
I N D E X

A
ABAC (attribute-based access

control), 17
Accept Security Responsibility

pattern, 69
access control list (ACL), 55
access controls, 48
access policy

custom, 48
fine-grained, 49
“relief valve”, 49

Advanced Encryption Standard
(AES), 82

adversaries, 24
attacker’s advantage, 25
targets, 25

Agarkov, Dmitry, 175
allowlists, 60. See also blocklists
Allowlists over Blocklists pattern, 60
anti-patterns

Backflow of Trust, 73
Confused Deputy, 71, 224

Intention and Malice, 72
Trustworthy Deputy, 73

Security by Obscurity, 135
Third-Party Hooks, 74
Unpatchable Components, 74

antivirus, 61, 225
“Are you sure?” dialog, 70
Ariane 5, 223
arithmetic

32-bit, 149
64-bit, 154
binary, 148
floating-point vs. integer, 146
modular, 147
safe, 155
vulnerabilities, 146–156

assessment report. See security design
review (SDR)

assets, 26
aggregation, 29
differing valuation, 29
identification, 28
isolation of, 120
removal, 38
valuation, 25

atomicity, 140
attacks

denial-of-service (DoS), 13, 216
distributed denial-of-service

(DDoS), 219
injection, 175
preimage, 79
replay, 79, 82
side-channel, 11, 30, 141
timing, 141–142

attack surfaces, 26, 101, 113, 119
hardening, 45
identification, 30
internet, 30
minimization, 45

attribute-based access control
(ABAC), 17

auditing, 14
inside jobs, 18
shared account problem, 19

audit logs, 14
Goldilocks principle, 19
need for monitoring, 19
non-repudiability, 19
private information problem, 19
tamper-resistant, 18

authentication, 14
binding attacks, 17
binding the principal, 16

282 Index

authentication (continued)
separation from authorization, 15
something you are, 15
something you have, 15
something you know, 15
somewhere you are, 15

authN. See authentication
authorization, 14

anonymous, 17
attribute-based access control

(ABAC), 17
guards, 17
minimal access, 18
multiple principals, 18
no self-service, 18
policy-based access control

(PBAC), 17
rate-limited, 18
role-based access control

(RBAC), 17
time of day, 18

authZ. See authorization
availability, 11, 13
availability testing, 216–218
Avoid Predictability pattern, 61

B
Backflow of Trust anti-pattern, 73
backups, 13
BeautifulSoup parser, 214
binary math refresher, 148
Bloch, Josh, 97
blocklists, 60. See also allowlists
bottleneck. 63
bridge (between user processes), 64
brute-force guessing, 16
buffer overflow, 157

example, 158
buffer overrun, 157, 158

C
California Senate Bill No. 327

(2018), 59
CAS. See Code Access Security (CAS)
case study

difficult SDR, 122
GotoFail vulnerability, 137

Heartbleed vulnerability , 162
The Most Dangerous Code in the

World, 226
certificate authority (CA), 87
chosen plaintext attack, 84
C-I-A, 11–14, 99

principles. See also information
security

ciphertext, 81, 84
Code Access Security (CAS),

73, 243
.NET Framework, 46
permission, 46

code examples, 130
code quality

code hygiene, 222
documentation, 224
exception handling, 223
security reviews, 224

collision attack, 78
competence and imperfection, 7
compiler warnings, 139, 222
Complete Mediation pattern, 63

degrees of compliance, 63
components

security considerations, 225
selecting, 225

confidentiality, 11–13
compromise of, 12

Confused Deputy anti-pattern,
71, 224

Intention and Malice, 72
Trustworthy Deputy, 73

cookies. See HTTP protocol
C programming language, 130, 138
credentials, 14. See also authentication
Cross-Origin Resource Sharing

(CORS), 196
cross-site request forgery (CSRF or

XSRF), 201. See also web
security

example, 199
mitigation, 200

cross-site scripting (XSS). See also web
security

DOM-based, 199
example, 197

Index 283

mitigation, 199, 202
reflected, 198
stored, 198
testing, 212–214

cryptocurrency, 86
cryptographically secure pseudo-

random number generators
(CSPRNG), 77

cryptography. See encryption
crypto toolbox, 76, 89
CSRF. See cross-site request forgery

