
Probability theory is a field devoted to esti-
mating how likely it is that some particu-

lar event will happen. A probability of 0% 
means that the event definitely will not happen, 

whereas 100% means that it’s a sure thing. We can 
also use probability to express confidence, such as 
being 80% sure that a piece of fruit is ripe, or that a 
certain team will win a game.

Probability is one of the pillars on which machine learning is built. 
Many papers describe their techniques with the language of probability, 
and lots of documentation follows suit. Library functions can require their 
input data to have some basic probabilistic properties. Understanding the 
accuracy and behavior of the systems we build can involve understanding 
the probabilities of the results they produce.

Probability theory is an enormous subject, with many deep specialties. 
Since our focus is on using machine learning tools sensibly, we only need 
command of a few basic terms and topics: different kinds of probability, 
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how to measure correctness, and a particular way of organizing probabili-
ties called the confusion matrix. With a command of these basic ideas, we’ll 
be able to prepare our data to get the best performance out of the tools 
we’ll be using later. Broader and deeper discussions on all the topics we’ll 
cover here, as well as many other topics in this field, may be found in books 
dedicated to probability (Jaynes 2003; Walpole et al. 2011).

Different Types of Probability
There are many types of probability. We’ll discuss a few of them here, 
beginning with a metaphor.

Dart Throwing
Dart throwing is the classic metaphor for discussing basic probability. The 
fundamental idea is that we’re in a room with a bunch of darts in our hand, 
facing a wall. Instead of hanging a cork target, we’ve painted the wall with 
some blobs of different colors and sizes. We’ll throw our darts at the wall, 
and we’ll track which colored region each one lands in (the background 
counts as a region as well). The idea is illustrated in Figure 3-1.

Figure 3-1: Throwing darts at a wall. The wall is covered in blobs of paint of different 
colors.

We’re going to assume from now on that our darts will always strike the 
wall somewhere (rather than going into the floor or ceiling, for instance). 
So the probability of each dart striking the wall somewhere is 100%. We’ll 
use both floating-point (or real) numbers and percentages for probabilities, 
so a probability of 1.0 would be a percentage of 100%, a probability of 0.75 
would be a percentage of 75%, and so on.

Let’s look more closely at our dart-throwing scenario. In the real world, 
we’re more likely to hit the part of the wall that’s directly in front us, rather 
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than, say, something well off to the side. But for the purpose of this discus-
sion, we’re going to assume that the probability of our hitting the wall at any 
point is the same everywhere. That is, every point on the wall has the same chance 
of being hit by a dart. Using the language of Chapter 2, we could also say that 
the probability of striking any given point is given by a uniform distribution. 

The heart of the rest of the discussion will be based on comparing 
the areas of the various regions, and our chances of striking each of those 
areas. Remember that the background counts as a region (in Figure 3-1, it’s 
the white region).

Here’s an example. Figure 3-2 shows a red square on the wall. When we 
throw a dart, we know it will hit the wall somewhere, with a probability of 1. 

Figure 3-2: We’re guaranteed to hit the wall. What’s the probability that we’ll hit the red 
square?

What’s the probability of hitting the red square? In this figure, the 
square covers half of the wall’s total area. Since our rule is that every point 
on the wall has an equal likelihood of being hit, when we throw our dart, 
we have a 50% chance, or a probability of 0.5, of the dart landing in the 
red square. The probability is just the ratio of the areas. The larger our 
square, the more points it encloses, and so the more likely it is that we’ll 
land inside of it.

We can illustrate this with a little picture that draws the ratios of the 
areas. Figure 3-3 shows the ratio for our square with respect to the wall. 
This kind of diagram, where we draw a “fraction” of one shape above the 
other, gives us a visual way to track which areas we’re talking about and 
get an intuitive feel for their relative sizes.

Figure 3-3 shows the relative areas accurately, so the area of the red 
square is really half the area of the white box under it. Using the full-size 
shapes can make for awkward diagrams when one of the shapes is much 
larger than the other, so sometimes we’ll scale down regions to make the 
resulting figure fit the page better. That’s okay, because the ratio of the 
areas won’t change. Remember that the purpose of these ratios of shapes is 
to illustrate the relative area of one shape compared to the area of another.
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Figure 3-3: The probability of hitting the square in Figure 3-2 is given by the ratio of the 
area of the square to the area of the wall, here shown as a symbolic fraction. 

Simple Probability
When we talk about the probability of something happening, we refer to 
that something as an event. We often refer to events with capital letters, such 
as A, B, C, and so on. The phrase “the probability of event A happening” 
simply means the probability that A happens. To save some space, rather 
than write “the probability of event A happening,” or more succinctly “the 
probability of A,” we usually write P(A) (some authors use a lower-case p, 
writing p(A)).

Let’s say A is the event in which we throw a dart and hit the red square 
from Figure 3-2. We can represent P(A) with a ratio, as we did earlier. 
Figure 3-4 shows this graphically.

P(A) =

Figure 3-4: We’ll say that hitting the square with our dart is event A. The probability of 
event A occurring is given by the symbolic ratio of areas in Figure 3-3. We write this prob-
ability as P(A).

Here, P(A) is the area of the square divided by the area of the wall, so 
P(A) is ½. This ratio is the probability that, when throwing a dart, we’ll hit 
the square rather than the rest of the wall. We call P(A) a simple probability. 

Conditional Probability
Let’s now talk about probabilities involving two events. Either of these 
events might happen, or both of them, or neither of them. 
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For example, we might ask for the probability that a house contains a 
piano, and the probability that there’s a dog inside. There’s probably no 
relationship between these two qualities (or events). We say that two events 
that are not related to one another in any way are independent. 

Many types of events are not independent, but have at least some kind 
of connection. We call these dependent. When events are dependent, we 
might want to find their relationship. That is, we’d like to find the prob-
ability of one specific event, when we already know that another specific 
event has happened (or is happening). For example, suppose we pass a 
house and hear a dog barking inside. Then we might ask, “What is the 
probability that there’s a dog’s chew toy in the house, given that we know 
there’s a dog inside?” In other words, we know that one event has hap-
pened, and we want to know the probability of the other. 

Let’s make this a bit more abstract, and discuss two events called A 
and B. Suppose that we know that B has happened, or equivalently, that B 
is true. Knowing this, we can ask what’s the probability that A is also true? 
We write this probability as P(A|B). The vertical bar represents the word 
given, so we’d say this out loud as “the probability that A is true, given that 
B is true,” or more simply, “the probability of A given B.” This is called the 
conditional probability of A given B, since it only applies to the situation, or 
condition, that B is true. We can also talk about P(B|A), which is the prob-
ability that B is true, given that A is true.

We can illustrate this with our picture diagrams. The left diagram in 
Figure 3-5 shows our wall, with two overlapping blobs labeled A and B. 
P(A|B) is the probability that our dart landed in blob A, given that we 
already know it landed in blob B. In the symbolic ratio on the right of 
Figure 3-5, the top shape is the region that is common to both A and B. 
That is, it’s their overlap, or the area where the dart can land in A, given 
that we know it landed in B.

P(A|B) =
A B

Figure 3-5: Left: The two blobs painted on the wall. Right: The probability of being in A 
given that the dart is already in B is the ratio of the area of A overlapping B, divided by 
the area of B.

P(A|B) is a positive number that we can estimate by using our darts. We 
can estimate P(A|B) by counting all the darts that land in the overlap of A 
and B, and dividing that number by how many land in any part of B. 

