
4
B U I L D I N G B L O C K S

In this chapter you will

• Learn how to read schematic diagrams, the language of electronic
circuits

• Be introduced to the capacitor

• Work with input pins

• Use arithmetic and test values

• Make decisions with if-then-else statements

• Learn the difference between analog and digital

• Measure analog voltage sources at different levels of precision

• Be introduced to variable resistors, piezoelectric buzzers, and tempera-
ture sensors

• Consolidate your knowledge by creating traffic lights, a battery tester,
and a thermometer

Arduino Workshop 2nd Edition (Sample Chapter) © 2021 by John Boxall

58 Chapter 4

The information in this chapter will help you understand an Arduino’s
potential. We’ll continue to learn more about electronics, including how
to read schematic diagrams (the “road maps” of electronic circuits). We’ll
look into information about new components and the types of signals that
we can measure. Then, we’ll discuss additional Arduino functions, such as
storing values, performing mathematical operations, and making decisions.
Finally, we’ll examine some more components and then put them to use in
some useful projects.

Using Schematic Diagrams
Chapter 3 described how to build a circuit using physical layout diagrams to
represent the breadboard and components mounted on it. Although such
physical layout diagrams may seem like the easiest way to diagram a circuit,
you’ll find that as more components are added, diagrams that are direct
representations can become a real mess. Because our circuits are about to
get more complicated, we’ll start using schematic diagrams (also known as
circuit diagrams) to illustrate them, such as the one shown in Figure 4-1.

Figure 4-1: Example of a schematic diagram

Schematics are simply circuit road maps that show the path of the
electrical current flowing through various components. Instead of showing
components and wires, a schematic uses symbols and lines.

Identifying Components
Once you know what the symbols mean, reading a schematic is easy. To
begin, let’s examine the symbols for the components we’ve already used.

The Arduino

Figure 4-2 shows a symbol for the Arduino itself. As you can see, all of the
Arduino’s connections are displayed and neatly labeled.

Arduino Workshop 2nd Edition (Sample Chapter) © 2021 by John Boxall

Building Blocks 59

D
0/RX

D
1/TX

D
2

D
3 PW

MD
4

D
5 PW

M

D
6 PW

MD
7

D
8

D
9 PW

M

D
10 PW

M
/SS

D
11 PW

M
/M

O
SI

D
12/M

ISO

D
13/SC

K

RESET

RESET2

A
REF

ioref

A
0

A
1

A
2

A
3

A
4/SD

A

A
5/SC

L

N
/C

GND

3V3

5V

VIN

A
rduino
U

no
(Rev3)

Figure 4-2: Arduino Uno symbol

The Resistor

The resistor symbol is shown in Figure 4-3.
It’s good practice to display the resistor value and

part designator along with the resistor symbol (220 Ω
and R1 in this case). This makes life a lot easier for every-
one trying to make sense of the schematic (including
you). Often you may see ohms written as R instead—for
example, 220 R.

The Rectifier Diode

The rectifier diode is shown in Figure 4-4.
Recall from Chapter 3 that rectifier diodes are

polarized and current flows from the anode to the
cathode. On the symbol shown in Figure 4-4, the
anode is on the left, and the cathode is on the right.
An easy way to remember this is to think of current
flowing toward the point of the triangle only. Current
cannot flow the other way because the vertical bar
“stops” it.

R1
220Ω

Figure 4-3: Resistor
symbol

D1
1N4004

+
anode

−
cathode

current flow

Figure 4-4: Rectifier
diode symbol

Arduino Workshop 2nd Edition (Sample Chapter) © 2021 by John Boxall

60 Chapter 4

The LED

The LED symbol is shown in Figure 4-5.
All members of the diode family share a

common symbol: the triangle and vertical line.
However, LED symbols show two parallel arrows
pointing away from the triangle to indicate that
light is being emitted.

The Transistor

The transistor symbol is shown in Figure 4-6. We’ll
use this to represent our BC548.

The vertical line at the top of the symbol
(labeled C) represents the collector, the horizontal
line at the left represents the base (labeled B), and
the bottom line represents the emitter (labeled E).
The arrow inside the symbol, pointing down and
to the right, tells us that this is an NPN -type
transistor, because NPN transistors allow current
to flow from the collector to the emitter. (PNP-type
transistors allow current to flow from the emitter
to collector.)

When numbering transistors, we use the letter
Q , just as we use R to number resistors.

The Relay

The relay symbol is shown in Figure 4-7.
Relay symbols can vary in many ways and may

have more than one set of contacts, but all relay
symbols share certain elements in common. The
first is the coil, which is the curvy vertical line at
the left. The second element is the relay contacts.
The COM (for common) contact is often used as
an input, and the contacts marked NO (normally
open) and NC (normally closed) are often used as
outputs.

