
7
O P E N R E D I R E C T S

Sites often use HTTP or URL parameters to
redirect users to a specified URL without any

user action. While this behavior can be use-
ful, it can also cause open redirects, which happen

when an attacker is able to manipulate the value of this
parameter to redirect the user offsite. Let’s discuss this
common bug, why it’s a problem, and how you can use
it to escalate other vulnerabilities you find.

Mechanisms
Websites often need to automatically redirect their users. For example, this
scenario commonly occurs when unauthenticated users try to access a page
that requires logging in. The website will usually redirect those users to the
login page, and then return them to their original location after they’re

Bug Bounty Bootcamp (Sample Chapter) © 5/19/21 by Vickie Li

B U G B O U N T Y
B O O T C A M P

V I C K I E L I

5/19/21

132 Chapter 7

authenticated. For example, when these users visit their account dashboards
at https://example.com/dashboard, the application might redirect them to the
login page at https://example.com/login.

To later redirect users to their previous location, the site needs to remem-
ber which page they intended to access before they were redirected to the
login page. Therefore, the site uses some sort of redirect URL parameter
appended to the URL to keep track of the user’s original location. This
parameter determines where to redirect the user after login. For example, the
URL https://example.com/login?redirect=https://example.com/dashboard will redirect
to the user’s dashboard, located at https://example.com/dashboard, after login.
Or if the user was originally trying to browse their account settings page, the
site would redirect the user to the settings page after login, and the URL
would look like this: https://example.com/login?redirect=https://example.com/settings.
Redirecting users automatically saves them time and improves their experi-
ence, so you’ll find many applications that implement this functionality.

During an open-redirect attack, an attacker tricks the user into visiting
an external site by providing them with a URL from the legitimate site that
redirects somewhere else, like this: https://example.com/login?redirect=https://
attacker.com. A URL like this one could trick victims into clicking the link,
because they’ll believe it leads to a page on the legitimate site, example.com.
But in reality, this page automatically redirects to a malicious page. Attackers
can then launch a social engineering attack and trick users into entering
their example.com credentials on the attacker’s site. In the cybersecurity world,
social engineering refers to attacks that deceive the victim. Attacks that uses
social engineering to steal credentials and private information are called
phishing.

Another common open-redirect technique is referer-based open redi-
rect. The referer is an HTTP request header that browsers automatically
include. It tells the server where the request originated from. Referer head-
ers are a common way of determining the user’s original location, since they
contain the URL that linked to the current page. Thus, some sites will redi-
rect to the page’s referer URL automatically after certain user actions, like
login or logout. In this case, attackers can host a site that links to the victim
site to set the referer header of the request, using HTML like the following:

<html>
 Click here to log in to example.com
</html>

This HTML page contains an <a> tag, which links the text in the tag
to another location. This page contains a link with the text Click here to
log in to example.com. When a user clicks the link, they’ll be redirected to
the location specified by the href attribute of the <a> tag, which is https://
example.com/login in this example.

Figure 7-1 shows what the page would look like when rendered in the
browser.

Figure 7-1: Our sample rendered HTML page

Bug Bounty Bootcamp (Sample Chapter) © 5/19/21 by Vickie Li

B U G B O U N T Y
B O O T C A M P

V I C K I E L I

5/19/21

OPEN REDIRECTS 133

If example.com uses a referer-based redirect system, the user’s browser
would redirect to the attacker’s site after the user visits example.com, because
the browser visited example.com via the attacker’s page.

Prevention
To prevent open redirects, the server needs to make sure it doesn’t redirect
users to malicious locations. Sites often implement URL validators to ensure
that the user-provided redirect URL points to a legitimate location. These
validators use either a blocklist or an allowlist.

When a validator implements a blocklist, it will check whether the redi-
rect URL contains certain indicators of a malicious redirect, and then
block those requests accordingly. For example, a site may blocklist known
malicious hostnames or special URL characters often used in open-redirect
attacks. When a validator implements an allowlist, it will check the host-
name portion of the URL to make sure that it matches a predetermined list
of allowed hosts. If the hostname portion of the URL matches an allowed
hostname, the redirect goes through. Otherwise, the server blocks the
redirect.

These defense mechanisms sound straightforward, but the reality is
that parsing and decoding a URL is difficult to get right. Validators often
have a hard time identifying the hostname portion of the URL. This makes
open redirects one of the most common vulnerabilities in modern web
applications. We’ll talk about how attackers can exploit URL validation
issues to bypass open-redirect protection later in this chapter.

