
I N D E X

Numbers and Symbols
256 objects and 257 objects, 154–155
./, using with Ubuntu, 42
/? command line argument, 25–26
= assignment operator, 113
== comparison operator, 113, 336

chaining, 103, 105
using to compare objects, 154
using with None, 94–95

!= comparison operator, 336
* and ** syntax

using to create variadic functions,
167–171

using to create wrapper functions,
171–172

using with arguments and
functions, 166–167

* character, using as wildcard, 28–29
? character, using as wildcard, 28–29
[:] syntax, using, 104
< comparison operator, 337
<= comparison operator, 337
> comparison operator, 337
>= comparison operator, 337
-> (arrow), using with type hints, 191
\ (backslash)

purpose of, 18
using with strings, 95

: (colon), using with lists, 97–98, 104
, (comma), including in single-item

tuples, 150
- (dash), using with command line

arguments, 25
$ (dollar sign), using in macOS, 23
. (dot), using with commands, 31
-- (double dash), using with command

line arguments, 25

__(double underscore), using in
dunder methods, 322. See also
underscore (_)

/ (forward slash)
purpose of, 18
using with command line

arguments, 25
(hash mark)

using with comments, 183
using with docstrings, 188

[] (index operator), using, 117
; (semicolons), using with timeit

module, 226–227
' (single quote), using, 46
~ (tilde), using in macOS, 23
- (unary operator), 155–157
+ (unary operator), 156–157
_ (underscore)

PEP 8’s naming conventions,
60–61

as prefix for methods and
attributes, 291–292

private prefix, 81
using with _spaces attribute, 290
using with dunder methods, 120
using with private attributes and

methods, 283
using with WizCoin class, 279

A
abcTraceback.py program, saving, 4
__abs__() numeric dunder

method, 328
absolute versus relative paths, 20–21
__add__() numeric dunder method, 327
addToTotal() function, creating,

172–173

340 Index

algebra for big O, 236
algorithm analysis. See big O algorithm
aliases, defined, 121
all() function, 157–158
alphabetical sort, performing, 146–147
ALT key. See keyboard shortcuts
Amdahl’s Law, 229–230
and operator, using, 103
__and__() numeric dunder method, 328
anonymous functions, 174–175
answer archive, building with Stack

Overflow, 12
antigravity feature, enabling, 160
API (application programming

interface), 130
API vs. library vs. framework vs. SDK vs.

engine, 130
append() method, using, 115
applications, opening, 22
arguments. See also positional

arguments
vs. parameters, 128
passing to functions, 166–167
setting defaults for parameters,

142–143
arrow (->), using with type hints, 191
ASCII (American Standard Code for

Information Interchange), 146
ASCII art, using in Four-in-a-Row

game, 272
AsciiArt class, creating, 304–305
assignment and comparison operators,

chaining, 103, 105
atoms and literals, 110
attributes

as backing fields, 317–318
defined, 278, 282–284
vs. properties, 128–129
turning into properties, 316–319
vs. variable, 124

B
backing field, relationship to attributes,

317–318
backporting type hints, 196
backslash (\)

purpose of, 18
using with strings, 95

base class, relationship to
inheritance, 296

Bash file, 22–23
BFG Repo-Cleaner tool, 220
big O algorithm

algebra, 236
algorithm analysis, 230
analysis, 230
analysis examples, 239–242
analyzing, 243–244
best practice, 244
bookshelf metaphor for orders,

231–235
determining order for code,

237–244
doing analysis, 236
function calls, 242–243
lower and higher orders, 230–231
lower orders and coefficients,

238–239
math for analysis, 236
measuring worst-case

scenario, 235
“n” is small, 244
order of function calls, 242–243
orders of notation, 245

big Omega notation, 235
big Theta notation, 235
binary code, explained, 129
Black code formatting tool

adjusting line length setting, 55
described, 45
disabling double-quoted strings

setting, 55–56
disabling for parts of code, 57
installing, 54
previewing changes, 56–57
running from command line,

54–57
semantic decisions, 58
syntactic decisions, 58

block vs. clause vs. body, 123–124
__bool__() numeric dunder method, 328
Boolean values, 158–159. See also

values
Bourne Shells, 22–23
bugs, types of, 109, 150–151
bytecode vs. machine code, 129