Let’s see this in action. In Figure 3-6 we’ve thrown a number of darts at 
the wall containing the blobs of Figure 3-5. We placed the points to get good 
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coverage over the whole area, with no two points too close to one another. 
Dart tips are too hard to see, so we’ll show the location of each dart’s impact 
by a black circle, where the center of the circle shows where the dart struck.

(a) (b) (c) (d)

Figure 3-6: Throwing darts at the wall to find P(A|B). (a) Darts striking the wall. (b) All the darts in either A or 
B. (c) The darts only in B. (d) The darts that are in the overlap of A and B.

In Figure 3-6(a) we show all the darts. In Figure 3-6(b) we’ve isolated 
just the darts that landed in either A or B (remember it’s only the center 
of each black circle that counts). In Figure 3-6(c) we see the 66 darts that 
have landed in region B, and in Figure 3-6(d) we see the 23 darts that are 
in both A and B. The ratio of 23/66 (about 0.35) estimates the probability 
that a dart landing in B will also land in A. So P(A|B) is about 0.35. That is, 
if a dart lands in B, then about 35% of the time, it will also be in A. 

Note that this process doesn’t depend on the absolute area of the col-
ored blobs, such as a number in square inches. It’s just the relative size of 
one area with respect to another, which is the only measure we really care 
about (if the wall doubled in size and so did the colored regions, the prob-
ability of landing in each one wouldn’t change).

The bigger the overlap of A and B, the more likely the dart is to land 
in both. If A surrounds B, as in Figure 3-7, then we must have landed in A 
given that we landed in B. In this case, the overlap of A and B (shown in 
gray) is the region of B itself. Thus the ratio of the overlap’s area to B’s area 
is 100%, or P(A|B) = 1.

P(A|B) =
A B

Figure 3-7: Left: Two new blobs on the wall. Right: The probability of landing in A given 
that we’re in B is 1, because A encloses B, and thus their overlap is the same as B.

On the other hand, if A and B don’t overlap at all, as in Figure 3-8, then 
the probability of the dart being in A given that it landed in B is 0%, or 
P(A|B) = 0.
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BB

A P(A|B) =

Figure 3-8: Left: Another two new blobs on the wall. Right: The probability of landing in  
A given that we’re in B is 0(or, equivalently, 0%), because there’s no overlap between A 
and B. 

The symbolic ratio in Figure 3-8 shows that the area of overlap is 0, and 
0 divided by anything is still 0.

For fun, let’s flip this around the other way, and ask about P(B|A), or 
the probability that we’re in blob B given that we’re in blob A. Using the same 
blobs as in Figure 3-5, the result is shown in Figure 3-9.

P(B|A) =
A B
Figure 3-9: The conditional probability P(B|A) is the probability we landed in B, given that 
we landed in A. 

The logic is the same as before. The area of overlap divided by the area 
of A tells us how much of B appears in A. The more they overlap, the more 
likely it is that a dart landing in A will also land in B. Let’s assign a number 
to P(B|A). Referring back to Figure 3-6, we see that 104 darts land in A, and 
23 in B, so P(B|A) is 23/104 or about 0.22.

Note that the order is important. We can see from Figure 3-5 and 
Figure 3-9 that P(A|B) does not have the same value as P(B|A). Given the 
sizes of A, B, and their overlap, the chance of landing in A given that we 
landed in B is greater than the chance of landing in B given that we landed 
in A. That is, P(A|B) is about 0.35, but P(B|A) is about 0.22.

Joint Probability
In the last section, we saw a way to express the probability of one event hap-
pening, given that another event had already occurred. It would also be 
helpful to know the probability of both things happening at once. In the 
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language of our blobs, what’s the chance that a dart thrown at the wall will 
land in both blob A and blob B? We write the probability of both A and B 
happening as P(A,B), where we think of the comma as meaning the word 
and. Thus we read P(A,B) out loud as “the probability of A and B.”

We call P(A,B) the joint probability of A and B. Using our blobs, we can 
find this joint probability P(A,B) by comparing the area of the overlap of 
blobs A and B to the area of the wall. After all, we’re asking for the chance 
that our dart lands in both A and B, meaning inside their overlap, com-
pared to the chance it could land anywhere on the wall. Figure 3-10 shows 
this idea.

P(A,B) =
A B

Figure 3-10: The probability that both A and B will occur is called their joint probability, 
written P(A,B). 

There’s another way to look at the joint probability that’s a little more 
subtle, but powerful. It’s so useful that it will be the heart of Chapter 4. This 
alternative view of the joint probability combines a simple probability with a 
conditional probability.

Suppose we know the simple probability of hitting B, or P(B). And sup-
pose we also know the conditional probability P(A|B), or the probability of 
hitting A, knowing that we hit B. We can combine these into a chain of rea-
soning: given the probability of hitting B, we’ll combine that with the prob-
ability of hitting A given that we hit B, to get the probability of hitting both 
A and B at the same time. 

Let’s see the chain of reasoning with an example. Suppose that blob B 
covers half of the wall, so P(B) = ½. Further, suppose that blob A covers a 
third of blob B, so P(A|B) = 1⁄3. Then half of our darts thrown at the wall  
will land in B, and a third of those will fall in A. Since half of the darts fall 
in B, and a third of those will also fall in A, the total number that land in 
both B and in A is ½ × 1⁄3, or 1⁄6. 

This example shows us the general rule: to find P(A,B) we multiply 
P(A|B) and P(B). This is really quite remarkable: we just found the joint 
probability P(A,B) using only the conditional probability P(A|B) and the 
simple probability P(B)! We write this as P(A,B) = P(A|B) × P(B). In  
practice, we usually leave off the explicit multiplication sign, writing just 
P(A,B) = P(A|B) P(B). 
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Figure 3-11 shows what we just did using our little area diagrams.

A B

P(B)P(A|B)P(A,B)

x=

Figure 3-11: Another way to think about the joint probability P(A,B)

Consider the right side of Figure 3-11 and think of the little symbolic 
ratios as actual fractions. Then the green blobs of area B cancel each other, 
and we’re left with the gray area over the square, showing that the left and 
right sides of our little equation are, indeed, equal.

We can do this the other way around, too, using event A rather than 
B. We start with P(B|A) to learn the probability of landing in B given that 
we landed in A, and then we multiply that by the probability of landing 
in A, or P(A). The result is P(A,B) = P(B|A) P(A). Graphically, this fol-
lows the same pattern as Figure 3-11, only now it’s the A blobs that cancel 
each other.

In symbols, P(B,A) = P(A,B), since both refer to the probability of land-
ing in A and B simultaneously. Unlike conditional probability, in joint prob-
ability, the order of naming A and B doesn’t matter.

These ideas can be a little challenging to get used to, but mastering 
them will pay off in Chapter 4. It may help to make up a few little scenarios 
and play with them, imagining different blobs and how they overlap, or even 
thinking of A and B as actual situations. For instance, imagine an ice cream 
shop where people can buy different flavors of ice cream, in either a waffle 
cone or cup. We might say V is true if someone orders vanilla ice cream, 
and W is true if a person orders their ice cream in a waffle cone. Then P(V) 
is how likely a random customer will order vanilla, and P(W) is how likely 
an independently chosen customer will ask for a waffle cone. P(V|W) tells 
us how likely it is that someone who got a waffle cone ordered vanilla, and 
P(W|V) tells us how likely it is that someone who ordered vanilla got it in a 
waffle cone. And P(V,W) tells us how likely it is that a randomly chosen cus-
tomer got vanilla ice cream in a waffle cone.