(CSRF or XSRF)
Cuban, Mark, 121

D
data

backups, 13
invisibility of, 6
private, 12
provenance, 13
tampering, 13

data flow diagrams (DFD), 27
data hiding, 73
data protection

backups, 51
data at rest, 51
minimizing data exposure, 47
offline backups, 48

DDoS (distributed denial-of-service)
attacks, 219

deanonymization, 12–13
default password, 59
Defense in Depth pattern, 65
denial of service (DoS). See availability

testing, STRIDE
denial-of-service (DoS) attacks, 13,

181, 206
dependencies, 228

choosing components, 225
legacy code, 227
libraries and frameworks,

use of, 227
secure design, 99
secure interfaces, 226
software supply chain, 225

deprecation, 226
DES encryption algorithm, 56
deserialization, 143

design. See also secure design
common assumptions, 98
documents, 97
importance of assumptions, 98
integrating security, 96
scope, 98

consequences of not
defining, 99

looking beyond, 99
security considerations, 97

design pattern groupings, 54
DFD (data flow diagrams), 27
dialog fatigue, 70
Diffie–Hellman key exchange

algorithm, 88
Diffie, Whitfield, 87
digest for integrity, 13
digital certificate. See HTTPS protocol
digital signature

algorithm, 85
for integrity, 13
signature verification, 85

distributed denial-of-service (DDoS)
attacks, 219

documentation for security, 224
Document Object Model (DOM), 193
Domain Name System (DNS), 189
DoS (denial-of-service), 13
downgrade attack, 192
DREAD model

example, 229
T-shirt sizes, 229

dynamic memory allocation, 157

E
Economy of Design pattern, 54, 108
electronic code book (ECB) mode, 82
elevation of privilege. See STRIDE
elliptic curve algorithms, 85
email retention, 21
encryption

asymmetric
elliptic curve, 85
private key, 83
public key, 83
RSA, 84

backup data application, 90
ciphertext, 81

284 Index

encryption (continued)
communication, 50
cryptocurrency application, 90
digital signatures, 85
ECB mode, 82
exclusive-or, 81
financial data application, 90
foundations, 91
limitations of, 91
plaintext, 81
symmetric, 81

AES, 82
block cipher, 82
key establishment, 83
key secrecy, 83
key size, 83
limitations of, 83

entropy, 136
sources, 78

Equifax breach, 107
error handling, 223
eval function, 184
examples

accountant, 64
Ariane 5, 223
backing up photos, 51
bank vault, 33–35
child-proofing, 40
COVID-19 stay-at-home emergency

order, 60
credit card contract, 175
customer relationship

management (CRM), 58
endianness mix-up, 97
floating-point underflow, 151
generating random numbers using

lava lamps, 78
HTTP cookies, 68
iMessage, 64
integer overflow, 153
LEGO, 55
memory allocation

vulnerabilities, 158
Norman Bates, 71
Ocean’s Eleven, 37
online shopping app with

bugs, 134

plywood, 65
predictable account IDs, 61
Reddit user, 64
safe deposit box, 67
Star Wars, 56
Superman, 57
tax ID privacy, 63
traveling sales staff, 101

exception handling, 223

F
Facebook Beacon, 30
Fail Securely pattern, 62
floating point

equality test problematic, 150
precision, 149
Python example, 151

footguns, 138-139
Four Questions, 25, 98–99, 103

as guidance for a security design
review, 116–119

free function, 157
functional testing, 209

with GotoFail vulnerability, 209
fuzz testing, 215

example, 214

G
Garg, Praerit, 35
GCC compiler, 139
General Data Protection Regulation

(GDPR), 12
Goldilocks principle, 28
Gold Standard, 11, 16–19, 37

auditing, 14
authentication, 14
authorization, 14
meaning of name, 14
relation to C-I-A, 15

