
In this chapter, you’ll create and execute
your first program, “Hello World.” This is

about the simplest program you can make
and the first program in almost all C books.

But you’ll go beyond just creating it: you’ll learn what’s
actually going on behind the scenes during its creation.

The tools you’ll use are designed to make things quick and easy, which
is good for regular programming but can be bad for embedded program-
ming. The compiler, GCC, is actually a wrapper that runs a whole bunch
of other tools. We’ll look at what each tool does to get your program from
code to execution. In the process, you’ll discover that the GCC optimizer
has a surprise for us. Although our program is very simple, the optimizer
will decide to rewrite part of it to make it more efficient—and it won’t tell
us about the rewrite! In fact, we would never know about it if we didn’t look
under the hood to see what’s going on. (I won’t tell you what it will do to us;
you’ll have to read the rest of the chapter to find that out.)

1
H E L L O W O R L D

ON

OF
F

501621c01.indd 3501621c01.indd 3 11/12/21 10:08 AM11/12/21 10:08 AM

Bare Metal C (Sample Chapter) © 11/12/21 by Stephen Oualline

4 Chapter 1

Installing GCC
In order to run the program in this chapter, you’ll need to download and
install the GNU C compiler (GCC) on your system, along with related tools.
The instructions for doing so vary based on your operating system.

On Windows, install Minimalist GNU for Windows (MinGW), which
can be found at http://www.mingw.org. See https://nostarch.com/bare-metal-c
for detailed instructions.

On macOS, the GCC compiler is part of the developer packages that
can be accessed with the following command:

$ xcode-select --install

Select the Command Line Tools option for installation.
Linux installation instructions depend on which distribution you are

using. For Debian systems such as Ubuntu and Linux Mint, use the follow-
ing command:

$ sudo apt-get install build-essential
$ sudo apt-get install manpages-dev

For Red Hat–based systems (such as Fedora or CentOS), use the follow-
ing command:

$ dnf groupinstall "Development Tools"

For any other Linux-based system, use the package manager that
came with the system or search online to find the command needed for
installation.

After installing the software, open a terminal window and issue
the command gcc. If you get a “no input files” error, you’ve installed
successfully.

$ gcc
gcc: fatal error: no input files
compilation terminated.

Downloading System Workbench for STM32
System Workbench for STM32 is an IDE we’ll use to write C programs for
our embedded device. We won’t use it until Chapter 2, but the download
will take some time, so I recommend you start it now. By the time you finish
reading this chapter, the download should be complete.

Go to http://openstm32.org/HomePage, locate the link for System
Workbench for STM32, and click it. Register (it’s free), or log in if you have
an account, and then follow the links to the installation instructions. Install
the IDE from the installer and not from Eclipse. When the download starts,
return here and continue reading.

501621c01.indd 4501621c01.indd 4 11/12/21 10:08 AM11/12/21 10:08 AM

Bare Metal C (Sample Chapter) © 11/12/21 by Stephen Oualline

http://www.mingw.org
https://nostarch.com/bare-metal-c
http://openstm32.org/HomePage

Hello World 5

Tools and installation procedures may change over time. If you encoun-
ter any issues, visit https://nostarch.com/bare-metal-c to check for updated
instructions.

Our First Program
Our first program is called hello.c. Begin by creating a directory to hold this
program and jump into it. Navigate to the root directory of your workspace,
open a command line window, and enter these commands:

$ mkdir hello
$ cd hello

Using a text editor such as Notepad, Vim, or Gedit, create a file called
hello.c and enter the following code:

#include <stdio.h>
int main()
{
 printf("Hello world!\n");
 return (0);
}

We’ll walk through this program in detail in the following sections.
First, though, we have to run it.

Compiling the Program
The file you just created is known as a source file, and it contains code in
human-readable format. (Yes, really; this is supposed to be human read-
able.) It’s the source of all the other files we are going to produce. The
content of the file is called source code. The computer does not understand
source code; it only understands machine code, a set of instructions in a
numeric format. So, we need to transform our source code into machine
code, a process called compiling.

To do this, we execute the following compiler command for macOS or
Linux:

$ gcc -o hello hello.c

On Windows, we execute the following command:

$ gcc -o hello.exe hello.c

If you get no output, just a command prompt, the command was suc-
cessful. Otherwise, you’ll get error messages.