Index 341

C
C:\ part of path, 18
-c switch, using to run code from

command line, 26
callables and first-class objects, 121–122
camelCase, 60
casing styles, 60
Catalina version, 23
cd (change directories) command,

29–30
__ceil__() numeric dunder

method, 328
chaining operators, 103, 105, 159–160
child class, creating, 294
class attributes, 306
class methods, 304–306
class objects, 284
classes. See also inheritance

creating, 77
creating objects from, 278
creating WizCoin, 279–284
defined, 276
designing for real world, 290–291
as functions or modules, 77
“is a” relationships, 299

clause vs. block vs. body, 123–124
CLI (command line interface), 22
close() and open() functions, 93–94
cls and clear (clear terminal)

commands, 35
code. See also source code

avoiding guesses, 90
beauty of, 88
commented out, 74–75
flat vs. nested, 89
formatting for readability, 12–13
implementation, 90
interrupting, 134
namespaces, 91
organizing, 77
readability of, 89
running from command line, 26
silenced errors, 89–90
simplicity and complexity of, 89
sparse vs. dense, 89
special cases, 89
speed of, 90
verbose and explicit, 89

code formatting, defined, 45
code point, getting for characters,

146–147
code smells. See also source code

classes as functions or modules, 77
commented-out code, 74–75
dead code, 74–75
defined, 69
duplicate code, 70–71
empty except blocks, 79–80
error messages, 79–80
list comprehensions, 77–79
magic numbers, 71–73
myths, 80–84
print debugging, 75–76
summary, 84–85
variables with numeric suffixes, 76

codetags and TODO comments, 187
coercion, explained, 128
collections module, contents of, 120
collections.defaultdict, using for

default values, 99–100
colon (:), using with lists, 97–98, 104
comma (,), including in single-item

tuples, 150
command history, viewing, 28
command line

arguments, 24–26
options, 25
overview, 22–23, 42
running code with -c switch, 26
running programs from, 23–24
running py.exe program, 26–27
running Python programs

from, 26
tab completion, 27–28
terminal window, 23

Command Prompt shell, 23
commands

canceling, 28
cd (change directories), 29–30
cls and clear (clear terminal), 35
copy and cp (copy files), 31–32
del (delete files and folders), 33–34
dir (list folder contents), 30
dir /s (list subfolder contents), 31
find (list subfolder contents), 31
ls (list folder contents), 30

342 Index

md and mkdir (make folders), 34
move and mv (move files), 32
mv (rename files and folders),

32–33
rd and rmdir (delete folders),

34–35
ren (rename files and folders),

32–33
rm (delete files and folders), 33–34
running from Python

programs, 27
shortened names, 32
where (find programs), 35
which (find programs), 35
wildcard characters, 28–29

commented-out code, 74–75
comments

best practices, 197
myth about, 83–84
using, 182–188
using with type hints, 196

commit history, rewriting in Git, 220
commit log, viewing in Git, 216–217
commits, rolling back in Git, 218–220
comparing objects, 154–155
comparison operators. See also

sequence comparisons
chaining with assignment

operators, 103, 105
function form of, 333

comparisons, making, 94–95
__complex__() numeric dunder

method, 328
composition vs. inheritance, 299–301
conditional expressions, ternary

operator, 101–102
containers, defined, 119–120
Cookiecutter, using to create projects,

200–202
copy and cp commands, 31
copy.copy() and copy.deepcopy(), using

with mutable values, 140–142
copying

files and folders, 31
mutable values, 140–142

cProfile profiler, 154, 228–230
CPU, instruction set of, 129

CPython implementation, 108
CTRL key. See keyboard shortcuts
cwd (current working directory),

19–20, 31

D
dash (-) using with command line

arguments, 25
data, validating with setters, 319
data types

defined, 276
and return values, 177–178

dead code, 74–75
decimal.Decimal(), passing integers to,

148–149
decrement and increment operators,

156–157
default arguments, setting for

parameters, 142–143, 165–166
default values, using collections

.defaultdict for, 99–100
deleting

files and folders, 33–34
files from repo, 214–215
folders, 34–35
items from list, 134–140
and moving files in repo, 215–216

derived class, relationship to
inheritance, 296

deterministic function, 173. See also
functions

dictionaries
get() and setdefault()

methods, 104
key-value pairs, 118
Python mailing list discussion, 131
setting type hints for, 195–196
using, 98–101
using as default arguments,