GotoFail vulnerability, 137, 140
lessons, 139
source code, 138

guard, 63

H
hardware random number generators

(HRNG), 78

Index 285

hash. See message digest
SHA-256, 200

heap, 157
heartbeat, TLS, 162
Heartbleed vulnerability, 47
Hellman, Martin, 87
homomorphs, 174
HTTP over TLS/SSL. See HTTPS

protocol
HTTP protocol, 188

cookie attributes
httponly, 195
SameSite, 201
secure, 195

cookies
session, 194–195, 198, 200
sharing, 195

Cross-Origin Resource Sharing
(CORS), 196

GET, 189, 199
POST, 189, 199–200
request headers, 189

REFERER, 189, 202
response headers, 189

Content-Security-Policy, 202
Referrer-Policy, 190, 202
security-related, 202

verbs, 189
HTTPS protocol

adoption of, 190
cipher suites, 193
digital certificates

Let’s Encrypt, 192
types of, 192

downgrade attacks, 192
security properties, 191
Strict-Transport-Security

directive, 193

I
identity management, 16
IEEE 754. See floating point
IMDb, 13
implementation from design, 129
influencing code, 131
information collection, 20
information disclosure. See STRIDE

information security, 5
principles (C-I-A), 11–14
relation to authorization, 11

injection attacks, 175
avoiding, 183
backtracking regex, 181, 217
cross-site scripting, 196–199
mitigation, 183
“No Game Scheduled”, 176
path traversal, 179
shell command, 183
SQL, 176–179
XML entities, 182

input validation, 168
character string length, 173
correcting invalid input, 172
range check, 169
rejecting invalid input, 171
requirements, 170
size check, 170
Unicode issues, 174
valid for a purpose, 171

inside jobs, 18
insurance, 38
integer overflow, 146

mitigation, 155
security testing, 206

integration testing
data leak detection, 220

integrity, 11, 13
Intention and Malice. See Confused

Deputy anti-pattern
interfaces

between components, 225
intraprocess, 50
kinds of, 49
secure design, 103
securing, 226

Internet Explorer, 35

K
keyed hash function, 79
key exchange, 87

Diffie–Hellman algorithm, 88
randomness requirement, 89
secure communication

establishment, 89

286 Index

L
last mile, 240
leaks, memory, 160
Least Common Mechanism pattern,

64, 108
Least Information pattern, 57, 104
Least Privilege pattern, 56, 178
legacy security, 227
Let’s Encrypt, 192
loopholes, 62
low-level programming, 146

M
malloc function, 157, 160
managing complexity, 237
math.isclose function, 150
Meltdown, 141
memory

access vulnerabilities, 156–162
buffer overflow, 157
heap, 157
leaks, 160
management, 156

message authentication code
(MAC), 78

nonce, 80
replay attacks, 79
secure communications use, 80
tamper prevention, 79

message digest, 78-80
collision, 78
replay attacks, 79

Microsoft Windows, 35
Minsky, Marvin, 136
misleading indentation warning, 139
mitigation, 38, 43–52

definition of, 44
minimizing attack surfaces, 45
minimizing data exposure, 47
narrowing windows of

vulnerability, 46
partial, 39
protecting communications, 50
protecting interfaces, 49
protecting storage, 51
real-world examples of, 43
structural, 45–48

mobile data security, 241
models

Code Access Security (CAS), 46, 73
data flow diagrams (DFD), 27
Unified Modeling Language

(UML), 27
Morris worm, 233

N
National Security Agency (NSA), 100
National Transportation Safety Board

(NTSB), 239
Netflix, 13
.NET Framework, 46, 243
Netscape Navigator, 35
nonce, 80, 201

O
obsolescence

software support, 52
storage media, 51

one-time pad, 81
reuse problem, 82
use restrictions, 82

OpenSSL, 162
opportunistic protection, 29
overflow

buffer, 157
integer, 146

common vulnerabilities, 149
example, 153
mitigation, 155

P
padding, 80
path traversal, 179
patterns

Accept Security Responsibility, 69
Allowlists over Blocklists, 60
Avoid Predictability, 61
Complete Mediation

degrees of compliance, 63
Defense in Depth, 65
design attributes, 54–56
Economy of Design, 54, 108
exposure minimization, 56–62
Fail Securely, 62

