
3
A U T H O R I Z A T I O N  A N D 

A C C E S S   C O N T R O L S

After you’ve received a party’s claim of iden-
tity and established whether that claim is 

valid, as discussed in Chapter 2, you have to 
decide whether to allow the party access to your 

resources. You can achieve this with two main con-
cepts: authorization and access control. Authorization 
is the process of determining exactly what an authen-
ticated party can do. You typically implement autho-
rization using access controls, which are the tools and 
systems you use to deny or allow access. 

You can base access controls on physical attributes, sets of rules, lists of 
individuals or systems, or other, more complex factors. When it comes to 
logical resources, you’ll probably find simple access controls implemented 
in everyday applications and operating systems and elaborate, multilevel 



36   Chapter 3

configurations in military or government environments. In this chapter, 
you’ll learn about access controls in more detail and look at some ways of 
implementing them.

What Are Access Controls?
Although the term access controls may sound technical, like it belongs only in 
high-security computing facilities, we all deal with access controls daily.

•	 When you lock or unlock the doors of your house, you’re using a form 
of physical access control, based on your keys. (Your keys are something 
you have, as discussed in Chapter 2; in this case, they function as meth-
ods of both authentication and authorization.)

•	 When you start your car, you’re also likely to use a key. For some newer 
cars, your key may even include an extra layer of security with radio-
frequency identification (RFID) tags, which are certificate-like identi-
fiers stored on the key.

•	 Upon reaching your place of employment, you might use a badge 
(again, something you have) to enter the building.

•	 When you sit down in front of your computer at work and enter your 
password (something you know), you’re authenticating yourself and 
using a logical access control system to access the resources for which 
you’ve been given permission. 

Most of us regularly encounter multiple implementations like these 
while working, going to school, and performing the other activities that 
make up our day. 

You’ll probably want to use access controls to carry out four basic tasks: 
allowing access, denying access, limiting access, and revoking access. We can 
describe most access control issues or situations using these four actions.

Allowing access is giving a party access to a given resource. For example, 
you might want to give a user access to a file, or you may want to give an 
entire group of people access to all the files in a given directory. You might 
also allow someone physical access to a resource by giving your employees a 
key or badge to your facility.

Denying access is the opposite of granting access. When you deny access, 
you are preventing a given party from accessing the resource in question. 
You might deny access to a person attempting to log onto a machine based 
on the time of day, or you might block unauthorized individuals from enter-
ing the lobby of your building beyond business hours. Many access control 
systems are set to deny by default.

Limiting access is allowing only some degree of access to your resources. 
In a physical security scheme, you might have a master key that can open any 
door in the building, an intermediate key that can open only a few doors, 
and a low-level key that can open only one door. You might also implement 



Authorization and Access Controls   37

limited access when you’re using applications that may be exposed to attack-
prone environments, like web browsers used on the internet.

One way to limit access is by running sensitive applications in sandboxes, 
which are isolated environments containing a set of resources for a given 
purpose (Figure 3-1). 

Application 1

App 1 data

Application 1 sandbox

Application 2

App 2 data

Application 2 sandbox

Permissions

System resources:
Other applications
Network connectivity
Storage

Figure 3-1: A sandbox is an isolated environment that protects  
a set of resources.

We use sandboxes to prevent their contents from accessing files, mem-
ory, and other system resources with which they shouldn’t be interacting. 
Sandboxes can be useful for containing things that you can’t trust, such as 
code from public websites. One example of a sandbox is the Java Virtual 
Machine (JVM) used to run programs written in the Java programming 
language. The JVM is specifically constructed to protect users against 
potentially malicious downloaded software.

Revoking access is taking access away from a party after you’ve granted 
it. Being able to revoke access is vital to the security of your system. If you 
were, for instance, to fire an employee, you’d want to revoke any accesses 
they might have, including access to their email account, your virtual pri-
vate network (VPN), and your facility. When you’re working with computer 
resources, it may be particularly important to be able to revoke access to a 
given resource quickly.