Marginal Probability
Another term used for simple probability is marginal probability, and under-
standing where this term comes from will help us understand how we can 
calculate simple probabilities for multiple events.
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Let’s start with the word marginal, which can seem pretty strange in 
this context. After all, what does a margin have to do with probability? The 
legend behind the word marginal is that it comes from books that contained 
tables of precomputed probabilities. The idea is that we (or the printer) 
would sum up the totals in each row of a table of probabilities, and write 
those totals in the margin of the page (Glen 2014). 

Let’s illustrate this idea by returning to our ice cream shop. In 
Figure 3-12 we show some recent purchases made by our customers. Our 
shop is brand new and serves only vanilla and chocolate, in either a waffle 
cone or cup. Based on the purchases of the 150 people who came in yes-
terday, we can ask the probability of someone buying a cup versus a waffle 
cone, or vanilla versus chocolate. We find those values by adding up the 
numbers in each row or column (giving us the number in the margin) and 
dividing by the total number of customers.

Vanilla Chocolate

Waffle
Cone

Cup 30

P(Chocolate) =
90/150 = 0.6

P(Vanilla) =
60/150 = 0.4

P(Waffle Cone) =
100/150 ≈ 0.66

P(Cup) =
50/150 ≈ 0.33

40 60

20

Figure 3-12: Finding marginal probabilities for 150 recent visitors at an ice cream 
shop. The values in the green boxes (showing the margins of the grid) are the marginal 
probabilities.

Note that the probabilities of someone buying a cup or waffle cone add 
up to 1, since every customer buys one or the other. Similarly, everyone buys 
either vanilla or chocolate, so those probabilities also add up to 1. In gen-
eral, all the probabilities for the various outcomes of any event will always 
add up to 1, because it’s 100% sure that one of those choices will occur.

Measuring Correctness
Let’s shift gears and look at another important probability concept: given 
an imperfect algorithm, how likely is it to produce the correct answer? This 
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is a key question in machine learning, because we will almost always work 
with systems that fall short of being perfectly accurate. So it’s important to 
understand what kinds of errors they make. 

Let’s consider a simple classifier with just two classes. We can ask it for 
the probability that a piece of data is in some specific class (the two classes 
are then in category and out of category). For instance, we might ask for the 
probability that a photograph features a dog, or the probability that a 
hurricane will hit land, or how likely it is that our high-tech enclosures 
are strong enough to hold our genetically engineered super-dinosaurs 
(spoiler: not very).

Naturally, we’d like our classifier to make accurate decisions. The trick 
is to define what we mean by accurate. Just counting the number of incorrect 
results is the easiest way to measure something that we might call accuracy, 
but it’s not very illuminating. The reason is that there is more than one way 
to be wrong. If we want to use our mistakes to improve our performance, 
then we need to identify the different ways our predictions can be wrong 
and consider how much trouble each kind of error causes us. This kind of 
analysis applies far beyond just machine learning. The following ideas can 
help diagnose and solve all kinds of problems where we’re making decisions 
on the basis of labels we’ve assigned.

Before we dig in, we’ll note that some of the terms we’ll be using here, 
such as precision, recall, and accuracy, are used casually in popular and infor-
mal writing. But in technical discussions (like in this book), these words 
have precise definitions and mean different things. Unfortunately, not all 
authors use the same definitions for these terms, which can cause all kinds 
of confusion. In this book, we’ll stick to the way they’re usually used when 
discussing probability and machine learning, and we’ll define them care-
fully when we come to them later in this chapter. But be aware that these 
terms appear in lots of places with different meanings or are just left as 
vague concepts. It’s unfortunate when words get overloaded this way, but it 
happens.

Classifying Samples
Let’s narrow our language to the task at hand. We want to know if a given 
piece of data, or sample, is, or isn’t, in a given category. For now, think of 
this in yes/no question form: Is this sample in the category? There are no 
“maybe” answers allowed.

If the answer is “yes,” we call the sample positive. If the answer is “no,” 
we call the sample negative. We’ll discuss accuracy by comparing the 
answers we get from our classifier against the real, or correct, labels that 
we’ve assigned beforehand. The choice of positive or negative that we’ve 
manually assigned to the sample is called its ground truth or actual value. 
We’ll say that the value that comes back from our classifier is the predicted 
value. In a perfect world, the predicted value would always match the 
ground truth. In the real world, there are often errors, and our goal here is 
to characterize those errors.
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We’ll illustrate our discussion with two-dimensional (2D) data. That 
is, every sample, or data point, has two values. These might be a person’s 
height and weight, or a weather measurement of humidity and wind speed, 
or a musical note’s frequency and volume. Then we can plot each piece of 
data on a 2D grid with the X axis corresponding to one measurement and 
the Y axis to the other.

Our samples will each belong to one of two classes. Let’s call them posi-
tive and negative. To identify a sample’s correct classification, also called its 
ground truth, we’ll use color and shape cues, as in Figure 3-13.

X

Y

Figure 3-13: Two-dimensional data belonging to two different classes 

We’ll show the results of our predictions by drawing a boundary, or 
curve, through the collection of points. The boundary may be smooth or 
twisty. We can think of it as a kind of summary of the classifier’s decision-
making process. All points in one side of the curve will be predicted to be 
of one class, while all those on the other side will be predicted to be in the 
other class. In the right diagram of Figure 3-13, the classifier has done a 
perfect job of predicting the ground truth of each sample. That’s a rare 
thing.

We sometimes say that the boundary has a positive side and a nega-
tive side. This matches up to our class if we think of the classifier as 
answering the question, “Does this sample belong to the category?” If  
the answer is positive, then the prediction is “yes,” otherwise the predic-
tion is “no.” It’s often helpful to color in the regions on either side of 
the boundary, as we’ve done in Figure 3-13, to make it easy to see which 
side holds the predictions of positive, and which holds the predictions of 
negative.

For our dataset, we’ll use a set of 20 samples, shown in Figure 3-14. 
The samples with a ground truth (or manual label) of positive are shown 
as green circles, while those with a ground truth (or manual label) of 
negative are drawn as red squares. So the color and shape of each sam-
ple corresponds to its ground truth, and not the value assigned by the 
classifier. 
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Figure 3-14: Left: The classifier’s curve does an okay job of separating the classes, but it makes some mis-
takes. Right: A schematic version of the same diagram. The curved boundary reminds us that the actual 
boundary is rarely a straight line.

The job of the classifier is to try to find a boundary so that all the 
positive samples land on one side, and all the negative samples land on the 
other. To see how well the classifier’s prediction of each sample matches its 
ground truth, we can just look to see if that sample ended up on the cor-
rect side of the classifier’s boundary curve. That curve splits the space into 
two regions. We’ve used light green to show the positive region, and light 
red for negative, so every point in the light-green region is predicted, or 
classified, as positive, and every point in the light-red region is classified as 
negative.

In a perfect world, all the green circles (the ones with a positive 
ground truth) would be on the green side of the boundary curve (showing 
that the classifier predicted them as positive), and all the red squares would 
be on the red side. But as we can see in the figure, this classifier has made 
some mistakes. On the left of Figure 3-14 we plotted each piece of data 
using its two values, along with the boundary curve (and regions) that char-
acterize the classifier’s decisions. But we don’t really care in this discussion 
about the specific locations of the points or the shape of the curve. Our 
interest is in how many points were correctly and incorrectly classified and 
thus landed on the right and wrong side of the boundary. So in the figure 
on the right, we’ve cleaned up the geometry to make it easier to count the 
samples at a glance.