143–144
diff program, seeing changes with,

211–212
dir command, using, 30
dir /s command, 31
displays and literals, 110
__divmod__() numeric dunder

method, 327
docs folder, contents of, 200

commands (continued)

Index 343

docstrings
defined, 182
summary, 197
using, 188–190

dollar sign ($), using in macOS, 23
doskey program, 28
dot (.), using with commands, 31
double dash (--), using with command

line arguments, 25
double-free bugs, 109
double underscore (__), using in

dunder methods, 322. See also
underscore (_)

dunder methods. See also methods; OOP
(object-oriented programming)

comparison, 332–337
defined, 120
numeric, 325–328
in-place augmented assignment,

330–332
reflected numeric, 328–330
string representation, 323–325
using, 322–323

duplicate code, 70–71
dynamic typing, 190

E
Easter egg, The Zen of Python as, 88
encapsulation, explained, 307–308
encoding definition, using with magic

comment, 187–188
engine vs. library vs. framework vs. SDK

vs. API, 130
enumerate() vs. range(), 92–93, 104
environment setup, process of, 17, 42
environment variables and PATH, 35–39
__eq__() comparison dunder

method, 336
EQual operation, 336
equality (==) operator, using with

None, 94–95
error codes, returning, 178–179
error messages

and except blocks, 79–80
getting help with, 11
parsing, 15
tracing, 178
understanding, 4–8

errors, preventing with linters, 8–9
exceptions

catching, 79–80
raising, 4, 90, 178–179
RecursionError, 318–319

explanatory comments, 184–185
expressions vs. statements, 122–123

F
False and True keywords, 158–159
FAQs (Frequently Asked Questions), 10
filenames, as command line

arguments, 25
filenames and folders, matching with

wildcards, 28–29
file paths, specifying, 20–21
files

copying, 31
deleting, 33–34
moving, 32
renaming, 32–33

filesystem, 18–21, 42
filtering with list comprehensions,

175–176
find command, 31
find feature, accessing, 64, 67
find() string method, error related

to, 178
finding programs, 35
first-class objects and callables,

121–122. See also objects
flag arguments, myth about, 82
__float__() numeric dunder

method, 328
floating-point numbers, accuracy of,

147–149, 151
__floor__() numeric dunder

method, 328
__floordiv__() numeric dunder

method, 327
folders

adding to PATH on macOS and
Linux, 39

adding to PATH on Windows, 38–39
as command line arguments, 25
copying, 31
deleting, 33–34
in filesystem, 18

344 Index

home directory, 19
listing contents of, 30
making, 34
moving, 32
renaming, 32–33

folders and filenames, matching with
wildcards, 28–29

for expressions, including in list
comprehension, 79

for loops
in big O analysis, 240
getting index and value, 104
and lists, 134–140
versatility of, 125

form, filling out, 276–278
format() string method, 96–97
formatting for readability, 58
formatting strings, 96–97
forward slash (/)

purpose of, 18
using with command line

arguments, 25
Four-in-a-Row tile-dropping game

output, 259–260
source code, 260–264
summary, 271–272
writing code, 264–271

frame object, explained, 5
frame summary, explained, 5
framework vs. library vs. SDK vs. engine

vs. API, 130
f-strings, formatting strings with, 96–97
functional programming

higher-order functions, 174
lambda functions, 174–175
list comprehensions, 175–176
mapping and filtering, 175–176
side effects, 172–174

function calls, order in big O, 242–243
functions. See also deterministic

function; higher-order
functions; nondeterministic
function; pure function;
variadic functions; wrapper
functions

default arguments, 165–166
vs. methods, 82, 124

names, 162
parameters and arguments,

165–172
passing arguments to, 166–167
and return statements, 80–81
size trade-offs, 162–165
and try statements, 81–82
using default arguments with,

142–143

G
garbage collection, 109, 226
__ge__() comparison dunder

method, 337
get(), using with dictionaries, 98–101
getPlayerMove() function, 163–165
getters and setters, 315, 318
Git. See also repo

adding files to track, 208–209
command line tool, 207
commits and repos, 200, 206–207
committed state, 204
committing changes, 210–214
configuring username and

email, 203
deleting files from repo, 214–215
as distributed version control

system, 206
frequency of committing changes,

213–214
ignoring files in repo, 209–210
installing, 202–204
keeping track of file status,