Implementing Access Controls
The two main methods of implementing access controls are with access 
control lists and capabilities. Both of these methods have strengths and 
weaknesses, as well as different ways of carrying out the four basic tasks we 
covered earlier.



38   Chapter 3

Access Control Lists
Access control lists (ACLs), often pronounced “ackles,” are lists containing 
information about what kind of access certain parties are allowed to have to a 
given system. We often see ACLs implemented as part of application software 
or operating systems and in the firmware of some hardware appliances, such 
as network infrastructure devices. We may even see ACL concepts extend into 
the physical world, through software systems that control physical resources, 
such as badge readers for door control systems. According to the ACL in 
Figure 3-2, Alice is allowed access to the resource, while Bob is specifically 
denied access. 

Alice

Bob

Allow 

Deny �

�

Figure 3-2: A simple access  
control list

This may seem like a simple concept, but in larger implementations, 
ACLs can become quite complex. Organizations commonly use ACLs to 
control access in the file systems on which their operating systems run and 
to control the flow of traffic in the networks to which their systems are 
attached. You’ll learn about these two types of ACLs in this chapter.

File System ACLs

The ACLs in most file systems will have three types of permissions (the 
authorizations that allow access to specific resources in a specific manner): 
read, which allows a user to access the contents of a file or directory; write, 
which allows a user to write to a file or directory; and execute, which allows a 
user to execute the contents of the file if that file contains either a program 
or a script capable of running on the system in question.

A file or directory may also have multiple ACLs attached to it. In UNIX-
like operating systems, for instance, a given file might have separate access 
lists for specific users or groups. The system might give a certain individual 
user (like a specific developer) specific read, write, and execute permissions; 
a certain group of users (like the entire developer group) different read, 
write, and execute permissions; and any other authenticated users a third 
set of read, write, and execute permissions. On Linux-based operating sys-
tems, you can view these three sets of permissions by issuing the following 
command: 

ls -la

Figure 3-3 shows these permissions displayed in the system. 



Authorization and Access Controls   39

Figure 3-3: File permissions on a UNIX-like operating system

Each line in Figure 3-3 represents the permissions for an individual 
file. The permissions for the first file, ucf.conf, are displayed as follows:

 - r w - r - - r - - 

This may seem a bit cryptic. To interpret the permissions, it’ll help to 
divide them into the following sections:

 - | r w - | r - - | r - -

The first character generally represents the file type: - represents a 
regular file, and d represents a directory. The second segment represents 
the user who owns the file’s permissions and is set to r w -, meaning that the 
user can read and write to the file but not execute it. 

The third segment, the group permissions, is set to r - -, meaning that 
members of the group that was given ownership of the file can read it but 
not write or execute it. The last segment, other, is also set to r - -, meaning 
that anyone who is not the user who owns the file or in the group that owns 
the file can also read it but not write or execute it. In Linux, the user per-
missions apply to a single user only, and the group permissions apply to a 
single group.

By using sets of file permissions, you can control access to the operating 
systems and applications that use your file system. Most file systems use sys-
tems that are similar to the one described for assigning permissions.

Network ACLs

If you look at the variety of activities that take place on networks, both pri-
vate and public, you’ll notice ACLs regulating the activity. In network ACLs, 
you typically filter access based on identifiers used for network transactions, 



40   Chapter 3

such as Internet Protocol (IP) addresses, Media Access Control addresses, 
and ports. You can see such ACLs at work in network infrastructure such as 
routers, switches, and firewall devices, as well as in software firewalls, web-
sites like Facebook and Google, email, and other forms of software.

Permissions in network ACLs tend to be binary in nature; rather than 
read, write, and execute, they generally either allow or deny some activity. 
Instead of users, network ACLs typically grant permissions to traffic. For 
example, when you set up the ACL, you use your chosen identifier or identi-
fiers to dictate which traffic you’re referring to and whether the traffic is 
allowed. It’s best to rely on multiple identifiers to filter traffic, for reasons 
that will become clear shortly. 

Media Access Control address filtering is one of the simplest forms of 
network-oriented ACLs. Media Access Control addresses are unique identi-
fiers hard-coded into each network interface in a given system. 