Index 287

general use of, 54
Least Common Mechanism,

64, 108
Least Information, 57, 104
Least Privilege, 56
redundancy, 65–68
Reluctance to Trust, 68
Secure by Default, 59, 226
Separation of Duty, 232
Separation of Privilege, 67
strong enforcement, 62–65
Transparent Design, 56, 77
trust and responsibility, 68–70

personal data
collection, 39
disclosure mitigation, 40

personally identifiable information
(PII), 102

plaintext, 81, 84
policy-based access control

(PBAC), 17
preimage attack, 79
principal, 14
principles of information security

availability, 11, 13
confidentiality, 11
integrity, 11, 13

privacy, 39
email retention, 21
human factors, 20
information collection, 20
policy, 21
relation to security, 19
software security challenges, 20

privacy policy, 120
auditing, 105
explicit protection, 105
owner, 105

privacy reviews, 120
private data, 12
private key, 83
provenance, 13, 240
pseudo-random number generators

(PRNG), 77
pseudo-random numbers, 77. See

also random numbers
cryptographically secure, 77

public key, 83
Pwn2Own competitive hacking

contest, 135
Python programming language, 130

structuring by indentation, 138

R
random numbers

applications, 77
classes, 77
cryptographically secure pseudo-

random number generators, 77
entropy sources, 78
hardware random number

generators, 78
pseudo-random number

generators, 77
unpredictability, 77

RBAC (role-based access control), 17
regular expressions (regex)

backtracking, 181, 217
reidentification, 13
Reluctance to Trust pattern, 68
replay attacks, 79, 82
repudiation, 37. See also STRIDE
risk acceptance, 38
risk assessment, 29

T-shirt sizes, 29, 229–230
risk transfer, 38
role-based access control (RBAC), 17
root certificate, 87
RSA cryptosystem

algorithm, 84
history, 84
mathematical basis, 84

S
Same Origin Policy (SOP), 193–196

CSRF vulnerability, 199
sample design document, 19, 96, 245
sandbox, 65
SDR. See security design review (SDR)
Secure by Default pattern, 59, 226
secure design, 95–108

balanced approach, 102
cache implications, 102
data handling, 104

288 Index

secure design (continued)
dependencies, 99
design assumptions, 97

examples, 98
importance of making

explicit, 97
end of life, 106
exploring alternatives, 107
high security requirements, 100
interfaces, 103
minimal security requirements, 100
mitigation, 103
privacy, 105
requirements statements, 100
sample design document, 19,

96, 245
scope definition

importance, 98
iterative design, 99

software lifecycle, 106
trade-offs, 106

secure development environment, 231
securely random IDs, 62
secure programming, 130
security

goals, 36
information, 5
mindset, 23
physical, 4
software, 5
trust but verify, 8
understanding, 4

Security by Obscurity anti-pattern,
56, 135

security code reviews, 224
security design review (SDR), 109–125

assessment report, 114
minimal, 115
organization, 115
Recommendations Declined

section, 123
benefits of, 110
collaboration with designer, 113
design updates, 120
documentation, 111
guidance, 116–119
importance of context, 117

incremental updates, 120
independent reviewer, 109
logistics, 110
managing disagreements, 121–124

escalation, 123
meeting preparation, 123
missing mitigations, 118
practicing, 124
problem solving, 122
process, 111
progress tracking, 116
recommendation ranking, 114
relation to secure design, 95
reviewer role, 115
sandwich method feedback, 122
separate from functional

review, 110
showing versus telling, 123
stages, 111–116
summary statement, 119
tactful communication, 121
threat identification, 117
timing, 110
ways to practice, 124
where to dig, 119

security regression tests
Heartbleed example, 216
how to write, 216
importance, 215

security requirements
data collection, 101
high-value private key, 101
top-secret document, 100

security testing, 205–220
best practices, 219
catching up, 220
cross-site scripting, 212
denial-of-service attacks, 216
exception handling, 206
GotoFail vulnerability, 207, 209
importance of, 207
input validation, 211
integer overflow, 206
limits of, 210
memory management, 206
resource consumption, 217
threshold testing, 218