The relay symbol is always shown with the relay in the off state and the
coil not energized—that is, with the COM and NC pins connected. When
the relay coil is energized, the COM and NO pins will be connected in the
symbol.

Wires in Schematics
When wires cross or connect in schematics, they are drawn in particular
ways, as shown in the following examples.

LED1
Red (633nm)

+
anode

−
cathode

current flow

Figure 4-5: LED symbol

Q1 collector
C

B
base

E
emitter

current
flow

Figure 4-6: Transistor
symbol

coil contacts

com

NO NC

Figure 4-7: Relay symbol

Arduino Workshop 2nd Edition (Sample Chapter) © 2021 by John Boxall

Building Blocks 61

Crossing but Not Connected Wires

When two wires cross but are not connected, the crossing can be repre-
sented in one of two ways, as shown in Figure 4-8. There is no one right
way; it’s a matter of preference.

Figure 4-8: Non-connecting crossed wires

Connected Wires

When wires are meant to be physically connected, a junction dot is drawn at
the point of connection, as shown in Figure 4-9.

Figure 4-9: Two wires that are connected

Wire Connected to Ground

When a wire is connected back to ground (GND), the stan-
dard method is to use the symbol shown in Figure 4-10.

The GND symbol at the end of a line in a schematic in
this book tells you that the wire is physically connected to
the Arduino GND pin.

Dissecting a Schematic
Now that you know the symbols for various components and their connections,
let’s dissect the schematic we would draw for Project 1. Recall that you made
five LEDs blink backward and forward.

Figure 4-10: The
GND symbol

Arduino Workshop 2nd Edition (Sample Chapter) © 2021 by John Boxall

62 Chapter 4

Compare the schematic shown in Figure 4-11 with Figure 3-13 on
page XX, and you’ll see that using a schematic is a much easier way to
describe a circuit.

D0/RX

D1/TX

D2

D3 PWM

D4

D5 PWM

D6 PWM

D7

D8

D9 PWM

D10 PWM/SS

D11 PWM/MOSI

D12/MISO

D13/SCK

RESET

RESET2

AREF

ioref

A0

A1

A2

A3

A4/SDA

A5/SCL

N/C

G
N

D

3V
3

5V VI
N

Arduino
Uno

(Rev3)

21

21

21

21

21

R5
560Ω

R3
560Ω

R4
560Ω

R1
560Ω

R2
560Ω

LED2 LED1LED3LED5 LED4

Figure 4-11: Schematic for Project 1

From now on, we’ll use schematics to describe circuits, and we’ll show
the symbols for new components as they’re introduced.

N O T E If you’d like to create your own computer-drawn schematics, try the Fritzing applica-
tion, available at minimal cost from http://www.fritzing.org/.

The Capacitor
A capacitor is a device that holds an electric charge. It consists of two con-
ductive plates sandwiching an insulating layer that allows an electric charge
to build up between the plates. Once the current is stopped, the charge
remains and can flow out of the capacitor (called discharging the capacitor)
as soon as the charge voltage stored in the capacitor is presented with a new
path for the current to take.

Arduino Workshop 2nd Edition (Sample Chapter) © 2021 by John Boxall

http://www.fritzing.org/

Building Blocks 63

Measuring the Capacity of a Capacitor
The amount of charge that a capacitor can store is measured in farads, and
one farad is actually a very large amount. Therefore, you will generally find
capacitors with values measured in picofarads or microfarads. One picofarad
(pF) is 0.000000000001 of a farad, and one microfarad (μF) is 0.000001 of
a farad. Capacitors are also manufactured to accept certain voltage maxi-
mums. In this book, we’ll be working with low voltages only, so we won’t be
using capacitors rated at greater than 10 V or so; it’s generally fine, how-
ever, to use higher-voltage specification capacitors in lower-voltage circuits.
Common voltage ratings are 10, 16, 25, and 50 V.

Reading Capacitor Values
Reading the value of a ceramic capacitor takes some practice, because the
value is printed in a sort of code. The first two digits represent the value in
picofarads, and the third digit is the multiplier in tens. For example, the
capacitor shown in Figure 4-12 is labeled 104. This equates to 10, followed
by four zeros, which equals 100,000 picofarads/pF (which is 100 nanofarads
[nF] or 0.1 microfarads [μF]).

N O T E The conversions between units of measure can be a little confusing, but you can print
an excellent conversion chart from http://www.justradios.com/uFnFpF.html.

Types of Capacitors
Our projects will use two types of capacitors: ceramic and electrolytic.

Ceramic Capacitors

Ceramic capacitors, such as the one shown in
Figure 4-12, are very small and therefore
hold a small amount of charge. They are
not polarized and can be used for current
flowing in either direction. The schematic
symbol for a non-polarized capacitor is
shown in Figure 4-13.