Unfortunately, the software settings in most operating systems can 
override a network interface’s Media Access Control address. Changing this 
address is easy, so it’s not a good choice for a unique identifier of a device 
on the network.

You could use IP addresses instead. Theoretically, an IP address is a 
unique address assigned to each device on any network that uses the 
Internet Protocol for communication. You can filter based on individual 
addresses or an entire range of IP addresses. For instance, you could 
allow the IP addresses 10.0.0.2 through 10.0.0.10 to pass traffic but deny 
any traffic from 10.0.0.11 and higher. Unfortunately, like Media Access 
Control addresses, you can falsify IP addresses, and they’re not unique to 
a network interface. Additionally, IP addresses issued by internet service 
providers are subject to frequent change, so making IP addresses the sole 
basis for filtering is a shaky prospect at best.

BL ACK HOL E S

Some organizations, such as those that operate web servers, mail servers, and 
other services exposed to the internet, apply large-scale filtering to block out 
known attacks, spammers, and other undesirable traffic. Such filtering might 
include dropping traffic from individual IP addresses, ranges of IP addresses, 
or the entire IP spaces of large organizations, internet service providers, or 
even entire countries. This practice is commonly called blackholing, because 
from the user’s perspective, any traffic sent to filtered destinations appears to 
have vanished into a black hole.

A third way of filtering traffic is by the port used to communicate over 
the network. The network port is a numerical designation for one side of a 
connection between two devices, and we use them to identify the application 
to which traffic should be routed. Many common services and applications 



Authorization and Access Controls   41

use specific ports. For instance, FTP uses ports 20 and 21 to transfer files, 
Internet Message Access Protocol (IMAP) uses port 143 for managing email, 
and Secure Shell (SSH) uses port 22 to manage remote connections to sys-
tems. There are many more examples, since there are 65,535 ports in all. 

You can control the use of many applications over the network by allow-
ing or denying traffic originating from or sent to any ports that you care to 
manage. However, like Media Access Control and IP addresses, the specific 
ports used for applications are conventions, not absolute rules. You can, with 
relative ease, change the ports that applications use to entirely different ones.

As you just saw, if you use any single attribute to construct a network 
ACL, you’ll likely encounter a variety of issues. If you’re using IP addresses, 
your attribute might not necessarily be unique. If you’re using Media Access 
Control addresses, your attribute will be easy to alter, and if you use ports, 
you’re banking on conventions rather than rules. 

When you combine several attributes, you begin to arrive at a more 
secure technique. For example, it’s common to use both an IP address and 
a port, a combination typically called a socket. Using sockets, you can allow 
or deny network traffic from one or more IP addresses with one or more 
applications on your network in a workable fashion.

You can also construct ACLs to filter based on a wide variety of other 
criteria. In some cases, you want to allow or deny traffic based on more spe-
cific information, such as the content of an individual packet or a related 
series of packets. Using such techniques, you could, for example, filter out 
traffic related to networks used to illegally share copyrighted material.

Weaknesses of ACL Systems

Systems that use ACLs to manage permissions are vulnerable to a type of 
attack called the confused deputy problem. This problem occurs when the soft-
ware with access to a resource (the deputy) has a greater level of permission 
to access the resource than the user who is controlling the software. If you 
can trick the software into misusing its greater level of authority, you can 
potentially carry out an attack.1

Several attacks take practical advantage of the confused deputy problem. 
These often involve tricking the user into taking some action when they 
really think they are doing something else entirely. Many of these attacks 
are client-side attacks, which take advantage of weaknesses in applications 
running on the user’s computer. These attacks might be code sent through 
the web browser and executed on the local machine, malformed PDF files, 
or images and videos with attack code embedded. In the past several years, 
software vendors have become increasingly aware of such attacks and have 
begun building defensive measures into their software, but new attacks 
appear on a regular basis. Two of the more common attacks that exploit 
the confused deputy problem are cross-site request forgery (CSRF) and 
clickjacking.