This diagram represents what typically happens when we run a classi-
fier on a real data set. Some data is classified correctly, and some isn’t. If 
our classifier isn’t performing well enough for us, we’ll need to take some 
sort of action—perhaps by modifying the classifier or even throwing it out 
and making a new one—so it’s important to be able to usefully characterize 
how well it’s doing.

Let’s find some ways to do that. We’d like to characterize the errors in 
Figure 3-14 in a way that tells us something about the nature of the classi-
fier’s performance, or how well its predictions matched our given labels. 
It would be nice to know something more than just “right” and “wrong”—
we’d like to know the nature of the mistakes, because some mistakes might 
matter to us a lot, while others might not matter much at all. 
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The Confusion Matrix
To characterize the classifier’s answers, we can make a little table that has 
two columns, one for each predicted class, and two rows, one for each 
actual, or ground truth, category. That gives us a 2 by 2 grid, referred to 
as a confusion matrix. The name refers to how the grid, or matrix, shows us 
the ways in which our classifier was mistaken, or confused, about its predic-
tions. The classifier’s output is repeated in Figure 3-15, along with its confu-
sion matrix.

Positive

Positive

Negative

Prediction

Actual
Value

True
Positive

False
Negative

True
Negative

Negative

False
Positive

TP

FP

FN
TN

Figure 3-15: We can summarize what went where in Figure 3-14 (repeated here on the left, with labels) into a 
confusion matrix, which tells us how many samples landed in each of the four classes. 

As Figure 3-15 shows, each of the four cells in the table has a conven-
tional name, which describes a specific combination of the predicted and 
actual values. The six positive green circles were correctly predicted as 
positive, so they go into the true positive category. In other words, they were 
predicted to be positive, and they actually were positive, so the prediction 
of positive was correct, or true. The four green circles that were incorrectly 
classified as negative go into the false negative category, because they were 
incorrectly, or falsely, labeled as negative. The eight red negative squares 
were correctly classified as negative, so they all go into the true negative cate-
gory. Finally, the two red squares that were incorrectly predicted to be posi-
tive go into false positive, because they were incorrectly, or falsely, predicted 
to be positive.

We can write this more concisely using two-letter abbreviations for 
the four classes and a number describing how many samples fell into each 
category. Figure 3-16 shows the form that the confusion matrix is usually 
shown in. 

Unfortunately, there is no universal agreement on where the various 
labels go in confusion matrix diagrams. Some authors put predictions 
on the left and actual values on top, and some place positive and negative 
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in the opposite locations than shown here. When we encounter a confusion 
matrix, it’s important to look at the labels and make sure we know what 
each box represents.

Positive

Prediction

Actual
Value

TP

6

FN

4

FP

2

TN

8

Negative

Positive

Negative

Figure 3-16: The confusion matrix of Figure 3-15 in its conventional form 

Characterizing Incorrect Predictions
We mentioned earlier that some errors might matter more to us than oth-
ers. Let’s see why that might be.

Suppose that we work for a company that makes toy figurines in the 
likeness of popular TV characters. Our toys are a hit right now, so our pro-
duction line is running at full capacity. Our job is to take the manufactured 
figurines, box them, and ship them off to retail stores.

Suddenly, one day we’re told that our company has lost the rights to sell 
a particular character named Glasses McGlassface. If we accidentally ship 
any of those figurines, we’ll get sued, so it’s important to make sure that 
none of them leave our factory. Unfortunately, the machines are still crank-
ing them out, and if we stop the production line to update the machines, 
we’ll fall way behind on our orders. We decide the better approach is to 
keep making the forbidden figurines, but spot them after they’ve been 
made and throw them into a bin for recycling. So our goal is to identify 
each Glasses McGlassface and throw it in the bin, making sure none of 
them get out the door.

Figure 3-17 shows the situation.
We need to work fast, so we might make some mistakes. In Figure 3-17 

we see one figurine that we incorrectly recycled. That is, when answering 
the question, “Is this Glasses McGlassface?” we incorrectly said, “yes.” Using 
our language from the last section, this doll is a false positive. How big a 
problem is that?

In this case, it’s not a big deal (as long as we don’t do it too often). Our 
goal is to make sure that every Glasses McGlassface is correctly identified 
and removed. Missing even one would cost us a lot. But a false positive costs 
us only a little, since we’ll melt down the plastic and reuse it. So in this situ-
ation, false positives, while not desirable, are tolerable.
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Input

Glasses
McGlassface

Not Glasses
McGlassface

False
Positive

Figure 3-17: Glasses McGlassface is the first character on the top row. We want to remove any doll that  
could be that character. Our selections are in the middle row.

Suppose we’ve later noticed that some figurines are not having their 
eyes painted on properly. Giving a child a toy without eyes could be trau-
matic, so we definitely want to catch them all. As before, we’ll look at every 
toy, this time asking, “Are the eyes present?” If not, we throw the figurine 
into a bin for recycling. Figure 3-18 shows the idea.

Input

Eyes are
present

Not eyes
are present

False
Negative

Figure 3-18: A new group of toys. Now we’re looking for any with mispainted eyes. Our selections are  
in the bottom row.

Here we have a false negative: the doll has its eyes painted in, but we 
said it didn’t. In this situation, a few false negatives aren’t so bad. As long as 
we’re sure to remove every doll that is missing its eyes, it’s okay if we remove 
a few with their eyes present.
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To sum up, true positives and true negatives are the easy cases to 
understand. How we should respond to false positives and false negatives 
is dependent on our situation and our goals. It’s important to know what 
our question is, and what our policy is, so we can work out how we want to 
respond to these different types of errors.

Measuring Correct and Incorrect
Let’s return to our overview of true and false positives and negatives, as 
summarized in a confusion matrix. Looking at a confusion matrix can be, 
well, confusing, so people have created a variety of terms to help us talk 
about how well our classifier is performing.

We’ll illustrate these terms using a medical diagnosis scenario, where 
positive means someone has a particular condition, and negative means 
they’re healthy. Suppose that we’re public health workers who have come 
to a town that’s experiencing an outbreak of a terrible but completely 
imaginary disease called morbus pollicus (MP). Anyone who has MP needs 
to have their thumbs surgically removed right away, or the disease will kill 
them within hours. It’s therefore critical that we correctly diagnose every-
one with MP. But we definitely don’t want to make any incorrect diagnoses 
that lead to removing anyone’s thumbs if their life is not in danger—
thumbs are important!

Let’s imagine that we have a laboratory test for detecting MP. The 
lab test is flawless, so it always gives us the correct answer: a positive diag-
nosis means the person has MP, and a negative diagnosis means they do 
not. Using this test, we’ve checked every person in town, and we now know 
whether or not they have MP. But our lab test is slow, and expensive. We’re 
worried about future outbreaks, so based on what we’ve just learned, we 
develop a fast, cheap, and portable field test that will predict immediately 
if someone does or does not have MP.

Unfortunately, our field test is not perfectly reliable, and sometimes 
makes incorrect diagnoses. Although we know our field test is flawed, when 
we’re in the middle of an outbreak it may be the only tool we have. So we 
want to characterize how often the field test is correct and how often it’s 
wrong, and when it’s wrong, we want to characterize the ways it’s wrong.