204–206
log command, 216–217

modified state, 204
recovering old changes, 217–220
renaming and moving files in

repo, 215–216
rewriting commit history, 220
running status with watch

command, 207
staged state, 205–206
storing private information in, 220
viewing changes before

committing, 211–212
viewing commit log, 216–217
workflow, 204–206

folders (continued)

Index 345

git add command, 223
git clone command, 223
git commit command, 223
git diff, using, 211–213
git filter-branch command, 220
git init command, 223
GitHub and git push command,

221–223
glob patterns, explained, 29
global variables, myth about, 82–83
glossary, accessing, 108, 131
GrandchildClass, creating, 294–295
Greater Than operation, 337
Greater than or Equal operation, 337
__gt__() comparison dunder

method, 337
GUI (graphical user interface), 22
GUI Git tools, installing, 203–204

H
hash mark (#)

using with comments, 183
using with docstrings, 188

hashes, defined, 117–119
--help command line argument, 25–26
help with programming, asking for,

9–14
higher-order functions, 174. See also

functions
home directory, 19
Homebrew, installing and

configuring, 213
horizontal spacing, 47–51
Hungarian notation, 63

I
id() function, calling, 111, 154
identifiers, defined, 59
identities, defined, 111–114
IEEE 754 standard and floating-point

numbers, 147–148
if statement as clause header, 124
immutable and mutable objects,

114–117, 144
in operator, using with values of

variables, 105
increment and decrement operators,

156–157

indentation, using space characters
for, 47–48. See also significant
indentation

index operator ([]), using, 117–118
index() string method, exception

related to, 179
indexes, defined, 117–119
inequality != operators, avoiding

chaining, 149–150
inheritance. See also classes;

multiple inheritance;
OOP (object-oriented
programming)

base classes, 296
best practice, 308–309
class attributes, 306–307
class methods, 304–306
vs. composition, 299–301
creating child classes, 294
derived classes, 296
downside, 301–303
explained, 293
isinstance() and issubclass()

functions, 303–304
MRO (method resolution order),

310–312
overriding methods, 296–297
static methods, 306–307
subclasses, 296
super classes, 296
super() function, 297–299

__init__(), and self, 280–282
__init__.py file and packages, 121
inline comments, 183–184
in-place augmented assignment dunder

methods, 330–332
installing

Black code formatting tool, 54
Git, 202–204
Homebrew, 213
Meld for Linux, 213
Mypy, 192–193
Pyflakes, 9
tkdiff, 213

instances, defined, 111–114, 276. See
also isinstance()

instruction set, explained, 129
int() function, using, 158

346 Index

__int__() numeric dunder method, 328
integers, passing to decimal.Decimal(),

148–149.
__invert__() numeric dunder

method, 328
“is a” relationships for classes, 299
is operator, using, 113
isinstance(). See also instances

and issubclass() functions,
303–304, 312

using with Boolean values, 158
items

best practices for dealing with,
134–140

defined, 114
iterable unpacking, using to swap

variables, 227
iterable vs. iterator, 125–126
iterating

explained, 134
forward and backward, 139

J
JDK (Java Development Kit), 130
join() operator, using with

strings, 151
JVM (Java Virtual Machine), 129

K
keyboard shortcuts

canceling commands, 28
find feature, 64, 67
interrupting code, 134
interrupting infinite loops, 134
opening applications, 22
opening terminal window, 23, 41
Task Manager, 22
viewing running processes, 22

keys, defined, 117–119
keywords

arguments, 167
defined, 110–111
True and False, 158–159

Kompare, using, 213

L
lambda functions, 174–175. See also

functions

__le__() comparison dunder
method, 337

legal comments, 186
len() function, using, 92
Less Than operation, 337
Less than or Equal operation, 337
“lessons learned” comments, 185–186
library vs. framework vs. SDK vs. engine

vs. API, 130. See also Python
Standard Library

LICENSE.txt file, 200
links to URLs, including in

comments, 183
linters, preventing errors with, 8–9, 15
Linux

installing Meld for, 213
running Python programs on, 41

list comprehensions
and all() function, 157
mapping and filtering with,

175–176
using, 77–79, 137

list concatenation, 115
lists

adding or deleting items from,
134–140

best practices for dealing with,
134–140

contents of, 141–142
making shallow copies of, 97–98
setting type hints for, 195–196
using as default arguments,