CSRF is an attack that misuses the authority of the browser on the user’s 
computer. If the attacker knows of, or can guess, a website that has already 
authenticated the user—perhaps a common site such as Amazon.com—the 



42   Chapter 3

attacker can embed a link in a web page or HTML-based email, generally 
to an image hosted from a site controlled by the attacker. When the target’s 
browser attempts to retrieve the image in the link, it also executes the addi-
tional commands the attacker has embedded in it, often in a fashion com-
pletely invisible to the target. 

In the example in Figure 3-4, the attacker has embedded a request 
to transfer funds from an account at BankCo to the attacker’s offshore 
account. As the BankCo server sees the request as coming from an authen-
ticated and authorized user, it proceeds with the transfer. In this case, the 
confused deputy is the bank server.

1. Attacker crafts request
Attacker creates a request to transfer 
$20,000 from a BankCo account to 
an offshore bank.

2. Attacker embeds request
Attacker embeds a link to the request 
into a website.

3. Target clicks link
The target, who is logged in to both 
the BankCo website and the website 
where the request is stored, clicks the 
link leading to the attacker’s crafted 
request.

4. Bank transfers funds
The bank, seeing the request coming 
from a properly authenticated user, 
transfers $20,000 to the account 
specified in the request.

Time

Figure 3-4: An example of a CSRF attack

Clickjacking, also known as user interface redressing, is a particularly sneaky 
and effective client-side attack that takes advantage of some of the page ren-
dering features that are available in newer web browsers. To carry out a click-
jacking attack, the attacker must legitimately control or have taken control 
of some portion of a website. The attacker constructs or modifies the site by 
placing an invisible layer over something the client would normally click. This 
causes the client to execute a command that’s different than the one they 
think they’re performing. You can use clickjacking to trick the client into 
making purchases, changing permissions in their applications or operating 
systems, or performing other unwanted activities.

Capabilities
Whereas ACLs define permissions based on a given resource, an identity, 
and a set of permissions, all generally held in a file of some sort, you can 
also define permissions based on a user’s token, or key, otherwise known as 
a capability. Although the token isn’t a physical object in most cases, you can 
think of it as the badge you might use to open the door of a building. The 
building has one door, and many people have a token that will open it, but 



Authorization and Access Controls   43

each person has a different level of access. One person might be able to 
access the building only during business hours on weekdays, while another 
person may have permission to enter the building at any time of day on any 
day of the week.

In capability-based systems, the right to access a resource is based 
entirely on possession of the token, rather than who possesses it. If you 
were to give your badge to someone else, he would be able to use it to 
access the building with whatever set of permissions you have. When it 
comes to logical assets, applications can share their token with other 
applications. 

If you were to use capabilities instead of ACLs to manage permissions, 
you could protect against confused deputy attack. Neither of the attacks you 
learned about earlier, CSRF and clickjacking, would be possible, because 
the attacker wouldn’t be able to misuse the authority of the user unless they 
had access to the user’s token.

Access Control Models
An access control model is a way of determining who should be allowed 
access to what resources. There are quite a few different access control 
models out there. The most common ones, covered here, include dis-
cretionary access control, mandatory access control, rule-based access 
control, role-based access control, attribute-based access control, and 
multilevel access control.

Discretionary Access Control
In the discretionary access control (DAC) model, the owner of the resource 
determines who gets access to it and exactly what level of access they can 
have. You can see DAC implemented in most operating systems; if you 
decide to create a network share in a Microsoft operating system, for 
instance, you’re in charge of people’s access to it.

Mandatory Access Control
In the mandatory access control (MAC) model, the owner of the resource 
doesn’t get to decide who gets to access it. Instead, a separate group or 
individual has the authority to set access to resources. You can often find 
MAC implemented in government organizations, where access to a given 
resource is largely dictated by the sensitivity label applied to it (secret or top 
secret, for example), by the level of sensitive information the individual is 
allowed to access (perhaps only secret), and by whether the individual actu-
ally has a need to access the resource (a concept called the principle of least 
privilege, discussed in the box).