Hunting for Open Redirects
Let’s start by looking for a simple open redirect. You can find open redirects
by using a few recon tricks to discover vulnerable endpoints and confirm the
open redirect manually.

Step 1: Look for Redirect Parameters
Start by searching for the parameters used for redirects. These often show
up as URL parameters like the ones in bold here:

https://example.com/login?redirect=https://example.com/dashboard
https://example.com/login?redir=https://example.com/dashboard
https://example.com/login?next=https://example.com/dashboard
https://example.com/login?next=/dashboard

Open your proxy while you browse the website. Then, in your HTTP
history, look for any parameter that contains absolute or relative URLs.
An absolute URL is complete and contains all the components necessary to
locate the resource it points to, like https://example.com/login. Absolute URLs
contain at least the URL scheme, hostname, and path of a resource. A rela-
tive URL must be concatenated with another URL by the server in order to

Bug Bounty Bootcamp (Sample Chapter) © 5/19/21 by Vickie Li

B U G B O U N T Y
B O O T C A M P

V I C K I E L I

5/19/21

134 Chapter 7

be used. These typically contain only the path component of a URL, like
/login. Some redirect URLs will even omit the first slash (/) character of the
relative URL, as in https://example.com/login?next=dashboard.

Note that not all redirect parameters have straightforward names like
redirect or redir. For example, I’ve seen redirect parameters named RelayState,
next, u, n, and forward. You should record all parameters that seem to be used
for redirect, regardless of their parameter names.

In addition, take note of the pages that don’t contain redirect param-
eters in their URLs but still automatically redirect their users. These pages
are candidates for referer-based open redirects. To find these pages, you can
keep an eye out for 3XX response codes like 301 and 302. These response
codes indicate a redirect.

Step 2: Use Google Dorks to Find Additional Redirect Parameters
Google dork techniques are an efficient way to find redirect parameters. To
look for redirect parameters on a target site by using Google dorks, start by
setting the site search term to your target site:

site:example.com

Then look for pages that contain URLs in their URL parameters, mak-
ing use of %3D, the URL-encoded version of the equal sign (=). By adding %3D
in your search term, you can search for terms like =http and =https, which
are indicators of URLs in a parameter. The following searches for URL
parameters that contain absolute URLs:

inurl:%3Dhttp site:example.com

This search term might find the following pages:

https://example.com/login?next=https://example.com/dashboard
https://example.com/login?u=http://example.com/settings

Also try using %2F, the URL-encoded version of the slash (/). The fol-
lowing search term searches URLs that contain =/, and therefore returns
URL parameters that contain relative URLs:

inurl:%3D%2F site:example.com

This search term will find URLs such as this one:

https://example.com/login?n=/dashboard

Alternatively, you can search for the names of common URL redirect
parameters. Here are a few search terms that will likely reveal parameters
used for a redirect:

inurl:redir site:example.com
inurl:redirect site:example.com

Bug Bounty Bootcamp (Sample Chapter) © 5/19/21 by Vickie Li

B U G B O U N T Y
B O O T C A M P

V I C K I E L I

5/19/21

OPEN REDIRECTS 135

inurl:redirecturi site:example.com
inurl:redirect_uri site:example.com
inurl:redirecturl site:example.com
inurl:redirect_uri site:example.com
inurl:return site:example.com
inurl:returnurl site:example.com
inurl:relaystate site:example.com
inurl:forward site:example.com
inurl:forwardurl site:example.com
inurl:forward_url site:example.com
inurl:url site:example.com
inurl:uri site:example.com
inurl:dest site:example.com
inurl:destination site:example.com
inurl:next site:example.com

These search terms will find URLs such as the following:

https://example.com/logout?dest=/
https://example.com/login?RelayState=https://example.com/home
https://example.com/logout?forward=home
https://example.com/login?return=home/settings

Note the new parameters you’ve discovered, along with the ones found
in step 1.

Step 3: Test for Parameter-Based Open Redirects
Next, pay attention to the functionality of each redirect parameter you’ve
found and test each one for an open redirect. Insert a random hostname,
or a hostname you own, into the redirect parameters; then see if the site
automatically redirects to the site you specified:

https://example.com/login?n=http://google.com
https://example.com/login?n=http://attacker.com

Some sites will redirect to the destination site immediately after you
visit the URL, without any user interaction. But for a lot of pages, the
redirect won’t happen until after a user action, like registration, login, or
logout. In those cases, be sure to carry out the required user interactions
before checking for the redirect.