143–144
literals, defined, 109–110
logfiles, setting up, 75–76
logical error, defined, 127
looping, explained, 134
loops

interrupting, 134
moving duplicate code into, 71

ls command, using, 30
__lshift__() numeric dunder

method, 328
__lt__() comparison dunder

method, 337

M
machine code vs. bytecode, 129

Index 347

macOS
installing tkdiff, 213
running Python programs on, 41

magic comments and source file
encoding, 187–188

magic methods, defined, 120
magic numbers, 71–73
main() function, changing to override

methods, 296–297
mapping. See also objects

defined, 119–120
and filtering with list

comprehensions, 175–176
mapping data types, passing, 167
math dunder methods, 325–328
__matmul__() numeric dunder

method, 327
max() and min() functions, 169
MCR (minimum, complete,

reproducible) example, 11
md and mkdir commands, 34
Meld, installing for Linux, 213
memory leaks, 109
memory usage, 137–138
metasyntactic variables, 60. See also

variables
methods. See also dunder methods;

private attributes and private
methods

vs. functions, 82, 124
__init__(), and self, 280–282
overriding, 296–297

min() and max() functions, 169
__mod__() numeric dunder method, 327
modules

defined, 120–121
finding, 14
and packages, 120–121
requests, 188–189
typing, 195–196

move and mv (move files) commands, 32
moving files and folders, 32
MRO (method resolution order),

310–312
__mul__() numeric dunder

method, 327
multiple assignment trick, using to

swap variables, 227

multiple inheritance, 309–310. See also
inheritance

mutable and immutable objects,
114–117, 151

mutable values
best practices for dealing with,

142–144
copying, 140–144
and default arguments, 142–144

Mypy, using, 192–194

N
name length, considering, 61–64
nameless functions, 174–175
names.

advice about, 64–65
avoiding overwriting, 65–66
choosing, 67
making searchable, 64
prefixes in, 63–64
sequential numeric suffixes in, 64

namespaces, 90–91
__ne__() comparison dunder

method, 336
__neg__() numeric dunder method, 328
nested conditional expressions, 102
nested loops, using in big O

analysis, 241
next() function, calling, 126
no operation, explained, 74
nondeterministic function, 173. See also

functions
None, using == (equality) operator with,

94–95
Not Equal operation, 336
NotImplementedError, raising, 75
numbers, magic, 71–73.
numeric dunder methods, 325–328

O
O(1), Constant time, 231–232
objects. See also mapping

and classes, 276
comparing, 154–155, 334
creating from classes, 278
defined, 111–114
mutable and immutable, 114–117
sorting, 336

348 Index

O(log n), Logarithmic, 232
O(n!), Factorial Time, 234–235
O(n), Linear Time, 232
O(n log n), N-Log-N Time, 232–233
O(n2), Polynomial Time, 233
O(n11), Exponential Time, 233–234
OOP (object-oriented programming).

See also dunder methods;
inheritance

creating objects from classes, 278
defined, 275
designing classes, 290–291
encapsulation, 307–308
filling out form, 276–278
and non-OOP examples, 285–290
polymorphism, 308
properties, 316–322
summary, 292
tic-tac-toe, 285–290
type() function and __

qualname__attribute, 284–285
using class and static features, 307
WizCoin class, 279–284

open()
and close() functions, 93–94
and readlines() functions, 126

operator module, 333, 336–337
operators, chaining, 103, 105, 151,

159–160
optimizations

preallocated integers, 154
string interning, 155

__or__() numeric dunder method, 328
ordinal, getting for characters, 146–147
os.chdir(), using, 20

P
packages

defined, 120–121
and modules, 120–121

parameters vs. arguments, 128
ParentClass, creating, 294–295
PascalCase, 60
pass statement

relationship to stubs, 74–75
using with except block, 79–80

PATH and environment variables, 35–39
pathlib module, importing, 18–19

paths, specifying, 18–21
p-code, explained, 129
PEP (Python Enhancement

Proposal) 8
documentation, 67
naming conventions, 61
and style guides, 46–47

Perl programming language, 90
pip list, running, 14
polymorphism, explained, 308
portable code, explained, 129
porting vs. backporting, 196
__pos__() numeric dunder

method, 328
positional arguments, defined, 166–167.