To work this out, we need data. We’ve just heard of another town where 
a few people have reported MP. We’ll check every person in town with both 
tests: our perfect (but slow and expensive) lab test, and our imperfect (but 
quick and cheap) field test. In other words, the lab test gives us the ground 
truth for each person, and the field test gives us a prediction. The lab test is 
too expensive to always run both tests on every person, but we can afford it 
this once.

By comparing the field test predictions with the lab test label, we’ll 
know all four quadrants of the confusion matrix for our field test: 

True Positive: the person has MP, and our field test correctly says that 
they have it. 

True Negative: the person does not have MP, and our field test agrees. 
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False Positive: the person does not have MP, but our field test says that 
they do. 

False Negative: the person has MP, but our field test says they don’t. 

Both true positive and true negative are correct answers, while false 
negative and false positive are incorrect. A false positive means we’d oper-
ate without cause, and a false negative would leave someone at risk of dying. 

If we build a confusion matrix for our field test by attaching numbers to 
each of the four cells, we can use those values to determine how well our field 
test is performing. We will be able to characterize its performance with a few 
well-known statistics. The accuracy will tell us how often the field test gives us 
a correct answer, the precision will tell us something about false positives, and 
the recall will tell us about false negatives. These values are the standard way 
that people talk about the quality of a test like this, so let’s look at those values 
now. Then we’ll come back to our confusion matrix for the field test, compute 
these values, and see how they help us interpret the test’s predictions. 

Accuracy
Each of the terms we’ll discuss in this section is built from the four values 
in the confusion matrix. To make things a bit easier to discuss, we’ll use the 
common abbreviations: TP for true positive, FP for false positive, TN for 
true negative, and FN for false negative.

Our first term to characterize the quality of a classifier is accuracy. The 
accuracy of the predictions made for any collection of samples is a number 
from 0 to 1. It’s a measure of the percentage of samples that were assigned to 
the correct category. So it’s just the sum of the two “correct” values, TP and 
TN, divided by the total number of samples measured. Figure 3-19 shows 
the idea graphically. In this figure, as in the ones to come, the samples we’re 
counting for any given computation will be shown, and the samples that 
don’t contribute to that value will be omitted. 

Accuracy = = = = 0.7
TP+TN

All

6+8

20

Figure 3-19: Accuracy is a number from 0 to 1 that tells us how often our prediction is correct. 
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We want the accuracy to be 1.0, but usually it will be less than that. In 
Figure 3-19, we have an accuracy of 0.7, or 70%, which isn’t great. The accu-
racy doesn’t tell us in what way the predictions are wrong, but it does give us 
a broad feeling for how much of the time we get the right result. Accuracy 
is a rough measurement.

Let’s now look at two other measures that provide more specific charac-
terizations of our predictions.

Precision
Precision (also called positive predictive value [PPV]) tells us the percentage of 
our samples that were properly labeled positive, relative to all the samples 
we labeled as positive. Numerically, it’s the value of TP relative to TP + FP. 
In other words, precision tells us what percentage of our positive predic-
tions were correct.

If the precision is 1.0, then every sample we labeled as positive was cor-
rectly predicted as positive. As the percentage falls, it carries with it our 
confidence in these predictions. For example, if the precision is 0.8, then 
we can only be 80% sure that any given sample that’s labeled positive has 
the correct label. Figure 3-20 shows the idea visually.

Precision = = = = 0.75
TP

TP+FP

6

6+2

Figure 3-20: The value of precision is the total number of positive samples that really are positive, divided by 
the total number of samples that we labeled as positive. 

When the precision is less than 1.0, it means we labeled some samples 
as positive when we shouldn’t have. In our healthcare example from before 
with our imaginary disease, a precision value of less than 1.0 means that 
we’d perform some unnecessary operations. An important quality of preci-
sion is that it doesn’t tell us if we actually found all the positive objects: that 
is, all the people who had MP. Precision ignores all samples except those 
labeled as positive.

Deep Learning: A Visual Approach (Early Access) © 2021 by Andrew Glassner



20   Chapter 3

Recall
Our third measure is recall (also called sensitivity, hit rate, or true positive rate). 
This tells us the percentage of the samples we correctly predicted to be 
positive, relative to all the samples that really were positive. That is, it tells 
us the percentage of positive samples that we correctly predicted.

When recall is 1.0, then we correctly predicted every positive event. 
The more that recall drops below that number, the more positive events we 
missed. Figure 3-21 shows this idea visually.

Recall = = = = 0.6
TP

TP+FN

6

6+4

Figure 3-21: The value of recall is the total number of correctly-labeled positive samples, divided by the total 
number of samples that should have been labeled as positive. 

When recall is less than 1.0, it means that we missed some positive 
answers. In our healthcare example, it means we would misdiagnose some 
people with MP as not having the disease. The result is that we wouldn’t 
operate on those people, even though they’re infected and in danger.

Precision-Recall Tradeoff 
When we’re categorizing data into two classes, and we can’t eliminate false 
positives and false negatives, there’s a tradeoff between precision and recall: 
as one goes up, the other goes down. That’s because as we reduce the num-
ber of false positives (and therefore increase precision), we necessarily also 
increase the number of false negatives (and therefore reduce recall). Let’s 
see how this comes about.

Figure 3-22 shows 20 pieces of data. They start out as negatives (red 
squares) at the far left, and gradually become positives (green circles) as 
we move right. We’ll draw a boundary line vertically somewhere, predict-
ing everything to its left as negative, and everything to its right as positive. 
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We want all the red squares to be predicted as negative, and all the green 
circles to be positive. Because they’re mixed up, there’s no boundary that 
separates the two groups perfectly.

Figure 3-22: As we move the boundary line to the right, from top to bottom, we decrease the number of false 
positives (red squares with a heavy border), but increase the number of false negatives (green circles with a 
heavy border).

In the top row of Figure 3-22, the boundary is near the left end. All the 
green circles are correctly marked positive, but many of the red squares are 
false positives (shown with a thick outline). As we move the boundary to the 
right in lower rows, we reduce the number of false positives, but we increase 
the number of false negatives, because now we’re predicting more green 
circles to be negative.

Let’s increase the dataset size to 5000 elements. The data will be like 
Figure 3-22, so each entry will be positive with a probability given by its dis-
tance from the left end. The leftmost graph of Figure 3-23 shows the num-
ber of true positives and true negatives as we move the decision boundary 
from the far left to the far right. The middle graph shows the number of 
false positives and false negatives, and the rightmost graph shows the result-
ing accuracy. 

Figure 3-23: Left: The number of true positives and true negatives as we move the boundary. Middle: The 
number of false positives and false negatives. Right: The accuracy.
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To find precision and recall, we’ll gather together TP and FP in the left 
graph of Figure 3-24, and TP and FN in the middle. At the right, we show 
the result of combining these pairs with TP, following the earlier definitions 
to compute the precision and recall for each position of the boundary.

Figure 3-24: TP and FP, TP and FN, and precision and recall as we move the boundary from far left to right

Notice that as we increase precision, we decrease recall, and vice-versa. 
That’s the precision-recall tradeoff.

In this example, the precision follows a straight line, whereas the recall 
is a curve. To get a feeling for why, consider that the sum TP + FP of the 
curves shown at the left of Figure 3-24 is a diagonal line from northwest to 
southeast, whereas the sum TP + FN of the curves in the middle of the fig-
ure is a horizontal line. Dividing the TP curve by these two differently ori-
ented lines gives us the different shapes of the precision and recall curves. 