This command tells the program GCC to compile and link the program,
putting the output in a file called hello on macOS and Linux or hello.exe for

501621c01.indd 5501621c01.indd 5 11/12/21 10:08 AM11/12/21 10:08 AM

Bare Metal C (Sample Chapter) © 11/12/21 by Stephen Oualline

https://nostarch.com/bare-metal-c

6 Chapter 1

Microsoft Windows. We can now run our program using the following com-
mand on macOS or Linux:

$./hello
Hello world!

On Windows, run the following:

$ hello
Hello world!

Making Mistakes
Let’s introduce a mistake and see what happens. Change the second line so
that it looks like this:

intxxx main()

Now let’s try to compile the program.

$ gcc -o hello hello.c
hello.c:2:1: error: unknown type name 'intxxx'
 intxxx main()
 ^

The output tells us that there is a problem in line 2 of the program and
that the error was discovered at character position 1. In this case, where the
compiler was expecting a type, it got something different—namely, the gar-
bage we deliberately put in. Fix the program by changing the line back.

Next let’s take something out—specifically, the semicolon on the
fourth line:

printf("Hello world!\n")

This gives us a different error message:

$ gcc -o hello hello.c
hello.c: In function 'main':
hello.c:5:5: error: expected ';' before 'return'
 return (0);
 ^

You’ll notice that the compiler pointed to line 5 when issuing the error
message. That’s because although we made a mistake on line 4, the com-
piler didn’t detect it until it looked at line 5.

Sometimes errors on a previous line will not be detected for one or more
lines, so don’t look just at the line specified by the error; look above as well.

501621c01.indd 6501621c01.indd 6 11/12/21 10:08 AM11/12/21 10:08 AM

Bare Metal C (Sample Chapter) © 11/12/21 by Stephen Oualline

Hello World 7

Understanding the Program
Now let’s go through our program line by line to see what it is doing. Take a
look at the first line:

#include <stdio.h>

In order to build our program, we are using components that come
with the compiler—namely, the standard input/output (I/O) package.
The functions in this package are defined in the /usr/include/stdio.h file.
(Windows may use a slightly different directory.) Specifically, we use the
standard I/O function printf later in the program.

Next, we define the starting point for our program:

int main()

The name main is special and indicates the main body of the program.
All programs start at main. This is followed by a set of statements enclosed in
curly brackets:

{
...
}

The curly brackets denote the body of main. In other words, they’re used
to group the statements that follow. We indent the statements inside the
curly brackets by four spaces for readability, but you are free to use other
indentation sizes. In fact, the C compiler doesn’t care how much whitespace
we use. We could have used no indentation at all, but no indentation makes
the program impossible to read, so most C programmers indent their code.

Inside the curly brackets is our first executable statement:

printf("Hello world!\n");

This tells the program to use the standard I/O function printf to output a
string to the standard output location (our terminal). The \n is a special char-
acter in this string. The backslash (\) is called the escape character. It tells C
that the following character should be treated as code. In this case, the n tells
C to output a “newline,” which means the next character will be printed on a
new line. Some of the more common escape characters are shown in Table 1-1.

Table 1-1: Common Escape Characters

Escape character Result

\n Newline (also known as line feed)

\t Tab

\" "

\\ \

\r Carriage return

501621c01.indd 7501621c01.indd 7 11/12/21 10:08 AM11/12/21 10:08 AM

Bare Metal C (Sample Chapter) © 11/12/21 by Stephen Oualline

8 Chapter 1

Finally, the program ends with this statement:

return (0);

This causes the program to stop and exit, returning an exit code of 0
to the operating system, which indicates that the program terminated nor-
mally. A nonzero exit code indicates an error.

Adding Comments
So far we’ve confined ourselves exclusively to writing code. In other
words, everything we’ve seen is designed to be read by the computer and
processed. Programs can also contain comments, which aren’t seen by the
compiler; instead, they’re designed to be read by the person viewing the
program. Comments commonly begin with /* and end with */. For exam-
ple, the following is a comment:

/* Hello World – A nothing program */

It tells you what the programmer who wrote this thought of the pro-
gram. Let’s put some comments at the beginning of our program:

/*
 * Hello World -- not the most complicated program in
 * the universe but useful as a starting point.
 *
 * Usage:
 * 1. Run the program.
 * 2. See the world.
 */

Another style of comment starts with // and goes to the end of the line.
As you see more programs, you can determine for yourself which is better
to use.