See also arguments
__pow__() numeric dunder method, 328
practice projects. See also projects

Four-in-a-Row, 259–271
The Tower of Hanoi, 248–259

preallocated integers, 154.
premature optimization, 226
print debugging, 75–76
print() function

arguments for, 168
passing list to, 166
using with wrapper functions, 171

private attributes and private methods,
282–284. See also methods

processes and programs, 21–22
professional comments, 186
profiling, explained, 228
program vs. script, 129–130
programming help, asking for, 9–14
programming language vs. scripting

language, 129–130
programs. See also Python programs

finding, 35
and processes, 21–22
running from command line,

23–24, 26
running without command line,

39–42
vs. scripts, 129–130

project folder, contents of, 200
projects, creating with Cookiecutter,

200–202. See also practice
projects

Index 349

properties
vs. attributes, 128–129
best practices, 322
read-only, 320–321
turning attributes into, 316–319
using, 316

public access attributes and methods, 283
pure function, 173–174. See also

functions
push command, using in Git, 221–223
.py source code files, locating, 200
.pyc files, bytecode in, 129
py.exe program, running, 26–27
Pyflakes, installing, 9
PyPy just-in-time compiler, 108
Python

documentation, 121
error messages, 4–8
glossary, 108, 131
language and interpreter, 108–109
programming language, 109

Python programs, running without
command line, 39–42. See also
programs; The Zen of Python

Python Standard Library, 120–121. See
also library vs. framework vs.
SDK vs. engine vs. API

pythonic code, core of, 104

Q
__qualname__attribute and type()

function, 284–285
questions, asking, 10–11, 14–15

R
__radd__() reflected numeric dunder

method, 330
raising exceptions, 90, 178–179
__rand__() reflected numeric dunder

method, 330
range() vs. enumerate(), 92–93, 103–104
rd and rmdir commands, 34–35
__rdivmod__() reflected numeric

dunder method, 330
readlines() and open() functions,

using, 126
README files, 200, 211–212,

215–216, 218

read-only properties, 320–321
RecursionError exception, raising,

318–319
references, explained, 137–138
reflected numeric dunder methods,

328–330
relative vs. absolute paths, 20–21
renaming files and folders, 32–33
repo. See also Git

cloning for GitHub repo, 222–223
creating, 223
creating on computer, 206–207
deleting and moving files in,

215–216
deleting files from, 214–215
ignoring files in, 209–210
and version control systems, 200

__repr__() method, using, 325
repr string, sensitive information

in, 325
requests module, sessions.py file,

188–189
return values and data types, 177–178.

See also values
__rfloordiv__() reflected numeric

dunder method, 330
__rlshift__() reflected numeric

dunder method, 330
rm (removing files and folders)

command, 33–34
__rmatmul__() reflected numeric

dunder method, 330
__rmod__() reflected numeric dunder

method, 330
__rmul__() reflected numeric dunder

method, 330
roll back, performing in Git, 217–220
root folder, explained, 18
__ror__() reflected numeric dunder

method, 330
__round__() numeric dunder

method, 328
__rpow__() reflected numeric dunder

method, 330
__rrshift__() reflected numeric

dunder method, 330
__rshift__() numeric dunder

method, 328

350 Index

__rsub__() reflected numeric dunder
method, 330

__rtruediv__() reflected numeric
dunder method, 330

running processes, viewing, 22
runtime

defined, 226
quickening for functions, 173
vs. syntax vs. semantic errors,

126–127
__rxor__() reflected numeric dunder

method, 330

S
%s conversion specifiers, using, 96–97
script vs. program, 129–130
scripting language vs. programming

language, 129–130
SDK vs. library vs. framework vs. engine

vs. API, 130
self and __init__(), 280–282
semantic vs. syntax vs. runtime errors,