Ceramic capacitors work beautifully in
high-frequency circuits because they can
charge and discharge very quickly due to
their small capacitance.

Figure 4-12: A 0.1 µF ceramic
capacitor

100nF

Figure 4-13: A non-polarized
capacitor schematic symbol,
with the capacitor’s value
shown at the upper right

Arduino Workshop 2nd Edition (Sample Chapter) © 2021 by John Boxall

http://www.justradios.com/uFnFpF.html

64 Chapter 4

Electrolytic Capacitors

Electrolytic capacitors, like the one shown in Figure 4-14, are physically larger
than ceramic types, offer increased capacitance, and are polarized. A mark-
ing on the cover shows either the positive (+) side or negative side (–). In
Figure 4-14, you can see the stripe and the small negative (–) symbol that
identifies the negative side. Like resistors, capacitors also have a level of
tolerance with their values. The capacitor in Figure 4-14 has a tolerance of
20 percent and a capacitance of 100 μF.

Figure 4-14: Electrolytic capacitor

The schematic symbol for electrolytic capacitors, shown in Figure 4-15,
includes the + symbol to indicate the capacitor’s polarity.

1μF

Figure 4-15: Polarized
capacitor schematic symbol

Electrolytic capacitors are often used to store larger electric charges
and to smooth power supply voltages. Like a small temporary battery, they
can provide power-supply smoothing and stability near circuits or parts
that draw high currents quickly from the supply. This prevents unwanted
dropouts and noise in your circuits. Luckily, the values of the electrolytic
capacitor are printed clearly on the outside and don’t require decoding or
interpretation.

Now that you have experience generating basic forms of output using
LEDs with your Arduino, it’s time to learn how to send input from the out-
side world into your Arduino using digital inputs and to make decisions
based on that input.

Arduino Workshop 2nd Edition (Sample Chapter) © 2021 by John Boxall

Building Blocks 65

Digital Inputs
In Chapter 3, we used digital I/O pins as outputs to turn LEDs on and off.
We can use these same pins to accept input from users—as long as we limit
our information to two states, high and low.

 The simplest form of digital input is a push button; several push buttons
are shown in Figure 4-16. You can insert one of these directly into your
solderless breadboard and wire it to an Arduino pin. When the button is
pressed, current flows through the switch and into the digital input pin,
which detects the presence of the voltage.

Figure 4-16: Basic push buttons on a breadboard

Notice that the button at the bottom of the figure is inserted into the
breadboard, bridging rows 23 and 25. When the button is pressed, it con-
nects the two rows. The schematic symbol for this push button is shown in
Figure 4-17. The symbol represents the two sides of the button, which are
numbered with the prefix S. When the button is pressed, the line bridges
the two halves and allows voltage or current through.

S1

Figure 4-17: Push-button schematic symbol

Arduino Workshop 2nd Edition (Sample Chapter) © 2021 by John Boxall

66 Chapter 4

ME A SUR ING S W ITCH BOUNCE

W IT H A DIGITA L S TOR AGE OSCIL LOSCOPE

Push buttons exhibit a phenomenon called switch bounce, or bouncing, which
refers to a button’s tendency to turn on and off several times after being pressed
only once by the user. This phenomenon occurs because the metal contacts
inside a push button are so small that they can vibrate after a button has been
released, thereby switching on and off again very quickly.

Switch bounce can be demonstrated with a digital storage oscilloscope
(DSO), a device that displays the change in a voltage over a period of time. For
example, consider Figure 4-18, a DSO displaying a switch bounce.

Figure 4-18: Measuring switch bounce

The top half of the display in Figure 4-18 shows the results of pressing a
button several times. When the voltage line indicated by the arrow is at the
higher horizontal position (5 V), the button is in the on state, and the voltage is
connected through it. Underneath the word Stop is a slice of time just after the
button was switched off, as shown by two gray vertical lines.

The button voltage during this interval is magnified in the bottom half of
the screen. At A, the button is released by the user, and the line drops to 0 V.
However, due to physical vibration, the button returns almost immediately to
the higher 5 V position until B, where it vibrates off and then on again until C,
where it settles in the low (off) state. In effect, instead of relaying one button
press to our Arduino, we have unwittingly sent three.

Arduino Workshop 2nd Edition (Sample Chapter) © 2021 by John Boxall

Building Blocks 67

Project #4: Demonstrating a Digital Input
Our goal in this project is to create a button that turns on an LED for half a
second when pressed.