44   Chapter 3

T HE PR INCIPL E OF L E A S T PR I V IL EGE

The principle of least privilege dictates that you should give a party only the 
bare minimum level of access it needs to perform its functionality. For example, 
someone working in an organization’s sales department should not need access 
to data in the organization’s internal human resources system to do their job. 
Violation of the principle of least privilege is at the heart of many of the security 
problems we face today.

One of the more common ways the principle of least privilege gets 
improperly implemented is in the permissions given to operating system user 
accounts. In Microsoft operating systems in particular, you’ll often find that 
casual users, who are performing tasks such as creating documents in word 
processors and exchanging emails, are configured with administrative access, 
allowing them to carry out any task that the operating system allows. 

Because of this, whenever the over-privileged user opens an email attach-
ment containing malware or encounters a website that pushes attack code to 
the client computer, these attacks have free rein on the system. The attacker 
can simply turn off anti-malware tools, install any additional attack tools they 
care to, and proceed with completely compromising the system.

Rule-Based Access Control
Rule-based access control allows access according to a set of rules defined by 
the system administrator. If the rule is matched, access to the resource will 
be granted or denied accordingly. 

A good example of rule-based access control is an ACL used by a 
router. You might see a rule specifying that traffic coming from source A 
to destination B on port C is allowed. Any other traffic between the two 
devices would be denied.

Role-Based Access Control
The role-based access control (RBAC) model allows access based on the role of 
the individual being granted access. For example, if you have an employee 
whose only role is to enter data into an application, RBAC would mandate 
that you allow the employee access to only that application. 

If you have an employee with a more complex role—customer service for 
an online retailer, perhaps—the employee’s role might require him to have 
access to information about customers’ payment status and information, ship-
ping status, previous orders, and returns. In this case, RBAC would grant him 
considerably more access. You can see RBAC implemented in many large-
scale applications that are oriented around sales or customer service.



Authorization and Access Controls   45

Attribute-Based Access Control
Attribute-based access control (ABAC) is based on the specific attributes of a 
person, resource, or environment. You can often find it implemented on 
infrastructure systems, such as those in network or telecommunications 
environments.

Subject attributes belong to an individual. We could choose any number 
of attributes, such as height in the classic “you must be this tall to ride” 
access control in amusement park rides. Another common example of sub-
ject attributes are CAPTCHAs, or “completely automated public Turing tests 
to tell humans and computers apart” (Figure 3-5).2 CAPTCHAs control 
access based on whether the party on the other end can pass a test that is 
(in theory) too difficult for a machine to complete.

Figure 3-5: A CAPTCHA, designed to prove that the user is human

Resource attributes belong to a resource, such as an operating system 
or application. You’ll often see access controlled by resource attributes, 
although usually this is for technical reasons rather than security reasons; 
some software runs only on a particular operating system, and some web-
sites work only with certain browsers. You might apply this type of access 
control as a security measure by requiring someone to use specific software 
or protocols for communication.

You can use environmental attributes to enable access controls based on 
environmental conditions. People commonly use time to control access to 
physical and logical resources. Access controls on buildings often allow access 
only during business hours. Many VPN connections have time limits that 
force the user to reconnect every 24 hours to prevent users from keeping a 
connection running after their authorization for using it has been removed. 

Multilevel Access Control
Multilevel access control models combine several of the access control models 
discussed in this section. They’re used when the simpler access control 
models aren’t considered robust enough to protect the information 



46   Chapter 3

to which you’re controlling access. Military and government organizations, 
which handle data of a sensitive nature, often use multilevel access control 
models to control access to a variety of data, from nuclear secrets to pro-
tected health information. You’ll learn about a few of these models now.

The Bell–LaPadula Model

The Bell–LaPadula model implements a combination of discretionary and 
mandatory access controls (DAC and MAC) and is primarily concerned 
with the confidentiality of the resource in question—in other words, mak-
ing sure unauthorized people can’t read it. Generally, in cases where you 
see these two models implemented together, MAC takes precedence over 
DAC, and DAC works within the accesses allowed by the MAC permissions. 