126–127
semicolons (;), using with timeit

module, 227
sensitive information in repr strings, 325
sequence comparisons, 335–336. See

also comparison operators
sequences

defined, 119–120
and iterables, 125

sessions.py file in requests module,
188–189

set types, defined, 119–120
setdefault(), using with dictionaries,

98–100
setters

and getters, 315, 318
using to validate data, 319–320

sh file, 22–23
shell programs, 22–23
side effects, 172–174
significant indentation, 91–92, 104. See

also indentation
single quote ('), using, 46
slice syntax, explained, 97
snake_case, 60
snapshots, saving with Git, 200

software license, file for, 200
sort() function, behavior of, 146–147,

151, 332, 336
source code, avoiding dropping letters

from, 62. See also code; code
smells

source file encoding and magic
comments, 187–188

space characters, rendering on
screen, 47

spacing within lines, 48–51
Stack Overflow, building answer

archive, 12
stack trace, 4–7
staged files

committing, 211
unstaging in Git, 218

statements vs. expressions, 122–123
static analysis, explained, 8, 192–194
static methods, 306–307
string concatenation, 144–146, 151
string interning, 155–156
strings

formatting, 95–97
as immutable objects, 144
immutable quality of, 116
interpolating, 104

stubs, relationship to code smells, 74
style guides and PEP (Python

Enhancement Proposal) 8,
46–47

__sub__() numeric dunder method, 327
subclass, relationship to inheritance,

296. See also isinstance()
subfolders, listing contents of, 31
Sublime Text editor, 193
subprocess.run() function, 27
subtract() function, creating, 172
sum() function, 168
summary comments, 185
super class, relationship to i

nheritance, 296
super() function, relationship to

overriding method, 297–299
switch statement vs. dictionaries,

100–101
syntax

catching errors, 6

Index 351

misuse of, 92–95
vs. runtime vs. semantic errors, 58,

126–127
sys.getsizeof() function, 137–138
system environment variables, 38

T
tab completion, 27–28
Task Manager, opening, 22
terminal window

clearing, 35
opening, 23, 41

ternary operator, 101–102
tests folder, contents of, 200
text editor, Sublime Text, 193
tic-tac-toe program

creating, 285–290
MRO (method resolution order),

311–312
tilde (~), using in macOS, 23
timeit module, using to measure

performance, 226–228. See
also modules

time.time() function, 72, 227
tkdiff, installing on macOS, 213
TODO comments and codetags, 187
The Tower of Hanoi puzzle

getPlayerMove() function, 163, 165,
254–257, 268

output, 249–250
restrictions, 248
source code, 250–252
summary, 271–272
writing code, 252–259

tracebacks, examining, 4–7
True and False keywords, 158–159
__truediv__() numeric dunder

method, 327
__trunc__() numeric dunder method,

328
tuples

identities, 119
immutable quality of, 116–117
using commas with, 150
values of, 116

type coercion vs. type casting, 128
type() function and __

qualname__attribute, 284–285

type hints, 182, 190–196
types, defined, 276
typing, minimizing with tab

completion, 27–28
typing module, 195–196

U
Ubuntu Linux, running Python

programs on, 41–42
underscore (_). See also double

underscore (__)
PEP 8’s naming conventions, 60–61
as prefix for methods and

attributes, 291–292
private prefix, 81

using with _spaces attribute, 290
using with dunder methods, 120
using with private attributes and

methods, 283
using with WizCoin class, 279

undo features, 199, 217–220
Unicode resource, 188
unit tests, folder for, 200
Unix operating system, shell programs,

22–23
URL links, including in comments, 183
user environment variables, 38
UTF-8 encoding, 187–188

V
validating data using setters, 319–320
values. See also Boolean values; return

values and data types
defined, 111–114
modifying in place, 115

variable names, 64, 66. See also names
variable values, 103–104
variables. See also metasyntactic variables

vs. attributes, 124
box vs. label metaphor, 112–113
checking values, 103–104
with numeric suffixes, 76
swapping, 227

variadic functions, creating, 167–171.
See also functions

version control systems, 199–200
vertical spacing, 51–53
volumes, explained, 18

352 Index

W
watch command, using with Git, 207
webbrowser module, 160
where command, 35
which command, 35
while keyword, 110
while loops

in big O analysis, 241
and lists, 134–140

wildcard characters, 28–29
Windows, running Python programs

on, 40–41
WinMerge, downloading, 212–213
with statement, 93–94
WizCoin class, creating, 279–284

worst-case scenario, measuring with
Big O, 235

wrapper functions, creating, 171–172.
See also functions

X
XOR algorithm, using, 226–227
__xor__() numeric dunder method, 328

Z
Zakharenko, Nina, 131
The Zen of Python, 88–91. See also

programs; Python programs
zero-based indexing, using, 117
Zsh and Z shells, 23