Always add comments to your code when you write a program, because
that’s when you know what you are doing. Five minutes later, you might for-
get. Five days later, you will forget. For example, I once had to do a complex
bitmap transformation in order to translate a raster image into a firing
command for an inkjet nozzle. The transformation involved taking a hori-
zontal raster image, turning the row data into column data for the nozzles,
and then, since the nozzles were offset, shifting the data left to match the
nozzle location. I wrote out a page of comments describing every factor that
affected the firing order. Then I added half a page of ASCII art diagram-
ming what I had just described. Only after doing this and making sure I
understood the problem did I write the code. And because I had to orga-
nize my thoughts in order to document them, the program worked after
the first try.

When creating the answers to the programming problems presented in
this book, get in the habit of writing comments. The really good program-
mers are fanatical comment writers.

501621c01.indd 8501621c01.indd 8 11/12/21 10:08 AM11/12/21 10:08 AM

Bare Metal C (Sample Chapter) © 11/12/21 by Stephen Oualline

Hello World 9

Improving the Program and Build Process
When it comes to our little “Hello World” program, manually compiling it
isn’t a problem. But for a program with thousands of modules in it, keeping
track of what needs to be compiled and what doesn’t can be quite difficult.
We need to automate the process to be efficient and avoid human error.

In this section, we tweak our program to improve it and automate the
build process. Ideally, you should be able to build a program using a single
command and no parameters, which would indicate you have a consistent
and precise build process.

The make Program
One problem with our build process is that we have to enter the compila-
tion command each time we build the program. This would be tedious for
a program with several thousand files in it, each of which would need to
be compiled. To automate the build process, we’ll use the make program.
It takes as its input a file called a makefile, which tells make how to build a
program.

Create a file called Makefile containing the following on macOS or
Linux:

CFLAGS=-ggdb -Wall -Wextra

all: hello

hello: hello.c
 gcc $(CFLAGS) -o hello hello.c

On Windows, the makefile should contain the following:

CFLAGS=-ggdb -Wall -Wextra
 +
all: hello.exe

hello.exe: hello.c
 gcc $(CFLAGS) -o hello.exe hello.c

It’s important that the indented lines begin with a tab character. Eight
spaces won’t work. (Horrible file design, but we’re stuck with it.) The first
line defines a macro. As a result of this definition, whenever we specify
$(CFLAGS) in the makefile, the make program will replace this with -ggdb -Wall
-Wextra. Next, we define the target all, which is the default target by conven-
tion. When make is run with no parameters, it tries to build the first one it
sees. The definition of this target, all: hello, tells the make program, “When
you try to build all, you need to build hello.” The final two lines of the
makefile are the specification for hello (or hello.exe on Windows). These tell
make that hello is made from hello.c by executing the command gcc $(CFLAGS)
-o hello hello.c. This command contains the macro we defined, $(CFLAGS),
which expands to -ggdb -Wall -Wextra. You’ll notice that we added a couple
of extra flags to our compilation. We’ll discuss those in the next section.

501621c01.indd 9501621c01.indd 9 11/12/21 10:08 AM11/12/21 10:08 AM

Bare Metal C (Sample Chapter) © 11/12/21 by Stephen Oualline

10 Chapter 1

Now let’s make the program using the make command:

$ make
gcc -ggdb -Wall -Wextra -o hello hello.c

As you can see, the program ran the commands to build the execut-
able. The make program is smart. It knows that hello is made from hello.c, so
it will check the modification dates of these two files. If hello is newer, then
it does not need to be recompiled, so if you attempt to build the program
twice, you’ll get the following message:

make: Nothing to be done for 'all'.

This is not always the correct behavior. If we change the flags in our
makefile, we’ve changed the compilation process and should rebuild our
program. However, make doesn’t know about this change and won’t rebuild
the program unless we edit hello.c and save the file or delete the output file.

Compiler Flags
The GCC compiler takes a number of options. In fact, the list of options for
this compiler exceeds eight pages. Fortunately, we don’t have to worry about
them all. Let’s take a look at the ones we used for our program.

-ggdb   Compiles the program so we can debug it. Mostly, this adds
debugging information to the output file that allows the debugger to
understand what is going on.

-Wall   Turns on a set of warnings that will flag correct but questionable
code. (This book will teach you not to write questionable code.)

-Wextra   Turns on extra warnings in an effort to make our code more
precise.

-o hello   Puts the output of our program in the file hello. (This option
is -o hello.exe for Windows users.)

How the Compiler Works Behind the Scenes
In order to best make use of the compiler, you need to understand what
goes on behind the scenes when you run it. That’s because, when you’re
writing software for embedded devices, you’ll often need to circumvent
some of the operations the compiler performs automatically, which consist
of a number of steps:

1.	 The source code is run through a preprocessor, which handles all the lines
that begin with #, called directives. In our original source file, this is
the #include statement. Later, you will learn about additional directives.