The Algorithm
Here is our algorithm:

1. Test whether the button has been pressed.

2. If the button has been pressed, turn on the LED for half a second and
then turn it off.

3. If the button has not been pressed, do nothing.

4. Repeat indefinitely.

The Hardware
Here’s what you’ll need to create this project:

• One push button

• One LED

• One 560 Ω resistor

• One 10 kΩ resistor

• One 100 nF capacitor

• Various connecting wires

• One breadboard

• Arduino and USB cable

The Schematic
First, we create the circuit on the breadboard with the schematic shown in
Figure 4-19. Notice that the 10 kΩ resistor is connected between GND and
digital pin 7. We call this a pull-down resistor, because it pulls the voltage at
the digital pin almost to zero. Furthermore, by adding a 100 nF capacitor
across the 10 kΩ resistor, we create a simple debounce circuit to help filter
out the switch bounce. When the button is pressed, the digital pin goes
immediately to high. But when the button is released, digital pin 7 is pulled
down to GND via the 10 kΩ resistor, and the 100 nF capacitor creates a
small delay. This effectively covers up the bouncing pulses by slowing the
drop of the voltage to GND, thereby eliminating most of the false readings
due to floating voltage and erratic button behavior.

Arduino Workshop 2nd Edition (Sample Chapter) © 2021 by John Boxall

68 Chapter 4

D0/RX

D1/TX

D2

D3 PWM

D4

D5 PWM

D6 PWM

D7

D8

D9 PWM

D10 PWM/SS

D11 PWM/MOSI

D12/MISO

D13/SCK

RESET

RESET2

AREF

ioref

A0

A1

A2

A3

A4/SDA

A5/SCL

N/C

G
N

D

3V
3

5V VI
N

Arduino
Uno

(Rev3)

1
2

1
2

21

21

12

S1

R1
560Ω

LED1

R2
10kΩ

C1
100nF

Figure 4-19: Schematic for Project 4

Because this is the first time you’re
building a circuit with a schematic, fol-
low these step-by-step instructions as
you walk through the schematic; this
should help you understand how the
components connect:

1. Insert the push button into
the breadboard, as shown in
Figure 4-20.

2. Now insert the 10 kΩ resistor, a
short link wire, and the capacitor,
as shown in Figure 4-21.

Figure 4-20: Push button inserted into
breadboard

Arduino Workshop 2nd Edition (Sample Chapter) © 2021 by John Boxall

Building Blocks 69

Figure 4-21: 10 kΩ resistor, capacitor, and push button

3. Connect one wire from the Arduino 5 V pin to the upper-right row for
the button on the breadboard. Connect another wire from the Arduino
GND pin to the same vertical row that connects to the left-hand sides of
the wire link and the resistor. This is shown in Figure 4-22.

Figure 4-22: The 5 V (red) and GND (black) wires

Arduino Workshop 2nd Edition (Sample Chapter) © 2021 by John Boxall

70 Chapter 4

4. Run a wire from Arduino digital pin 7 to the lower-right row for the
button on the breadboard, as shown in Figure 4-23.

Figure 4-23: Connecting the button to the digital input

5. Insert the LED into the breadboard with the short leg (the cathode)
connected to the GND column and the long leg (the anode) in a row
to the right. Next, connect the 560 Ω resistor to the right of the LED,
as shown in Figure 4-24.

Figure 4-24: Inserting the LED and 560 Ω resistor

Arduino Workshop 2nd Edition (Sample Chapter) © 2021 by John Boxall

Building Blocks 71

6. Connect a wire from the right side of the 560 Ω resistor to Arduino
digital pin 3, as shown in Figure 4-25.

Figure 4-25: Connecting the LED branch to the Arduino

Before continuing, review the schematic for this circuit and check that
your components are wired correctly. Compare the schematic against the
actual wiring of the circuit.

The Sketch
For the sketch, enter and upload Listing 4-1:

// Project 4 - Demonstrating a Digital Input
1 #define LED 3
#define BUTTON 7

void setup()
{
2 pinMode(LED, OUTPUT); // output for the LED
 pinMode(BUTTON, INPUT); // input for the button
}

void loop()
{
 if (digitalRead(BUTTON) == HIGH)
 {
 digitalWrite(LED, HIGH); // turn on the LED
 delay(500); // wait for 0.5 seconds
 digitalWrite(LED, LOW); // turn off the LED
 }
}

Listing 4-1: Digital input

Arduino Workshop 2nd Edition (Sample Chapter) © 2021 by John Boxall

72 Chapter 4

After you’ve uploaded your sketch, tap the push button briefly, and your
LED should stay on for half a second.

Understanding the Sketch
Let’s examine the new items in the sketch for Project 4—specifically, #define,
digital input pins, and the if-then function.

Creating Constants with #define

Before void setup(), we use #define statements at 1 to create fixed values:
when the sketch is compiled, the IDE replaces any instance of the defined
word with the number that follows it. For example, when the IDE sees LED in
the line at 2, it replaces it with the number 3. Notice that we do not use a
semicolon after a #define value.