For other kinds of data sets, all of these curves would look different, 
but the precision-recall tradeoff would remain: the better the precision, the 
worse the recall, and vice-versa. 

Misleading Measures 
Accuracy is a common measure, but in machine learning precision and 
recall appear more frequently because they’re useful for characterizing 
the performance of a classifier and comparing it against others. But both 
precision and recall can be misleading if taken all by themselves, because 
extreme conditions can give us a great value for either measure, whereas 
overall performance is lousy.

These misleading results can come from many sources. Perhaps the 
most common, and difficult to catch, is when we’re not careful enough 
about what we ask the computer to do for us. For example, our organization 
might want us to produce a classifier that delivers extremely high precision 
or recall. That may sound desirable, but let’s see why it could be a mistake.

To see the problem, consider what might happen if we ask for one 
of the two extremes of perfect precision and perfect recall. We’ll invent lousy 
boundary curves to demonstrate the issues, but keep in mind that these can 
come out naturally from an algorithm tasked to produce perfect precision 
or recall.
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One way to create a boundary curve with perfect precision is to look 
through all of the samples and find the one we are most certain is really 
true. Then we draw the curve so that the point we selected is the only posi-
tive sample, and everything else is negative. Figure 3-25 shows the idea.

Figure 3-25: Left: This boundary curve gives us a perfect score for precision. Right: A schematic version of the 
figure on the left.

How does this give us perfect precision? Remember that precision is 
the number of true positives (here only 1) divided by the total number of 
points labeled positive (again, just 1). So we get the fraction 1/1, or 1, which 
is a perfect score. But the accuracy and recall are both pretty awful because 
we’ve also created lots of false negatives, as shown in Figure 3-26.

Accuracy =

Precision =

Recall =

= = =TP+TN
All

1+10
20

0.55

= = =TP
TP+FP

1
1+0

1

= = =TP
TP+FN

1
1+9

0.1

Figure 3-26: These figures all share the same boundary curve, which has labeled exactly one green circle as 
positive, and all the others as negative.
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Let’s do a similar trick with recall. To create a boundary curve with 
perfect recall is even easier. All we have to do is label everything as positive. 
Figure 3-27 shows the idea.

Figure 3-27: Left: This boundary curve gives us a perfect recall score. Right: A schematic version of the figure 
on the left.

We get perfect recall from this because recall is the number of correctly 
labeled true points (here, all 10 of them) divided by the total number of 
true points (again, 10). So 10/10 is 1, or a perfect score for recall. But of 
course, accuracy and precision are both poor, because every negative sam-
ple is now a false positive, as shown in Figure 3-28.

Accuracy =

Precision =

Recall =

= = =TP+TN
All

10+0
20

0.5

= = =TP
TP+FP

10
10+10

0.5

= = =TP
TP+FN

10
10+0

1

Figure 3-28: Perfect recall. All of these figures share the same boundary curve. With this curve, every 
point is predicted to be positive. We get a perfect recall, because every positive point is correctly labeled. 
Unfortunately, accuracy and precision both have very low scores.
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The moral of Figures 3-26 and 3-28 is that asking for perfect precision 
or perfect recall is unlikely to give us what we really want, which is perfect 
correctness. We want accuracy, precision, and recall to all be near 1, but 
if we’re not careful, we can get a great score for just one of these measures 
by picking an extreme solution that performs poorly when we look at the 
results in just about any other way.

f1 Score
Looking at both precision and recall is informative, but they can be com-
bined with a bit of mathematics into a single measure called the f1 score. 
This is a special type of “average” called a harmonic mean. It lets us look 
at a single number that combines both precision and recall (the formula 
appears later on in the last lines of Figure 3-30 and Figure 3-32). 

Figure 3-29 shows the f1 score visually. 

Figure 3-29: The f1 score is 0 when either precision or recall is also 0, and 1 when both are 1. In between it 
slowly rises as both measures increase.

Generally speaking, the f1 score will be low when either precision or 
recall is low and will approach 1 when both measures also approach 1. 

When a system is working well, sometimes people just cite the f1 score 
as a shorthand way of showing that both precision and recall are high.

About These Terms
The terms accuracy, precision, and recall may not seem obviously con-
nected to what they measure. Let’s make those connections, which can help 
us remember what these terms mean.

Accuracy tells us what percentage of the samples we predicted correctly. 
If we predicted every label perfectly, accuracy would be 1. As the percent-
age of mistakes increases, accuracy drops toward 0. To characterize our mis-
takes, we want to know our rate of false positives and false negatives. This is 
what precision and recall are for.

Precision reveals our percentage of false positives, or how many samples 
we incorrectly predicted to be positive. So this measures the specificity, or 
precision, of our positive prediction. The larger the value of precision, the 
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more confidence we have that a positive prediction is accurate. In terms of 
our medical example, if our test has high precision, then it’s likely that a 
positive diagnosis means that person really has MP. But precision doesn’t 
tell us how many infected people we improperly declared to be disease-free. 

Recall reveals our percentage of false negatives. If we think of our sys-
tem as finding, or recalling, just the positives from a set of data, this tells 
us how well we’ve done. The better our recall, the more confidence we have 
that we correctly retrieved all the positive samples. In our medical example, 
if our test has high recall, then we can feel confident that we’ve identified 
everyone with MP. But recall doesn’t tell us how many healthy people we 
incorrectly identified as having MP.

Other Measures
We’ve seen the measures of accuracy, recall, precision, and f1. There are 
lots of other terms that are sometimes used in discussions of probability 
and machine learning (Wikipedia 2016). We won’t encounter most of these 
terms in this book, but we’ll summarize them here to provide a one-stop 
reference that gathers all the definitions in one place.

Figure 3-30 provides this summary. Don’t bother memorizing any unfa-
miliar terms and their meanings. The purpose of this table is to offer a con-
venient place to look these things up when needed.