2.	 The compiler proper takes the preprocessed source code and turns it
into assembly language code. C code is supposedly machine-indepen-
dent and can be compiled and run on multiple platforms. Assembly

501621c01.indd 10501621c01.indd 10 11/12/21 10:08 AM11/12/21 10:08 AM

Bare Metal C (Sample Chapter) © 11/12/21 by Stephen Oualline

Hello World 11

language is machine-dependent and can be run on only one type of
platform. (Of course, it is still possible to write C code that will work on
only one machine. C tries to hide the underlying machine from you,
but it does not prevent you from directly accessing it.)

3.	 The assembly language file is passed through an assembler, which turns
it into an object file. The object file contains just our code. However, the
program needs additional code to work. In our case, the object file for
hello.c needs a copy of the printf function.

4.	 The linker takes the object code in the object file and combines (links)
it with useful code already present on your computer. In this case, it’s
printf and all the code needed to support it.

Figure 1-1 illustrates the process. All these steps are hidden from you by
the gcc command.

Source file:
hello.c

gcc

gcc

Object file:
hello.o

C library
(libc.a)

Executable:
hello

Include files
(e.g., stdio.h)

Preprocessor

Compiler

Linker

Assembler

Figure 1-1: The steps needed to produce a program

You’ll notice that the gcc command is acting as both compiler and
linker. In fact, gcc is designed as a sort of executive program. It looks at the
arguments and decides which other programs it needs to run in order to
do its job. This might include the preprocessor (cpp), the C compiler (cc1),
the assembler (as), the linker (ld), or other programs as needed. Let’s walk
through these components in more detail.

501621c01.indd 11501621c01.indd 11 11/12/21 10:08 AM11/12/21 10:08 AM

Bare Metal C (Sample Chapter) © 11/12/21 by Stephen Oualline

12 Chapter 1

The Preprocessor
The first program run is the preprocessor, which is a macro processor (a type
of automatic text editor) that handles all the lines that begin with #. In our
program, it processes the #include line. We can get the output of the prepro-
cessor with this command:

$ gcc -E hello.c >hello.i

The output of this command is stored in the hello.i file. If we look at this
file, we see that it’s more than 850 lines long. That’s because the #include
<stdio.h> line causes the entire stdio.h file to be copied into our program,
and because the stdio.h file has its own #include directives, the files included
by stdio.h get copied in as well.

We needed stdio.h for the printf function, and if we look through
hello.i, we find the definition of this function, which is now included in our
program:

extern int printf (const char *__restrict __format, ...);

extern int sprintf (char *__restrict __s,
 const char *__restrict __format, ...) __attribute__ ((__nothrow__));

The preprocessor also removes all the comments and annotates the text
with information indicating what file is being processed.

The Compiler
Next, the compiler turns the C language code into assembly language. We
can see what’s generated with this command:

$ gcc -S hello.c

This should produce a file that starts with the following lines:

 .file "hello.c"
 .section .rodata
.LC0:
 .string "Hello world!"

Notice that the compiler translated the C string "Hello World!\n" to the
assembly language .string command. If you have sharp eyes, you’ll also
notice that the \n is missing. We’ll discover why a little later.

The Assembler
The assembly language file goes into the assembler, where it is translated into
machine code. The gcc command has an option (-Wa) that lets us pass flags to
the assembler. Since it’s impossible to understand the machine code unless

501621c01.indd 12501621c01.indd 12 11/12/21 10:08 AM11/12/21 10:08 AM

Bare Metal C (Sample Chapter) © 11/12/21 by Stephen Oualline

Hello World 13

you’re a machine, we will use the following command to ask for an assembly
language listing that prints the machine code in human-readable format, with
the corresponding assembly language statements that generated that code:

$ gcc -Wall -Wextra -g -Wextra -Wa,-a=hello.lst -c hello.c

The -Wa option tells GCC that what follows is to be passed to the assem-
bler. The -a=hello.lst option tells the assembler to produce a listing called
hello.lst. Let’s take a look at that file. It begins as follows:

4 .section .rodata
5 .LC0:
6 0000 48656C6C .string "Hello world!"
6 6F20776F
6 726C6421
6 00

Assembly language differs on each machine. In this file, you’re looking
at x86 assembly language. It might seem like a confused mess, even in com-
parison to other assembly languages. You probably won’t understand it com-
pletely, and that’s okay; this chapter should only give you a sense of what
assembly language looks like. In later chapters, when we get to the ARM
processor, you’ll see a much saner and easier-to-understand assembly.