Step 4: Test for Referer-Based Open Redirects
Finally, test for referer-based open redirects on any pages you found in step 1
that redirected users despite not containing a redirect URL parameter. To test
for these, set up a page on a domain you own and host this HTML page:

<html>
 Click on this link!
</html>

Bug Bounty Bootcamp (Sample Chapter) © 5/19/21 by Vickie Li

B U G B O U N T Y
B O O T C A M P

V I C K I E L I

5/19/21

136 Chapter 7

Replace the linked URL with the target page. Then reload and visit
your HTML page. Click the link and see if you get redirected to your site
automatically or after the required user interactions.

Bypassing Open-Redirect Protection
As a bug bounty hunter, I find open redirects in almost all the web targets I
attack. Why are open redirects still so prevalent in web applications today?
Sites prevent open redirects by validating the URL used to redirect the
user, making the root cause of open redirects failed URL validation. And,
unfortunately, URL validation is extremely difficult to get right.

Here, you can see the components of a URL. The way the browser redi-
rects the user depends on how the browser differentiates between these
components:

scheme://userinfo@hostname:port/path?query#fragment

The URL validator needs to predict how the browser will redirect the
user and reject URLs that will result in a redirect offsite. Browsers redi-
rect users to the location indicated by the hostname section of the URL.
However, URLs don’t always follow the strict format shown in this example.
They can be malformed, have their components out of order, contain char-
acters that the browser does not know how to decode, or have extra or miss-
ing components. For example, how would the browser redirect this URL?

https://user:password:8080/example.com@attacker.com
When you visit this link in different browsers, you will see that different

browsers handle this URL differently. Sometimes validators don’t account
for all the edge cases that can cause the browser to behave unexpectedly.
In this case, you could try to bypass the protection by using a few strategies,
which I’ll go over in this section.

Using Browser Autocorrect
First, you can use browser autocorrect features to construct alternative URLs
that redirect offsite. Modern browsers often autocorrect URLs that don’t
have the correct components, in order to correct mangled URLs caused by
user typos. For example, Chrome will interpret all of these URLs as pointing
to https://attacker.com:

https:attacker.com
https;attacker.com
https:\/\/attacker.com
https:/\/\attacker.com

These quirks can help you bypass URL validation based on a blocklist.
For example, if the validator rejects any redirect URL that contains the
strings https:// or http://, you can use an alternative string, like https;, to
achieve the same results.

Bug Bounty Bootcamp (Sample Chapter) © 5/19/21 by Vickie Li

B U G B O U N T Y
B O O T C A M P

V I C K I E L I

5/19/21

OPEN REDIRECTS 137

Most modern browsers also automatically correct backslashes (\) to for-
ward slashes (/), meaning they’ll treat these URLs as the same:

https:\\example.com
https://example.com

If the validator doesn’t recognize this behavior, the inconsistency could
lead to bugs. For example, the following URL is potentially problematic:

https://attacker.com\@example.com

Unless the validator treats the backslash as a path separator, it will
interpret the hostname to be example.com, and treat attacker.com\ as the user-
name portion of the URL. But if the browser autocorrects the backslash to
a forward slash, it will redirect the user to attacker.com, and treat @example.
com as the path portion of the URL, forming the following valid URL:

https://attacker.com/@example.com

Exploiting Flawed Validator Logic
Another way you can bypass the open-redirect validator is by exploiting
loopholes in the validator’s logic. For example, as a common defense
against open redirects, the URL validator often checks if the redirect
URL starts with, contains, or ends with the site’s domain name. You can
bypass this type of protection by creating a subdomain or directory with
the target’s domain name:

https://example.com/login?redir=http://example.com.attacker.com
https://example.com/login?redir=http://attacker.com/example.com

To prevent attacks like these from succeeding, the validator might accept
only URLs that both start and end with a domain listed on the allowlist.
However, it’s possible to construct a URL that satisfies both of these rules.
Take a look at this one:

https://example.com/login?redir=https://example.com.attacker.com/example.com

This URL redirects to attacker.com, despite beginning and ending with
the target domain. The browser will interpret the first example.com as the
subdomain name and the second one as the file path.

Or you could use the at symbol (@) to make the first example.com the
username portion of the URL:

https://example.com/login?redir=https://example.com@attacker.com/example.com

Custom-built URL validators are prone to attacks like these, because
developers often don’t consider all edge cases.