We’re basically using the #define command to label the digital pins for
the LED and button in the sketch. It’s a good idea to label pin numbers and
other fixed values (such as a time delay) in this way, because if the value is
used repeatedly in the sketch, then you won’t have to edit the same item more
than once. In this example, LED is used three times in the sketch, but to
change this value, we’d have to edit its definition only once in its #define
statement.

Reading Digital Input Pins

To read the status of a button, we first define a digital I/O pin as an input
in void setup() using the following:

pinMode(BUTTON, INPUT); // input for button

Next, to discover whether the button is connecting a voltage through to
the digital input (that is, it’s being pressed), we use digitalRead(pin), where
pin is the digital pin number to read. The function returns either HIGH
(voltage is close to 5 V at the pin) or LOW (voltage is close to 0 V at the pin).

Making Decisions with if

Using if, we can make decisions in our sketch and tell the Arduino to run
different code, depending on the decision. For example, in the sketch for
Project 4, we used Listing 4-2:

// Listing 4-2
if (digitalRead(BUTTON) == HIGH)
{
 digitalWrite(LED, HIGH); // turn on the LED
 delay(500); // wait for 0.5 seconds
 digitalWrite(LED, LOW); // turn off the LED
}

Listing 4-2: A simple if-then example

Arduino Workshop 2nd Edition (Sample Chapter) © 2021 by John Boxall

Building Blocks 73

The first line in this code snippet begins with if because it tests for
a condition. If the condition is true (that is, if the voltage is HIGH), then it
means that the button is pressed. The Arduino will then run the code that
is inside the curly brackets.

To determine whether the button is pressed (digitalRead(BUTTON) is set
to HIGH), we use a comparison operator, a double equal sign (==). If we were to
replace == with != (not equal to) in the sketch, then the LED would turn off
when the button is pressed instead. Try it and see.

N O T E A common mistake is to use a single equal sign (=), which means “make equal
to,” in a test statement instead of a double equal sign (==), which says “test
whether it is equal to.” You may not get an error message, but your if statement
may not work!

Once you’ve had some success, try changing the length of time that the
light stays on, or go back to Project 3 and add a push button control. (Don’t
disassemble this circuit, though; we’ll use it again in the next example.)

Modifying Your Sketch: Making More Decisions with if-then-else
You can add another action to an if statement by using else. For example, if
we rewrite Listing 4-1 by adding else, as shown in Listing 4-3, then the LED
will turn on if the button is pressed, or else it will be off. Using else forces
the Arduino to run another section of code if the test in the if statement is
not true.

// Listing 4-3
#define LED 3
#define BUTTON 7

void setup()
{
 pinMode(LED, OUTPUT); // output for the LED
 pinMode(BUTTON, INPUT); // input for the button
}

void loop()
{
 if (digitalRead(BUTTON) == HIGH)
 {
 digitalWrite(LED, HIGH);
 }
 else
 {
 digitalWrite(LED, LOW);
 }
}

Listing 4-3: Adding else

Arduino Workshop 2nd Edition (Sample Chapter) © 2021 by John Boxall

74 Chapter 4

Boolean Variables
Sometimes you need to record whether something is in either of only two
states, such as on or off, or hot or cold. A Boolean variable is the legendary
computer “bit” whose value can be only a zero (0, false) or one (1, true). As
with any other variable, we need to declare it in order to use it:

boolean raining = true; // create the variable "raining" and first make it true

Within the sketch, you can change the state of a Boolean with a simple
reassignment, such as this:

raining = false;

Because Boolean variables can only take on the values of true or false,
they are well suited to making decisions using if. True/false Boolean
comparisons work well with the comparison operators != and ==. Here’s an
example:

if (raining == true)
{
 if (summer != true)
 {
 // it is raining and not summer
 }
}

Comparison Operators
We can use various operators to make decisions about two or more Boolean
variables or other states. These include the operators not (!), and (&&), and
or (||).

The not Operator

The not operator is denoted by an exclamation mark (!). This operator is
used as an abbreviation for checking whether something is not true. Here’s
an example:

if (!raining)
{
 // it is not raining (raining == false)
}

The and Operator

The logical and operator is denoted by &&. Using and helps reduce the num-
ber of separate if tests. Here’s an example:

Arduino Workshop 2nd Edition (Sample Chapter) © 2021 by John Boxall

Building Blocks 75

if ((raining == true) && (!summer))
{
 // it is raining and not summer (raining == true and summer == false)
}

The or Operator

The logical or operator is denoted by ||. Using or is pretty intuitive. Here’s
an example:

if ((raining == true) || (summer == true))
{
 // it is either raining or summer
}

Making Two or More Comparisons
You can also make two or more comparisons using the same if statement.
Here’s an example:

if (snow == true && rain == true && !hot)
{
 // it is snowing and raining and not hot
}

And you can use parentheses to set the order of operation. In the next
example, the comparison in the parentheses is checked first, given a true or
false state, and then that condition is subjected to the remaining test in the
if-then statement.

 if ((snow == true || rain == true) && hot == false))
{
// it is either snowing or raining, and not hot
}

Lastly, just like the examples of the not (!) operator before a value,
simple tests of true or false can be performed without requiring == true
or == false in each test. The following code works out the same as in the
preceding example:

if ((snow || rain) && !hot)
{
 // it is either snowing or raining and not hot
 // (snow is true OR rain is true) AND it is not hot
}

As you can see, it’s possible to have the Arduino make a multitude of
decisions using Boolean variables and comparison operators. Once you
move on to more complex projects, this will become very useful.