The first column is a line number from the assembly language file. The
second column, if present, indicates the address of the data being stored.
All computer memory slots have a numerical address. In this case, the string
"Hello World!" is being stored at address 0000 relative to the section that is cur-
rently being used (in this case, a section titled .rodata). When we discuss the
linker, we’ll see how this relative address is translated into an absolute one.

The next column contains the numerical values to be stored in memory
in hexadecimal format. Then comes the text of the assembly language code
itself. In the file, we can see that the .string directive tells the assembler to
generate the codes for a text string.

Later in the file, we find the code for main:

15 0000 55 pushq %rbp
16 .cfi_def_cfa_offset 16
17 .cfi_offset 6, -16
18 0001 4889E5 movq %rsp, %rbp
19 .cfi_def_cfa_register 6
12:hello.c **** printf("Hello world!\n");
20 .loc 1 12 0
21 0004 BF000000 movl $.LC0, %edi
21 00
22 0009 E8000000 call puts
22 00

On line 15, we can see the assembly language instruction 55, which
will be stored at location 0 in this section. This instruction corresponds to
pushq %rbp, which does some bookkeeping at the start of the procedure. Also
notice that some machine instructions are 1-byte long and others as long as

501621c01.indd 13501621c01.indd 13 11/12/21 10:08 AM11/12/21 10:08 AM

Bare Metal C (Sample Chapter) © 11/12/21 by Stephen Oualline

14 Chapter 1

5 bytes. The instruction at line 21 is an example of a 5-byte instruction. You
can see that this instruction is doing something with .LC0. If we look at the
top of our listing, we see that .LC0 is our string.

As a C programmer, you’re not expected to fully understand what the
assembly language does. Complete understanding would require absorbing
several thousand pages of reference material. But we can, sort of, under-
stand the instruction at line 22, which calls the function puts. This is where
things get interesting. Remember that our C program didn’t call puts—it
called printf.

It seems that our code has been optimized behind the scenes. In embed-
ded programming, “optimized” can be a dirty word, so it’s important to
understand what happened here. Essentially, the C compiler looked at the
line printf("Hello World!\n"); and decided it was identical to the following:

puts("Hello World!");

The truth is that these functions aren’t actually identical: puts is a
simple, efficient function, whereas printf is a large, complex one. But the
programmer isn’t using any of the advanced printf features, so the opti-
mizer decided to rewrite the code to make it better. As a result, your printf
call became puts and the end of line (\n) was removed from the string, as
the puts call adds one automatically. When you get especially close to the
hardware, little things like this can make a big difference, so it’s important
to know how to view and sort of understand assembly code.

The output of the assembler is an object file containing the code we
wrote and nothing more. In particular, it does not contain the puts func-
tion, which we need. The puts function resides, along with hundreds of
other functions, in the C standard library (libc).

The Linker
Our object file and some of the components of libc need to be combined
to make our program. The linker’s job is to take the files needed to make
up the program, combine them, and assign real memory addresses to each
component. As we did with the assembler, we can tell the gcc command to
pass flags to the linker using this command:

$ gcc -Wall -Wextra -static -Wl,-Map=hello.map -o hello hello.o

The -Wl tells GCC to pass the option that follows (-Map=hello.map) to the
linker. The map tells us where the linker put things in memory. (More on
this later.) We’ve also added the directive -static, which changes the execut-
able from dynamic to statically linked so that the memory map will look
more like what we will see with our embedded systems. That way, we can
avoid having to discuss the complexities of dynamic linking.

Object files such as hello.o are relocatable. That is, they can go anywhere
in memory. It is the job of the linker to decide exactly where in memory
they go. It is also the linker’s job to go through the libraries used by the
program, extract any needed object files, and include them in the final

501621c01.indd 14501621c01.indd 14 11/12/21 10:08 AM11/12/21 10:08 AM

Bare Metal C (Sample Chapter) © 11/12/21 by Stephen Oualline

Hello World 15

program. The linker map tells us where things went and what library com-
ponents were included in our program. For example, a typical linker entry
might look like this:

 .text 0x000000000040fa90 0x1c8 /usr/lib/gcc/x86_64-linux-gnu/5/../../../x86_64
 -linux-gnu/libc.a(ioputs.o)
 0x000000000040fa90 puts
 0x000000000040fa90 _IO_puts
 fill 0x000000000040fc58 0x8

Remember that we didn’t write puts, even though it appears in this
linker entry. As mentioned, it came from the standard C library file
(libc.a). We can see here that the code for this function is located at
0x000000000040fa90. This information can be useful if, say, our program
crashed somewhere between 0x40Fa90 and 0x40fc58. In that case, we would
know that puts caused the crash.