Common
Name

Other
Names Abbreviation Definition Interpretation

True Positive Hit TP True sample
labeled True

Correctly labeled
True sample

True Negative Rejection TN False sample
labeled False

Correctly labeled
False sample

False Positive
False Alarm,
Type I Error FP

False sample
labeled True

Incorrectly labeled
False sample

False Negative Miss,
Type II Error FN True sample

labeled False
Incorrectly labeled
True sample

Recall Sensitivity,
True Positive
Rate

TPR TP/(TP+FN) % of True samples
correctly labeled

Specificity True Negative
Rate

SPC,
TNR TN/(TN+FP) % of False samples

correctly labeled

Precision Positive
Predictive Value PPV TP/(TP+FP) % of samples labeled

True that really are True

Negative
Predictive Value NPV TN/(TN+FN) % of samples labeled

False that really are False

False Positive
Rate Fall-out FPR FP/(FP+TN)=1-SPC % of False samples

incorrectly labeled

True Discovery
Rate TDR FN/(TN+FN)=1-NPV % of samples labeled

False that are really True

False Negative
Rate FNR FN/(TP+FN)=1-TPR % of True samples

incorrectly labeled

False Discovery
Rate

FDR FP/(TP+FP)=1-PPV % of samples labeled
True that are really False

Accuracy ACC (TP+TN)/(TP+TN+FP+FN) Percent of samples
correctly labeled

f1 score f1 (2*TP)/((2*TP)+FP+FN) Approaches 1 as
errors decline

Deep Learning: A Visual Approach (Early Access) © 2021 by Andrew Glassner



Probability  27

Common
Name

Other
Names Abbreviation Definition Interpretation

True Positive Hit TP True sample
labeled True

Correctly labeled
True sample

True Negative Rejection TN False sample
labeled False

Correctly labeled
False sample

False Positive
False Alarm,
Type I Error FP

False sample
labeled True

Incorrectly labeled
False sample

False Negative Miss,
Type II Error FN True sample

labeled False
Incorrectly labeled
True sample

Recall Sensitivity,
True Positive
Rate

TPR TP/(TP+FN) % of True samples
correctly labeled

Specificity True Negative
Rate

SPC,
TNR TN/(TN+FP) % of False samples

correctly labeled

Precision Positive
Predictive Value PPV TP/(TP+FP) % of samples labeled

True that really are True

Negative
Predictive Value NPV TN/(TN+FN) % of samples labeled

False that really are False

False Positive
Rate Fall-out FPR FP/(FP+TN)=1-SPC % of False samples

incorrectly labeled

True Discovery
Rate TDR FN/(TN+FN)=1-NPV % of samples labeled

False that are really True

False Negative
Rate FNR FN/(TP+FN)=1-TPR % of True samples

incorrectly labeled

False Discovery
Rate

FDR FP/(TP+FP)=1-PPV % of samples labeled
True that are really False

Accuracy ACC (TP+TN)/(TP+TN+FP+FN) Percent of samples
correctly labeled

f1 score f1 (2*TP)/((2*TP)+FP+FN) Approaches 1 as
errors decline

Figure 3-30: Common confidence terms derived from the confusion matrix 

This table is a lot to take in. We provide an alternative that presents 
the terms graphically, using our distribution of samples from Figure 3-14, 
repeated here as Figure 3-31.

TP

FP

FN
TN

Figure 3-31: The data from Figure 3-14, with the labels from Figure 3-15 

Reading from top to bottom, we have six positive points correctly 
labeled (TP=6), two negative points incorrectly labeled (FP=2), four posi-
tive points incorrectly labeled (FN=4), and eight negative points correctly 
labeled (TN=8).

With these points, we can illustrate the measures of Figure 3-30 by  
combining these four numbers, or their pictures, in different ways. 
Figure 3-32 shows how we’d compute the measures using just the relevant 
pieces of the data.
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Recall TPR === 0.66/10
TP

TP+FN
6

6+4

Specificity TNR === 0.88/10
TN

TN+FP
8

8+2

Precision PPV === 0.756/8
TP

TP+FP
6

6+2

Negative
Predictive Value NPV ≈== 0.668/12

TN
TN+FN

8
8+4

False
Positive Rate FPR === 0.22/10

FP
FP+TN

2
2+8

False
Negative Rate FNR === 0.44/10

FN
FN+TP

4
4+6

False
Discovery Rate FDR === 0.252/8

FP
TP+FP

2
2+6

Accuracy ACC === 0.714/20
TP+TN

TP+FP+TN+FN
6+8

6+2+4+8

True
Discovery Rate TDR == 4/12

F1 Score F1 ≈== 0.6612/18
2 TP

2 TP+FP+FN
2*6

(2*6)+2+4

4
4+8

≈ 0.33
FN

TN+FN

Figure 3-32: Our statistical measures of Figure 3-29 in visual form using the data of Figure 3-30

Deep Learning: A Visual Approach (Early Access) © 2021 by Andrew Glassner



Probability  29

Constructing a Confusion Matrix Correctly
Understanding a test (or classifier) from its statistical measures can be diffi-
cult. There’s a lot to take in, and keeping everything straight and organized 
can be a challenge. It’s important to rise to this challenge, because most 
real-world tests (in every field) are imperfect, as are most machine-learning 
systems. In general, they need to be understood in terms of their statistical 
performances. 

The confusion matrix is a simple but powerful way to simplify and sum-
marize our understanding. But we have to build and interpret it carefully, 
or we can too easily come to the wrong conclusions. To wrap up this chap-
ter, let’s look more closely at how to properly build and interpret a confu-
sion matrix. 

The plan will be to return to our imaginary disease of MP, attach some 
numbers to our confusion matrix, and ask some questions about the qual-
ity of our fast, but inaccurate, field test. Recall that we earlier said that we’d 
measure everyone in a town with our slow and expensive, but perfectly 
accurate, lab test (giving us the ground truth), as well as our faster, cheaper, 
and imperfect field test (giving us predictions).

Let’s suppose that these measurements show that the field test has a 
high true positive rate: we found that 99% of the time, someone with MP is 
correctly diagnosed. Since the TP rate is 0.99, the false negative (FN) rate, 
which contains all of the people with MP who we did not correctly diagnose, 
is 1 – 0.99 = 0.01. 

The test does a bit worse for people who don’t have MP. We’ll suppose 
that the true negative (TN) rate is 0.98, so 98 times out of 100 when we pre-
dict that someone is not infected, they really aren’t. But this means that the 
false positive (FP) rate is 1 – 0.98 = 0.02, so 2 people in 100 who don’t have 
MP will get an incorrect positive diagnosis.

Let’s suppose that we’ve just heard of a suspected outbreak of MP in a 
new town of 10,000 people. From experience, given the amount of time that 
has passed, we expect that 1% of the population is already infected. This is 
essential information. We’re not testing people blindly. We already know that 
there’s only a 1 in 100 chance that someone has MP. It will be essential for 
us to include this information to correctly understand the results from our 
field test.

So we pack up our gear and head into town at top speed.
There’s no time to send our results to the big and slow lab, so we get 

everyone to come down to city hall to get tested with our field test. Suppose 
someone comes up positive. What should they do? How likely is it that they 
have MP? Suppose instead the test is negative. What should those people 
do? How likely is it that they don’t have it?

We can answer these questions by building a confusion matrix. If we 
jump into it, we might build a confusion matrix just by popping the values 
above into their corresponding boxes, as in Figure 3-33. But this is not the 
way to go! This matrix is incomplete and will lead us to the wrong answers 
to our questions.
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Positive

Prediction

Actual
Value

TP

0.99

FN

0.01

FP

0.02

TN

0.98

Negative

Positive

Negative

Figure 3-33: This is not the confusion matrix  
we’re looking for. 

The problem is that we’re ignoring a critical piece of information: only 1% 
of the people in town will have MP right now. The chart in Figure 3-33 doesn’t 
include that knowledge and therefore isn’t telling us what we need to know.

In Figure 3-34, we work out the proper matrix by considering the 
10,000 people in town and analyzing what we expect from the test by using 
our knowledge of the infection rate and the test’s measured performance.

10,000
people

100 people1%
(people who

have MP)

99% correct
positive

1% incorrect
negative

99%
(people who do
not have MP)

99 True Positive

1 False Negative

198 False Positive

9702 True Negative

9900 people

98% correct
negative

2% incorrect
positive

Figure 3-34: Working out the populations we expect from our infection rate and our test
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Figure 3-34 forms the heart of the correct process, so let’s walk through 
it. We start at the left with 10,000 people in town. Our essential starting 
information is that we already know from prior experience that 1 person 
out of 100, or 1% of the population, will be infected with MP. That’s shown 
in the upper path, where we show the 1% of 10,000, or 100, people who 
have MP. Our test will correctly come up positive for 99 of them, and nega-
tive for only 1. Returning to our starting population, on the lower path we 
follow the 99%, or 9900, people who are not infected. Our test will correctly 
identify 98% of them, or 9,702 people, as being negative. 2% of those 9900, 
or 198 people, will get an incorrect positive result.