For example, you might have a resource that is classified as secret and 
a user who has a secret level of clearance; under a mandatory access model, 
the user would have access to the resource. However, you might also have an 
additional layer of DAC under the MAC access so that if the resource owner 
has not given the user access, they would not be able to access it, despite the 
MAC permissions. In Bell–LaPadula, two security properties define how 
information can flow to and from the resource.3

The Simple Security Property  The level of access granted to an 
individual must be at least as high as the classification of the resource 
in order for the individual to access it. In other words, an individual 
cannot read a resource classified at a higher level, but they can read 
resources at a lower level.

The * Property (or Star Property)  Anyone accessing a resource can 
only write (or copy) its contents to another resource classified at the 
same level or higher.

You can summarize these properties as “no read up” and “no write 
down,” respectively, as shown in Figure 3-6. 

Top Secret

Secret

Confidential

Unclassified

No read up No write down

Figure 3-6: The Bell–LaPadula model

In short, this means that when you’re handling classified information, 
you can’t read any higher than your clearance level, and you can’t write 
classified data down to any lower level.



Authorization and Access Controls   47

The Biba Model

The Biba model of access control is primarily concerned with protecting 
the integrity of data, even at the expense of confidentiality. That means it’s 
more important to keep people from altering the data than from viewing it. 
Biba has two security rules that are the exact opposite of those discussed in 
the Bell–LaPadula model.4

The Simple Integrity Axiom  The level of access granted to an indi-
vidual must be no lower than the classification of the resource. In other 
words, access to one level does not grant access to lower levels.

The * Integrity Axiom (or Star Integrity Axiom)  Anyone accessing a 
resource can only write its contents to a resource classified at the same 
level or lower.

We can summarize these rules as “no read down” and “no write up,” 
respectively, as shown in Figure 3-7. This means that assets that are of high 
integrity (meaning they shouldn’t be altered) and assets that are of low integ-
rity are kept strictly apart. 

Top Secret

Secret

Confidential

Unclassified

No write up No read down

Figure 3-7: The Biba model

This may seem completely counterintuitive when it comes to protecting 
information. However, these principles protect integrity by ensuring that 
your resource can be written to only by those with a high level of access and 
that those with a high level of access do not access a resource with a lower 
classification. Consider an organization that performs both a low-integrity 
process that collects (potentially malicious) PDF uploads from users and 
a high-integrity process that scans document inputs from highly classified 
systems. In the Biba model, the upload process wouldn’t be able to send 
data to the scanning process, so it wouldn’t be able to corrupt the classified 
input; on top of this, the scanning process would be unable to access the 
low-level data, even if it was directed to. 

The Brewer and Nash Model

The Brewer and Nash model, also known as the Chinese Wall model, is an access 
control model designed to prevent conflicts of interest. Brewer and Nash is 



48   Chapter 3

commonly used in industries that handle sensitive data, such as the finan-
cial, medical, or legal industries. This model considers three main resource 
classes.5

•	 Objects: Resources, such as files or information, pertaining to a single 
organization

•	 Company groups: All objects pertaining to an organization

•	 Conflict classes: All groups of objects concerning competing parties

A commercial law firm that represents companies in a certain industry 
might have files that pertain to various competing individuals and companies. 
Since an individual lawyer at the firm accesses files for different clients, the 
lawyer could potentially access confidential data that would generate a 
conflict of interest. In the Brewer and Nash model, the level of access to 
resources and case materials that the lawyer is allowed would dynamically 
change based on the materials previously accessed (Figure 3-8).

Client A case 
materials

b
Lawyer

Client B case 
materials

Conflict of interest

Client B case 
materials

Client A case 
materials

Figure 3-8: Brewer and Nash model

In this example, after the lawyer views Client A’s case materials, 
the lawyer would no longer be able to access information pertaining to 
Client B or any other parties competing with the current client, resolving 
any conflicts of interest.

Physical Access Controls
So far you’ve seen logical examples to illustrate the access control concepts 
discussed in this chapter, but many of these methods apply to physical secu-
rity, as well. Let’s go over some examples of those now. 

