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pseudo-random numbers, 77. See 

also random numbers
cryptographically secure, 77

public key, 83
Pwn2Own competitive hacking  

contest, 135
Python programming language, 130

structuring by indentation, 138

R
random numbers

applications, 77
classes, 77
cryptographically secure pseudo-
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untrusted inputs, 206
web security, 206
writing test cases, 211
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incorporating into design, 101
iterative process, 27
methodology varieties, 27
overview, 26
personally identifiable 

information, 102
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brute-force guessing, 16
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mitigation, 38, 43–52
privacy, 39
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timing attack
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independent third-party, 10
spectrum, 8
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trust but verify, 8

trust boundaries, 26, 101, 120
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kernel/userland interface, 31

trust level
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U
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mitigation, 152
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homomorphs, 174
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unpickling, 143
untrusted input, 132, 143, 167–168
userland. See trust boundaries
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vulnerabilities, 130, 133. 
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cross-site request forgery (CSRF  

or XSRF), 199
cross-site scripting, 196
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fixed-width integer, 147
floating point, 149
GotoFail, 137
Heartbleed, 162, 216
injection, 175, 199
path traversal, 179

regular expressions, 181
relation to bugs, 133
SQL injection, 176-179
Unicode, 174
XML entities, 182
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vulnerability chains, 134
vulnerability triage, 228–231

crafting working exploits, 230
decision making, 231
DREAD assessments, 229

W
web security, 185–203

client/server model, 187
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196–201
CSS visited selector, 202
frameworks, 186
HTML5, 196
HTTP header injection, 202
HTTP response headers, 202
model, 187
redirects, 202
rel="noopener" attribute, 202
rel="noreferrer" attribute, 202
session cookies, 194–195, 200
X-Frame-Options header, 202
XML external entity  

attacks, 202
window.open, 193
World Wide Web, 185. See also web 

security
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xkcd comics

Epoch fail (376), 219
Exploits of a Mom (327), 176
Heartbleed Explanation  

(1354), 165
Security versus the $5 wrench 
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XSRF. See cross-site request forgery 

(CSRF or XSRF)
XSS. See cross-site scripting (XSS)