Figure 3-34 tells us the values that we should use to populate our confu-
sion matrix, because they incorporate our knowledge of the 1% infection 
rate. From our 10,000 tests, we’ll expect (on average) 99 true positives, 1 
false negative, 9,702 true negatives, and 198 false positives. These values 
give us the proper confusion matrix in Figure 3-35.

Positive

Prediction

Actual
Value

TP

99

FN

1

FP

198

TN

9702

Negative

Positive

Negative

Figure 3-35: The proper confusion matrix for our MP test, incorporating  
our knowledge of the 1% infection rate 

Comparing this to the matrix in Figure 3-33, the TN rate has changed 
by a lot! Instead of 98 (what we’d get by multiplying 0.98 by 100), we have 
9702. The value for FP has also gone through a huge change, from 2 to 198. 
These improved values will make a big difference in our interpretations of 
the test results.

Now that we have the right matrix, we’re ready to answer our questions. 
Suppose someone gets a positive test result. What’s the chance that they really 
do have MP? In statistical terms, what’s the conditional probability that some-
one has MP, given that the test says they do? More simply, what percentage of 
the positive results we get back are true positives? That’s just what precision 
measures. In this case, the precision is 99 / (99 + 198), or 0.33, or 33%.
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Wait a second. What does this mean? Our test has a 99% probability 
of correctly diagnosing MP, yet 2/3 of the times when it gives us a positive 
result, that person does not have the disease. More than half of our positive 
results are wrong!

That definitely seems weird.
And that’s why we’re going through this example. Understanding proba-

bilities can be tricky. Here we have a test with a 99% true positive rate, which 
sounds pretty great. Yet the majority of our positive diagnoses are wrong.

This surprising result comes about because even though the chance of 
missing an infected person is very small, there’s a huge number of healthy 
people being tested. So we get a whole lot of those rare incorrect positive 
diagnoses, and they add up fast. The result is that if someone gets a positive 
result, we should not operate right away. We should instead interpret this 
result as a signal to do the more expensive and accurate test.

Let’s look at these numbers using our region diagrams. We’ll have 
to distort the sizes of the areas in Figure 3-36 in order to make them big 
enough to see.

9900
Healthy

9702 True
Negatives

100 have MP 99 True
Positives

198 False
Positives

1 False
Negative

Figure 3-36: Left: The population contains 100 people with MP, and 9900 without. Middle and Right: The 
results of our test. The sizes of the shapes are not to scale.

We saw earlier that the precision tells us the chance that someone who 
is diagnosed as positive really does have MP. This is illustrated at the far 
left of Figure 3-37. We can see that the field test incorrectly labels people 
without MP as positive, giving us a precision of 0.33. That tells us to be sus-
picious of positive results, because 1 – 0.33 ≈ 0.66, or 66%, of those results 
will be wrong.

What if someone gets a negative result? Are they really clear? That’s the 
ratio of true negatives to the total number of negatives, or TN / (TN + FN), 
which Figure 3-29 gives the name of negative predictive value. In this case it’s 
9702 / (9702 + 1). That’s well over 0.999, or 99.9%. So if someone gets back 
a negative result, there’s only about 1 chance in 10,000 that the test was 
wrong and they do have MP. We can tell them that, and let them decide if 
they want the slower, more expensive test. 
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Precision Recall

TP
TP+FP

TP
TP+FN

99
99+1

= 0.9999
99+198

= 1/3

TP

TP
TP

TP

FN

Negative Predictive
Value

TN
TN+FN
9702

9702+1
= 0.99

TN

TN

FN

FP

Specificity

TN
TN+FP
9702

9702+198
= 0.98

TN

TNFP

Figure 3-37: Four statistics describing our test for MP based on the results of Figure 3-36. Precision: What per-
centage of our positives are accurate? Recall: What is our percentage of finding all the positives? Negative 
Predictive Value: What percentage of our negatives are accurate? Specificity: What is our percentage of find-
ing all the negatives? 

To summarize, the chance that a positive result means that someone 
actually does have MP is only about 33%. On the other hand, a negative 
result is 99.9% sure to be really negative.

Figure 3-37 shows a couple of other measurements. The recall tells us 
the percentage of people that are properly diagnosed as positive. Since we 
only missed one person out of 100, that value is 99%. The specificity tells us 
the percentage of people that are properly diagnosed as negative. Since we 
gave 198 incorrect negative diagnoses, that result is a little less than 1. 

To summarize, out of 10,000 people in this town with a 1% infection 
rate, out test will only miss 1 case of MP. But we’ll get nearly 200 incorrect 
positive diagnoses (that is, false positives), which can unduly scare and 
worry people. Some might even have the surgery right away, rather than 
wait for the slower test. Since we wanted to be very sure of correctly find-
ing every person with MP, our test is overly zealous in telling people they’re 
infected. 

As we saw earlier, if we wanted to make a test that would never miss any 
person with MP, we could simply label everyone as positive, but that’s not 
useful. The goal in real situations with imperfect systems is to balance the 
false negatives and false positives in a way that serves our purposes, while 
keeping those errors in mind. 

Our example of MP was imaginary, but the real world is full of situ-
ations where people are making decisions based on incorrect confusion 
matrices or bad questions. And some of those decisions are related to real 
and very serious health issues. 
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For example, many women have had needless mastectomies because 
their surgeons misunderstood the probabilities from a breast exam and 
gave their patients bad counseling (Levitin 2016). Recommending someone 
undergo an unnecessary surgery is a dangerous mistake. Men were also 
operated on without cause, because many were given bad advice based on 
their doctors misunderstanding the statistics of using elevated PSA levels as 
evidence for prostate cancer (Kirby 2011). 

Probability and statistics can be subtle. It’s essential that we go slow, 
think things through, and make sure that we’re interpreting our data 
correctly.

Now we know that we shouldn’t be fooled by hearing that some test 
is “99% accurate,” or even that it “correctly identifies 99% of the positive 
cases.” In our town where only 1% of the people are infected, and a test 
with an impressive 99% true positive rate, anyone with a positive diagnosis 
is more than likely to not really have the disease.

The moral is that statistical claims in any situation, from advertising to 
science, need to be looked at closely and placed into context. Often, terms 
like “precision” and “accuracy” are used colloquially or casually, which, at 
best, makes them difficult to interpret. Even when these terms are used in 
their technical sense, bare claims of accuracy and related measures can eas-
ily be misleading and can lead to poor decisions. 

When it comes to probability, don’t trust your gut. There are surprises 
and counterintuitive results that lie in wait all over the place. Go slow and 
think it through.

Summary
We’ve seen a lot in this chapter! We covered some of the most important 
ideas in probability. We saw a term for how likely it is for some event A 
to happen, or for some event A to happen given that some other event B 
already happened, or for events A and B to happen together.

We then looked at a few statistical measures that let us characterize how 
well a test is able to properly identify the positive and negative samples in 
a dataset. We saw that we can use these measures to help us interpret the 
results of any decision-making process. And we organized those terms into 
a confusion matrix, which helps us make sense of all that information. 

And we saw that statistics can be misleading. If we’re not careful, we 
can create tests (or classifiers) that seem to do a great job according to 
one set of measurements, but are lousy in other ways. It’s important to go 
slow, think things through, and use language carefully when working with 
probability.

In Chapter 4, we’ll apply some of these ideas to a method of reasoning 
about probabilities that is widely used in machine learning. This will give us 
another tool to help us later design learning algorithms that will learn, and 
are able to usefully perform the tasks we want of them.
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