Bug Bounty Bootcamp (Sample Chapter) © 5/19/21 by Vickie Li

B U G B O U N T Y
B O O T C A M P

V I C K I E L I

5/19/21

138 Chapter 7

Using Data URLs
You can also manipulate the scheme portion of the URL to fool the valida-
tor. As mentioned in Chapter 6, data URLs use the data: scheme to embed
small files in a URL. They are constructed in this format:

data:MEDIA_TYPE[;base64],DATA

For example, you can send a plaintext message with the data scheme
like this:

data:text/plain,hello!

 The optional base64 specification allows you to send base64-encoded
messages. For example, this is the base64-encoded version of the preced-
ing message:

data:text/plain;base64,aGVsbG8h

You can use the data: scheme to construct a base64-encoded redirect
URL that evades the validator. For example, this URL will redirect to
example.com:

data:text/html;base64,
PHNjcmlwdD5sb2NhdGlvbj0iaHR0cHM6Ly9leGFtcGxlLmNvbSI8L3NjcmlwdD4=

The data encoded in this URL,
PHNjcmlwdD5sb2NhdGlvbj0iaHR0cHM6Ly9leGFtcGxlLmNvbSI8L3NjcmlwdD4=,
is the base64-encoded version of this script:

<script>location="https://example.com"</script>

This is a piece of JavaScript code wrapped between HTML <script>
tags. It sets the location of the browser to https://example.com, forcing the
browser to redirect there. You can insert this data URL into the redirection
parameter to bypass blocklists:

https://example.com/login?redir=data:text/html;base64,
PHNjcmlwdD5sb2NhdGlvbj0iaHR0cHM6Ly9leGFtcGxlLmNvbSI8L3NjcmlwdD4=

Exploiting URL Decoding
URLs sent over the internet can contain only ASCII characters, which include
a set of characters commonly used in the English language and a few special
characters. But since URLs often need to contain special characters or char-
acters from other languages, people encode characters by using URL encod-
ing. URL encoding converts a character into a percentage sign, followed by
two hex digits; for example, %2f. This is the URL-encoded version of the slash
character (/).

When validators validate URLs, or when browsers redirect users, they have
to first find out what is contained in the URL by decoding any characters that
are URL encoded. If there is any inconsistency between how the validator and
browsers decode URLs, you could exploit that to your advantage.

Bug Bounty Bootcamp (Sample Chapter) © 5/19/21 by Vickie Li

B U G B O U N T Y
B O O T C A M P

V I C K I E L I

5/19/21

OPEN REDIRECTS 139

Double Encoding

First, try to double- or triple-URL-encode certain special characters in your
payload. For example, you could URL-encode the slash character in https://
example.com/@attacker.com. Here is the URL with a URL-encoded slash:

https://example.com%2f@attacker.com

And here is the URL with a double-URL-encoded slash:

https://example.com%252f@attacker.com

Finally, here is the URL with a triple-URL-encoded slash:

https://example.com%25252f@attacker.com

Whenever a mismatch exists between how the validator and the browser
decode these special characters, you can exploit the mismatch to induce an
open redirect. For example, some validators might decode these URLs com-
pletely, then assume the URL redirects to example.com, since @attacker.com is
in the path portion of the URL. However, the browsers might decode the
URL incompletely, and instead treat example.com%25252f as the username
portion of the URL.

On the other hand, if the validator doesn’t double-decode URLs, but
the browser does, you can use a payload like this one:

https://attacker.com%252f@example.com

The validator would see example.com as the hostname. But the browser
would redirect to attacker.com, because @example.com becomes the path por-
tion of the URL, like this:

https://attacker.com/@example.com

Non-ASCII Characters

You can sometimes exploit inconsistencies in the way the validator and
browsers decode non-ASCII characters. For example, let’s say that this
URL has passed URL validation:

https://attacker.com%ff.example.com

%ff is the character ÿ, which is a non-ASCII character. The validator has
determined that example.com is the domain name, and attacker.comÿ is the
subdomain name. Several scenarios could happen. Sometimes browsers
decode non-ASCII characters into question marks. In this case, example.com
would become part of the URL query, not the hostname, and the browser
would navigate to attacker.com instead:

https://attacker.com?.example.com

Bug Bounty Bootcamp (Sample Chapter) © 5/19/21 by Vickie Li

B U G B O U N T Y
B O O T C A M P

V I C K I E L I

5/19/21

140 Chapter 7

Another common scenario is that browsers will attempt to find a “most alike”
character. For example, if the character ╱ (%E2%95%B1) appears in a URL like
this, the validator might determine that the hostname is example.com:

https://attacker.com╱.example.com

But the browser converts the slash look-alike character into an actual
slash, making attacker.com the hostname instead:

https://attacker.com/.example.com

Browsers normalize URLs this way often in an attempt to be user-
friendly. In addition to similar symbols, you can use character sets in other
languages to bypass filters. The Unicode standard is a set of codes developed
to represent all of the world’s languages on the computer. You can find a list
of Unicode characters at http://www.unicode.org/charts/. Use the Unicode chart
to find look-alike characters and insert them in URLs to bypass filters. The
Cyrillic character set is especially useful since it contains many characters
similar to ASCII characters.

