port -f raw > findport
ghidrabook# ndisasm –b 64 findport
00000000 4831FF xor rdi,rdi
00000003 4831DB xor rbx,rbx
00000006 B314 mov bl,0x14
00000008 4829DC sub rsp,rbx
0000000B 488D1424 lea rdx,[rsp]
0000000F 488D742404 lea rsi,[rsp+0x4]
00000014 6A34 push byte +0x34
00000016 58 pop rax
00000017 0F05 syscall
00000019 48FFC7 inc rdi
0000001C 66817E024A67 cmp word [rsi+0x2],0x674a
00000022 75F0 jnz 0x14
00000024 48FFCF dec rdi
00000027 6A02 push byte +0x2
00000029 5E pop rsi
0000002A 6A21 push byte +0x21
0000002C 58 pop rax
0000002D 0F05 syscall
0000002F 48FFCE dec rsi
00000032 79F6 jns 0x2a
00000034 4889F3 mov rbx,rsi
00000037 BB412F7368 mov ebx,0x68732f41
0000003C B82F62696E mov eax,0x6e69622f
00000041 48C1EB08 shr rbx,byte 0x8
00000045 48C1E320 shl rbx,byte 0x20
00000049 4809D8 or rax,rbx
0000004C 50 push rax
0000004D 4889E7 mov rdi,rsp
00000050 4831F6 xor rsi,rsi
00000053 4889F2 mov rdx,rsi
00000056 6A3B push byte +0x3b
00000058 58 pop rax
00000059 0F05 syscall
ghidrabook#

The flexibility of stream disassembly is useful in many situations. One
scenario involves the analysis of computer network attacks in which network
packets may contain shellcode. Stream disassemblers can be used to disas-
semble the portions of the packet that contain shellcode in order to analyze
the behavior of the malicious payload. Another situation involves the analy-
sis of ROM images for which no layout reference can be located. Portions of
the ROM will contain data, while other portions will contain code. Stream
disassemblers can be used to disassemble just those portions of the image
thought to be code.

16. See https://metasploit.com/.

Reversing and Disassembly Tools 29

Summary
The tools discussed in this chapter are not necessarily the best of their
breed. They do, however, represent tools commonly available for anyone
who wishes to reverse engineer binary files. More important, they repre-
sent the types of tools that motivated much of the development of Ghidra.
In future chapters, we will occasionally highlight stand-alone tools that
provide functionality similar to that integrated into Ghidra. An awareness
of these tools will greatly enhance your understanding of the Ghidra user
interface and the many informational displays that Ghidra offers.

	0_pgfId-1013280
	0_pgfId-1013285
	0_pgfId-998392
	0_pgfId-998407
	0_pgfId-1008608
	0_pgfId-998462
	0_pgfId-998476
	0_pgfId-998485
	0_pgfId-998494
	0_pgfId-998503
	0_pgfId-998520
	0_pgfId-998529
	0_pgfId-998538
	0_pgfId-998547
	0_pgfId-998559
	0_pgfId-1008599
	0_pgfId-998650
	0_pgfId-998660
	0_pgfId-998669
	0_pgfId-998679
	0_pgfId-998688
	0_pgfId-998698
	0_pgfId-998707
	0_pgfId-998717
	0_pgfId-998727
	0_pgfId-998737
	0_pgfId-998746
	0_pgfId-998756
	0_pgfId-998766
	0_pgfId-998775
	0_pgfId-998785
	0_pgfId-998795
	0_pgfId-998804
	0_pgfId-998814
	0_pgfId-998824
	0_pgfId-998834
	0_pgfId-998843
	0_pgfId-998853
	0_pgfId-998863
	0_pgfId-998872
	0_pgfId-998882
	0_pgfId-998892
	0_pgfId-998901
	0_pgfId-998911
	0_pgfId-998921
	0_pgfId-998981
	0_pgfId-1008283
	0_pgfId-999015
	0_pgfId-999024
	0_pgfId-999065
	0_pgfId-1007512
	0_pgfId-1007517
	0_pgfId-999110
	0_pgfId-999119
	0_pgfId-999128
	0_pgfId-999137
	0_pgfId-999149
	0_pgfId-999167
	0_pgfId-999178
	0_pgfId-999188
	0_pgfId-999322
	0_pgfId-1007913
	0_pgfId-1008155
	0_pgfId-999423
	0_pgfId-999438
	0_pgfId-999456
	0_pgfId-999466
	0_pgfId-999476
	0_pgfId-999486
	0_pgfId-999637
	0_pgfId-999646
	0_pgfId-999664
	0_pgfId-999673
	0_pgfId-999689
	0_pgfId-1013389
	0_pgfId-999716
	0_pgfId-999728
	0_pgfId-999738
	0_pgfId-999833
	0_pgfId-999850
	0_pgfId-999958
	0_pgfId-999985
	0_pgfId-999994
	0_pgfId-1000021
	0_pgfId-1000030
	0_pgfId-1000042
	0_pgfId-1000051
	0_pgfId-1000065
	0_pgfId-1000074
	0_pgfId-1000086
	0_pgfId-1000095
	0_pgfId-1000111
	0_pgfId-1000120
	0_pgfId-1000139
	0_pgfId-1000167
	0_pgfId-1000176
	0_pgfId-1000194
	0_pgfId-1000205
	0_pgfId-1000214
	0_pgfId-1000308
	0_pgfId-1000317
	0_pgfId-1000327
	0_pgfId-1000337
	0_pgfId-1000347
	0_pgfId-1000360
	0_pgfId-1000369
	0_pgfId-1000393
	0_pgfId-1000403
	0_pgfId-1000545
	0_pgfId-1000564
	0_pgfId-1000573
	0_pgfId-1000584
	0_pgfId-1000593
	0_pgfId-1000602
	0_pgfId-1000611
	0_pgfId-1000620
	0_pgfId-1000629
	0_pgfId-1000638
	0_pgfId-1000656
	0_pgfId-1000666
	0_pgfId-1000676
	0_pgfId-1000721
	0_pgfId-1000730
	0_pgfId-1000751
	0_pgfId-1000765
	0_pgfId-1000775
	0_pgfId-1000820
	0_pgfId-1000829
	0_pgfId-1000841
	0_pgfId-1000850
	0_pgfId-1000859
	0_pgfId-1000868
	0_pgfId-1000880
	0_pgfId-1000895
	0_pgfId-1000905
	0_pgfId-1001123
	0_pgfId-1001134
	0_pgfId-1001154
	0_pgfId-1001174
	0_pgfId-1001192
	0_pgfId-1013440
	0_pgfId-1001218
	0_pgfId-1001248
	0_pgfId-1009066
	0_pgfId-1001584
	0_pgfId-1001593
	0_pgfId-1008614
	0_pgfId-1008282
	0_pgfId-1007511
	0_pgfId-1007515
	0_pgfId-1001742
	0_pgfId-1001761
	0_pgfId-1001778
	0_pgfId-1001794
	0_pgfId-1001826
	0_pgfId-1001843
	0_pgfId-1001860