Index 289

untrusted inputs, 206
web security, 206
writing test cases, 211

Separation of Duty pattern, 67, 232
Separation of Privilege pattern, 67
serialization, 143
SHA-256 hash, 200
Shostack, Adam, 25
side-channel attack, 11, 30, 141
Snowden, Edward, 100
software quality, 237
software security, 5
software supply chain, 225
SOP (Same Origin Policy), 193–196
Spectre, 141
speculative execution, 141
spoofing, 36. See also STRIDE
SQL injection, 176–179
stories

auto salesman, 4
driver’s ed, 75
“No Game Scheduled”, 176
street crossing, 6

strcpy function, 161
STRIDE, 35–38

definition, 35
origins, 35
relation to information security

principles, 37
repudiation, 37

strlcpy function, 161
strtol function, 160
sudo, 57

T
tainting, 132
tampering, 13, 37, 78, 143. See

also STRIDE
prevention with MAC, 79

Taylor, Jason, 229
test-driven development (TDD), 219
The Most Dangerous Code in the

World, 226
Third-Party Hooks anti-pattern, 74. See

also Backflow of Trust anti-
pattern

Thompson, Ken, 240

threat modeling, 78, 101–103
asset prioritization, 29
balancing security needs, 102
definition, 26
early efforts, 24
essential threat model, 102
granularity, 28
incorporating into design, 101
iterative process, 27
methodology varieties, 27
overview, 26
personally identifiable

information, 102
real-life applications, 41
real world, 40
real world versus digital, 27
working from a model, 27

threats, 23–41 See also attacks
addressing, 44
availability, 13
brute-force guessing, 16
categorizing with STRIDE, 35
fact of communication, 50
identifying, 33
mitigation, 38, 43–52
privacy, 39

threat taxonomy. See STRIDE
timing attack

forgot password example, 142
Meltdown, 141
mitigation, 142
Spectre, 141
speculative execution example, 141

toolbox. See crypto toolbox
transparency, 238
Transparent Design pattern, 56, 77
Transport Layer Security (TLS),

89, 162
Heartbeat Extension, 162

triage. See vulnerability triage
trust, 5

actions, 10
being trustworthy, 10
decisions, 8
decision tree, 8
features, 10
feeling trust, 6

290 Index

trust (continued)
independent third-party, 10
spectrum, 8
transparency, 10
trust but verify, 8

trust boundaries, 26, 101, 120
identification, 30
kernel/userland interface, 31

trust level
aggregating or splitting, 32
trust vs. privilege, 31

Trustworthy Deputy. See also Confused
Deputy anti-pattern

Twitter, 19

U
underflow, 150

mitigation, 152
understanding security, 4–5
Unicode

case, changing, 175
combining characters, 175
homomorphs, 174

Unified Modeling Language (UML), 27
uniform resource locator (URL), 188
Unpatchable Components

anti-pattern, 74
unpickling, 143
untrusted input, 132, 143, 167–168
userland. See trust boundaries

V
vulnerabilities, 130, 133.

buffer overflow, 160
character string, 173–175
countermeasures, 140
cross-site request forgery (CSRF

or XSRF), 199
cross-site scripting, 196
example of a chain, 134
fixed-width integer, 147
floating point, 149
GotoFail, 137
Heartbleed, 162, 216
injection, 175, 199
path traversal, 179

regular expressions, 181
relation to bugs, 133
SQL injection, 176-179
Unicode, 174
XML entities, 182

vulnerability, narrowing windows
of, 46

vulnerability chains, 134
vulnerability triage, 228–231

crafting working exploits, 230
decision making, 231
DREAD assessments, 229

W
web security, 185–203

client/server model, 187
common vulnerabilities,

196–201
CSS visited selector, 202
frameworks, 186
HTML5, 196
HTTP header injection, 202
HTTP response headers, 202
model, 187
redirects, 202
rel="noopener" attribute, 202
rel="noreferrer" attribute, 202
session cookies, 194–195, 200
X-Frame-Options header, 202
XML external entity

attacks, 202
window.open, 193
World Wide Web, 185. See also web

security

X
xkcd comics

Epoch fail (376), 219
Exploits of a Mom (327), 176
Heartbleed Explanation

(1354), 165
Security versus the $5 wrench

(538), 90
XSRF. See cross-site request forgery

(CSRF or XSRF)
XSS. See cross-site scripting (XSS)