Combining Exploit Techniques
To defeat more-sophisticated URL validators, combine multiple strategies
to bypass layered defenses. I’ve found the following payload to be useful:

https://example.com%252f@attacker.com/example.com

This URL bypasses protection that checks only that a URL contains,
starts with, or ends with an allowlisted hostname by making the URL
both start and end with example.com. Most browsers will interpret example
.com%252f as the username portion of the URL. But if the validator over-
decodes the URL, it will confuse example.com as the hostname portion:

https://example.com/@attacker.com/example.com
You can use many more methods to defeat URL validators. In this sec-

tion, I’ve provided an overview of the most common ones. Try each of them to
check for weaknesses in the validator you are testing. If you have time, experi-
ment with URLs to invent new ways of bypassing URL validators. For example,
try inserting random non-ASCII characters into a URL, or intentionally mess-
ing up its different components, and see how browsers interpret it.

Escalating the Attack
Attackers could use open redirects by themselves to make their phishing
attacks more credible. For example, they could send this URL in an email
to a user: https://example.com/login?next=https://attacker.com/fake_login.html.

Though this URL would first lead users to the legitimate website, it would
redirect them to the attacker’s site after login. The attacker could host a fake

Bug Bounty Bootcamp (Sample Chapter) © 5/19/21 by Vickie Li

B U G B O U N T Y
B O O T C A M P

V I C K I E L I

5/19/21

http://www.unicode.org/charts/

OPEN REDIRECTS 141

login page on a malicious site that mirrors the legitimate site’s login page,
and prompt the user to log in again with a message like this one:

Sorry! The password you provided was incorrect. Please enter
your username and password again.

Believing they’ve entered an incorrect password, the user would pro-
vide their credentials to the attacker’s site. At this point, the attacker’s site
could even redirect the user back to the legitimate site to keep the victim
from realizing that their credentials were stolen.

Since organizations can’t prevent phishing completely (because those
attacks depend on human judgment), security teams will often dismiss open
redirects as trivial bugs if reported on their own. But open redirects can
often serve as a part of a bug chain to achieve a bigger impact. For example,
an open redirect can help you bypass URL blocklists and allowlists. Take
this URL, for example:

https://example.com/?next=https://attacker.com/

This URL will pass even well-implemented URL validators, because
the URL is technically still on the legitimate website. Open redirects can,
therefore, help you maximize the impact of vulnerabilities like server-side
request forgery (SSRF), which I’ll discuss in Chapter 13. If a site utilizes an
allowlist to prevent SSRFs and allows requests to only a list of predefined
URLs, an attacker can utilize an open redirect within those allowlisted
pages to redirect the request anywhere.

You could also use open redirects to steal credentials and OAuth tokens.
Often, when a page redirects to another site, browsers will include the origi-
nating URL as a referer HTTP request header. When the originating URL
contains sensitive information, like authentication tokens, attackers can
induce an open redirect to steal the tokens via the referer header. (Even
when there is no open redirect on the sensitive endpoint, there are ways to
smuggle tokens offsite by using open redirect chains. I’ll go into detail about
how these attacks work in Chapter 20.)

Finding Your First Open Redirect!
You’re ready to find your first open redirect. Follow the steps covered in this
chapter to test your target applications:

1.	 Search for redirect URL parameters. These might be vulnerable to
parameter-based open redirect.

2.	 Search for pages that perform referer-based redirects. These are candi-
dates for a referer-based open redirect.

3.	 Test the pages and parameters you’ve found for open redirects.

4.	 If the server blocks the open redirect, try the protection bypass tech-
niques mentioned in this chapter.

5.	 Brainstorm ways of using the open redirect in your other bug chains!

Bug Bounty Bootcamp (Sample Chapter) © 5/19/21 by Vickie Li

B U G B O U N T Y
B O O T C A M P

V I C K I E L I

5/19/21

Bug Bounty Bootcamp (Sample Chapter) © 5/19/21 by Vickie Li

B U G B O U N T Y
B O O T C A M P

V I C K I E L I

5/19/21