We also know that puts takes up 0x1C8 bytes (40fc58–40fa90). This is 456
decimal bytes, or a little under .5K. The amount of memory will concern us
when we start programming our microprocessor, which has limited memory.

You should now have a good idea of every element of a C program and
what these various pieces do. Most of the time, you can let the compiler
take care of these details without worrying about what’s going on under the
hood. But when you’re programming small chips with limited resources,
you do need to worry about what’s going on inside.

Adding to Your Makefile
Explore the various aspects of the GCC compiler, assembler, and linker on
your own by amending your makefile to generate all the files described in
the previous section:

CFLAGS=-Wall -Wextra -ggdb

all: hello hello.i hello.s

hello.o: hello.c
 gcc $(CFLAGS) -Wa,-a=hello.lst -c hello.c

hello: hello.o
 gcc $(CFLAGS) -static -Wl,-Map=hello.map -o hello hello.o

hello.i: hello.c
 gcc -E hello.c >hello.i

hello.s: hello.c
 gcc -S hello.c

Type "make verbose" to see the whole command line
verbose:
 gcc -v $(CFLAGS) -Wextra -c hello.c

501621c01.indd 15501621c01.indd 15 11/12/21 10:08 AM11/12/21 10:08 AM

Bare Metal C (Sample Chapter) © 11/12/21 by Stephen Oualline

16 Chapter 1

clean:
 rm -f hello hello.i hello.s hello.o

As described earlier, the first non-blank line defines a macro that tells
make to replace $(CFLAGS) with -Wall -Wextra -ggdb everywhere in the rest of
the file. Next, we define a target (an item that needs to be built) named all.
Since this is the first target in the file, it is also the default one, which means
you can build it simply by entering the following:

$ make

This target is what we call a phony target, as it doesn’t result in a file
named all. Instead, every time you execute the make all command, make
will check whether it needs to re-create its dependencies. You can see these
dependencies listed in the makefile after the keyword all and the colon. In
order to make the target all, we need to make the targets hello, hello.i, and
hello.s. The following lines clarify how to make those targets. For example,
to make the target hello.i, we must use the target hello.c. If hello.i is newer
than hello.c, then make will do nothing. If hello.c has undergone recent
changes and hello.i is not up to date, make will produce hello.i using the
following command:

gcc -E hello.c >hello.i

Thus, if you edit hello.c and then execute the command make hello.i,
you’ll see make do its job:

$ (Change hello.c)
$ make hello.i
gcc =E hello.c > hello.i

Another target in our makefile, clean, removes all the generated files.
To get rid of the generated files, execute the following command:

$ make clean

GNU make is a very sophisticated program with a manual that is more
than 300 pages long. The good news is you need to deal with only a very
small subset of its commands in order to be productive.

Summary
Making a “Hello World” program is one of the simplest things a C program-
mer can do. However, understanding everything that happens behind the
scenes to create and run that C program is a bit more difficult. Luckily, you
don’t have to be an expert. But while you don’t need to master every bit of
the assembly language generated by the program, any embedded program-
mer should understand enough to be able to spot potential problems or

501621c01.indd 16501621c01.indd 16 11/12/21 10:08 AM11/12/21 10:08 AM

Bare Metal C (Sample Chapter) © 11/12/21 by Stephen Oualline

Hello World 17

unusual behavior, such as puts showing up in a program that calls printf.
Paying attention to these details will allow us to get the most out of our
small machines.

Questions
1.	 Where does the documentation for GNU make reside?

2.	 Is C code portable between different types of machines?

3.	 Is assembly language code portable between different types of
machines?

4.	 Why does a single statement in assembly language code generate just
one machine instruction when one statement in C can generate many?

501621c01.indd 17501621c01.indd 17 11/12/21 10:08 AM11/12/21 10:08 AM

Bare Metal C (Sample Chapter) © 11/12/21 by Stephen Oualline

501621c01.indd 18501621c01.indd 18 11/12/21 10:08 AM11/12/21 10:08 AM

Bare Metal C (Sample Chapter) © 11/12/21 by Stephen Oualline