Arduino Workshop 2nd Edition (Sample Chapter) © 2021 by John Boxall

76 Chapter 4

Project #5: Controlling Traffic
Now let’s put your newfound knowledge to use by solving a hypothetical
problem. As the town planner for a rural county, you have a problem with
a single-lane bridge that crosses the river. Every week, one or two accidents
occur at night, when tired drivers rush across the bridge without first stop-
ping to see if the road is clear. You have suggested that traffic lights be
installed, but the mayor wants to see them demonstrated before signing off
on the purchase. You could rent temporary lights, but they’re expensive.
Instead, you’ve decided to build a model of the bridge with working traffic
lights using LEDs and an Arduino.

The Goal
Our goal is to install three-color traffic lights at each end of the single-
lane bridge. The lights allow traffic to flow only in one direction at a time.
When sensors located at either end of the bridge detect a car waiting at a
red light, the lights will change and allow the traffic to flow in the oppo-
site direction.

The Algorithm
We’ll use two buttons to simulate the vehicle sensors at each end of the bridge.
Each set of lights will have red, yellow, and green LEDs. Initially, the system
will allow traffic to flow from west to east, so the west-facing lights will be set
to green and the east-facing lights will be set to red.

When a vehicle approaches the bridge (modeled by pressing the but-
ton) and the light is red, the system will turn the light on the opposite
side from green to yellow to red, and then wait a set period of time to
allow any vehicles already on the bridge to finish crossing. Next, the yel-
low light on the waiting vehicle’s side will blink as a “get ready” notice for
the driver, and finally the light will change to green. The light will remain
green until a vehicle approaches the other side, at which point the process
repeats.

The Hardware
Here’s what you’ll need to create this project:

• Two red LEDs (LED1 and LED2)

• Two yellow LEDs (LED3 and LED4)

• Two green LEDs (LED5 and LED6)

• Six 560 Ω resistors (R1 to R6)

• Two 10 kΩ resistors (R7 and R8)

• Two 100 nF capacitors (C1 and C2)

Arduino Workshop 2nd Edition (Sample Chapter) © 2021 by John Boxall

Building Blocks 77

• Two push buttons (S1 and S2)

• One medium-sized breadboard

• One Arduino and USB cable

• Various connecting wires

The Schematic
Because we’re controlling only six LEDs and receiving input from two but-
tons, the design will not be too difficult. Figure 4-26 shows the schematic
for our project.

D0/RX

D1/TX

D2

D3 PWM

D4

D5 PWM

D6 PWM

D7

D8

D9 PWM

D10 PWM/SS

D11 PWM/MOSI

D12/MISO

D13/SCK

RESET

RESET2

AREF

ioref

A0

A1

A2

A3

A4/SDA

A5/SCL

N/C

G
N

D

3V
3

5V VI
N

Arduino
Uno

(Rev3)

21

21

21

21

21

21

1
2

1
2

1
2

1
2

1
2

2
1

1
2

2
1

R2

R5
R6

R4

R1

R3

S2

S1

LED3
LED1

LED4

LED5

LED6

LED2

C1

C2

R8

R7

Figure 4-26: Schematic for Project 5

This circuit is basically a more elaborate version of the button and LED
circuit in Project 4, with resistors, more LEDs, and another button.

Be sure that the LEDs are inserted in the correct direction: the resistors
connect to LED anodes, and the LED cathodes connect to the Arduino GND
pin, as shown in Figure 4-27.

Arduino Workshop 2nd Edition (Sample Chapter) © 2021 by John Boxall

78 Chapter 4

Figure 4-27: Completed circuit

The Sketch
And now for the sketch. Can you see how it matches our algorithm?