Physical access controls are often concerned with controlling the move-
ment of individuals and vehicles. Access controls for individuals typically 
regulate their movement in and out of buildings or facilities, often using 
badges that open a facility’s doors (something you have, from Chapter 2). 
Door control systems that make use of badges frequently use ACLs in the 
software that runs them to permit or deny access for certain doors and 
times of day.

One of the more common security issues with regulating people’s access 
into buildings is tailgating, which occurs when you authenticate your physical 
access control measure, such as a badge, and another person follows directly 



Authorization and Access Controls   49

behind you without also being authenticated. Tailgating can cause a variety 
of issues, including creating an inaccurate representation of who is in the 
building in the case of emergencies.

We can attempt to solve tailgating in a variety of ways, including imple-
menting a policy that forbids it, posting a guard in the area, or simply (but 
expensively) installing a physical access control solution that allows only 
one person to pass through at a time, such as a turnstile. All of these are 
reasonable solutions, but, depending on the environment in question, they 
may or may not be effective. You’ll often find that a combination of several 
solutions works better than any single one.

A much more complex example of a physical access control is the security 
system in use at many airports. After the terrorist attacks of September 11, 
2001, in the United States, the level of security at airports increased. Once 
you’ve entered the airport security system, you are required to present a 
boarding pass and identification (something you have, times two). You typi-
cally pass through several steps to ensure that you’re not carrying any danger-
ous devices—a form of attribute-based access control. You then proceed to 
your gate and, once again, present your boarding pass before stepping on the 
airplane. Such processes may differ slightly depending on the country, but 
they’re generally the same from an access control perspective.

Physical access control for vehicles often revolves around keeping said 
vehicles from moving through unauthorized areas, typically using various 
simple barriers, including Jersey barriers (Figure 3-9), bollards, one-way 
spike strips, and fences. You may also see more complex installations that 
include staffed or unstaffed rising barriers, automated gates or doors, and 
other similar controls.

Figure 3-9: A Jersey barrier

There are, of course, a huge number of other physical access controls 
and methods. Additionally, when referring to physical access control devices, 
or access controls in general, the line between an authentication device and 
an access control device often becomes rather blurry, or overlaps entirely. 
For example, a key for a physical lock could be considered identification, 



50   Chapter 3

authentication, and authorization, all the while being a component of a 
physical access control. Often these terms are used inaccurately or inappro-
priately, even within the security field, which does not help matters.

Summary
Authorization is a key step in the process of allowing parties to access 
resources—in other words, the identification, authentication, and autho-
rization process. You implement authorization by using access controls. 
Typically, you use one of two access control methods: access control lists or 
capabilities. Although capabilities can provide safeguards against confused 
deputy attacks, they’re not implemented as often as they should be.

When putting together an access control system, you use an access con-
trol model that outlines who should be given access to what resources. In 
our daily lives, we often encounter simpler access control models, such as 
discretionary access control, mandatory access control, role-based access 
control, and attribute-based access control. Environments that handle more 
sensitive data, such as those involved in the government, military, medical, 
or legal industry, typically use multilevel access control models, including 
Bell–LaPadula, Biba, and Brewer and Nash.

The next chapter will discuss auditing and accountability, which is 
how you keep track of the activities that have taken place after you’ve gone 
through the process of identification, authentication, and authorization. 

Exercises
1.	 Discuss the difference between authorization and access control.

2.	 What does the Brewer and Nash model protect against?

3.	 Why does access control based on the Media Access Control address of 
the systems on our network not represent strong security?

4.	 Which should take place first, authorization or authentication?

5.	 What are the differences between the MAC and DAC models of access 
control?

6.	 The Bell–LaPadula and Biba multilevel access control models both have 
a primary security focus. Can these two models be used together?

7.	 If you have a file containing sensitive data on a Linux operating system, 
would setting the permissions to rw-rw-rw- cause a potential security 
issue? If so, which portions of the CIA triad might be affected?

8.	 Which access control model could you use to prevent users from logging 
into their accounts after business hours?

9.	 Explain how the confused deputy problem could allow users to carry 
out activities for which they are not authorized.

10.	 What are some of the differences between access control lists and 
capabilities?