// Project 5 - Controlling Traffic

// define the pins that the buttons and lights are connected to:
1 #define westButton 3
#define eastButton 13
#define westRed 2
#define westYellow 1
#define westGreen 0
#define eastRed 12
#define eastYellow 11
#define eastGreen 10

#define yellowBlinkTime 500 // 0.5 seconds for yellow light blink

2 boolean trafficWest = true; // west = true, east = false
3 int flowTime = 10000; // amount of time to let traffic flow
4 int changeDelay = 2000; // amount of time between color changes

void setup()
{
 // setup digital I/O pins
 pinMode(westButton, INPUT);
 pinMode(eastButton, INPUT);
 pinMode(westRed, OUTPUT);
 pinMode(westYellow, OUTPUT);

Arduino Workshop 2nd Edition (Sample Chapter) © 2021 by John Boxall

Building Blocks 79

 pinMode(westGreen, OUTPUT);
 pinMode(eastRed, OUTPUT);
 pinMode(eastYellow, OUTPUT);
 pinMode(eastGreen, OUTPUT);
 // set initial state for lights - west side is green first
 digitalWrite(westRed, LOW);
 digitalWrite(westYellow, LOW);
 digitalWrite(westGreen, HIGH);
 digitalWrite(eastRed, HIGH);
 digitalWrite(eastYellow, LOW);
 digitalWrite(eastGreen, LOW);
}

void loop()
{
 if (digitalRead(westButton) == HIGH) // request west>east traffic flow
 {
 if (trafficWest != true)
 // only continue if traffic flowing in the opposite (east) direction
 {

trafficWest = true; // change traffic flow flag to west>east
delay(flowTime); // give time for traffic to flow
digitalWrite(eastGreen, LOW); // change east-facing lights from green
// to yellow to red
digitalWrite(eastYellow, HIGH);
delay(changeDelay);
digitalWrite(eastYellow, LOW);
digitalWrite(eastRed, HIGH);
delay(changeDelay);
for (int a = 0; a < 5; a++) // blink yellow light
{

digitalWrite(westYellow, LOW);
delay(yellowBlinkTime);
digitalWrite(westYellow, HIGH);
delay(yellowBlinkTime);

}
digitalWrite(westYellow, LOW);
digitalWrite(westRed, LOW); // change west-facing lights from red to

green
digitalWrite(westGreen, HIGH);
}

 }
 if (digitalRead(eastButton) == HIGH) // request east>west traffic flow
 {
 if (trafficWest == true)
 // only continue if traffic flow is in the opposite (west) direction
 {
 trafficWest = false; // change traffic flow flag to east>west
 delay(flowTime); // give time for traffic to flow
 digitalWrite(westGreen, LOW);
 // change west lights from green to yellow to red
 digitalWrite(westYellow, HIGH);
 delay(changeDelay);
 digitalWrite(westYellow, LOW);
 digitalWrite(westRed, HIGH);

Arduino Workshop 2nd Edition (Sample Chapter) © 2021 by John Boxall

80 Chapter 4

 delay(changeDelay);
 for (int a = 0 ; a < 5 ; a++) // blink yellow light
 {

digitalWrite(eastYellow, LOW);
delay(yellowBlinkTime);
digitalWrite(eastYellow, HIGH);
delay(yellowBlinkTime);

 }
 digitalWrite(eastYellow, LOW);
 digitalWrite(eastRed, LOW); // change east-facing lights from red to
green
 digitalWrite(eastGreen, HIGH);
 }
 }
}

Our sketch starts by using #define at 1 to associate digital pin numbers
with labels for all the LEDs used, as well as the two buttons. We have red,
yellow, and green LEDs and a button each for the west and east sides of the
bridge. The Boolean variable trafficWest at 2 is used to keep track of which
way the traffic is flowing—true is west to east, and false is east to west.

N O T E Notice that trafficWest is a single Boolean variable with the traffic direction set as
either true or false. Having a single variable like this instead of two (one for east
and one for west) ensures that both directions cannot accidentally be true at the same
time, which helps avoid a crash!

The integer variable flowTime at 3 is the minimum period of time that
vehicles have to cross the bridge. When a vehicle pulls up at a red light, the
system extends this period to give the opposing traffic time to cross the
bridge. The integer variable changeDelay at 4 is the elapsed time between
changes of color from green to yellow to red.

Before the sketch enters the void loop() section, it is set for traffic to
flow from west to east in void setup().

Running the Sketch
Once it’s running, the sketch does nothing until one of the buttons is
pressed. When the east button is pressed, the line

if (trafficWest == true)

ensures that the lights change only if the traffic is heading in the opposite
direction. The rest of the code section is composed of a simple sequence of
waiting and then of turning on and off various LEDs to simulate the traffic
lights’ operation.

Arduino Workshop 2nd Edition (Sample Chapter) © 2021 by John Boxall

Building Blocks 81

Analog vs. Digital Signals
In this section, you’ll learn the difference between digital and analog
signals, and you’ll learn how to measure analog signals with the analog
input pins.

Until now, our sketches have been using digital electrical signals,
with just two discrete levels. Specifically, we used digitalWrite(pin, HIGH)
and digitalWrite(pin, LOW) to blink an LED and digitalRead() to mea-
sure whether a digital pin had a voltage applied to it (HIGH) or not (LOW).
Figure 4-28 is a visual representation of a digital signal that alternates
between high and low.

Figure 4-28: A digital signal, with highs appearing as horizontal lines
at the top and lows appearing at the bottom

Unlike digital signals, analog signals can vary with an indefinite number
of steps between high and low. For example, Figure 4-29 shows the analog
signal of a sine wave. Notice that as time progresses, the voltage floats flu-
idly between high and low levels.

With our Arduino, high is closer to 5 V and low is closer to 0 V, or GND.
We can measure the voltage values of an analog signal with our Arduino
using the six analog inputs shown in Figure 4-30. These analog inputs can
safely measure voltages from 0 (GND) to no more than 5 V.

Figure 4-29: An analog signal of a sine wave

Arduino Workshop 2nd Edition (Sample Chapter) © 2021 by John Boxall

82 Chapter 4

If you use the function analogRead(), then
the Arduino will return a number between
0 and 1,023 in proportion to the voltage
applied to the analog pin. For example, you
might use analogRead() to store the value of
analog pin zero in the integer variable a:

a = analogRead(0); // read analog input pin 0 (A0)
// returns 0 to 1023, which is usually 0.000 to 4.995 volts

Project #6: Creating a Single-Cell Battery Tester
Although the popularity and use of cell batteries has declined, most
people still have a few devices around the house, such as remote controls,
clocks, or children’s toys, that use AA, AAA, C, or D cell batteries. These
batteries carry much less than 5 V, so we can measure a cell’s voltage with
our Arduino to determine the state of the cell. In this project, we’ll create
a battery tester.

The Goal
Single-cell batteries such as AAs usually begin at about 1.6 V when new
and then decrease with use and age. We will measure the voltage and
express the battery condition visually with LEDs. We’ll use the reading from
analogRead() and then convert the reading to volts. The maximum voltage
that can be read is 5 V, so we divide 5 by 1,024 (the number of possible
values), which equals 0.0048. Therefore, if analogRead() returns 512, then we
multiply that reading by 0.0048, which equals 2.4576 V.

The Algorithm
Here’s the algorithm for our battery tester operation:

1. Read from analog pin zero.

2. Multiply the reading by 0.0048 to create a voltage value.

3. If the voltage is greater than or equal to 1.6 V, briefly turn on a
green LED.

4. If the voltage is greater than 1.4 V and less than 1.6 V, briefly turn on a
yellow LED.

5. If the voltage is less than 1.4 V, briefly turn on a red LED.

6. Repeat indefinitely.

Figure 4-30: Analog inputs
on the Arduino Uno

Arduino Workshop 2nd Edition (Sample Chapter) © 2021 by John Boxall

Building Blocks 83

The Hardware
Here’s what you’ll need to create this project:

• Three 560 Ω resistors (R1 to R3)

• One green LED (LED1)

• One yellow LED (LED2)

• One red LED (LED3)

• One breadboard

• Various connecting wires

• One Arduino and USB cable

The Schematic
The schematic for the single-cell battery tester circuit is shown in
Figure 4-31. On the left side, notice the two terminals, labeled + and –.
Connect the matching sides of the single-cell battery to be tested at those
points. Positive should connect to positive, and negative should connect
to negative.

W A R N I N G Under no circumstances should you measure anything larger than 5 V, nor should
you connect positive to negative, or vice versa. Doing these things would damage
your Arduino board.

D0/RX

D1/TX

D2

D3 PWM

D4

D5 PWM

D6 PWM

D7

D8

D9 PWM

D10 PWM/SS

D11 PWM/MOSI

D12/MISO

D13/SCK

RESET

RESET2

AREF

ioref

A0

A1

A2

A3

A4/SDA

A5/SCL

N/C

G
N

D

3V
3

5V VI
N

Arduino
Uno

(Rev3)

21

21

21

1

2

R2
560Ω

R1
560Ω

R3
560Ω

LED1
Green

LED2
Yellow

LED3
Green

Figure 4-31: Schematic for Project 6

Arduino Workshop 2nd Edition (Sample Chapter) © 2021 by John Boxall

84 Chapter 4

The Sketch
Now for the sketch. Since analog values can drift between integers, we’re
going to use a new type of variable called a float, which can contain frac-
tional or decimal values.

// Project 6 - Creating a Single-Cell Battery Tester
#define newLED 2 // green LED
#define okLED 4 // yellow LED
#define oldLED 6 // red LED

int analogValue = 0;
1 float voltage = 0;
int ledDelay = 2000;

void setup()
{
 pinMode(newLED, OUTPUT);
 pinMode(okLED, OUTPUT);
 pinMode(oldLED, OUTPUT);
}

void loop()
{
2 analogValue = analogRead(0);
3 voltage = 0.0048*analogValue;
4 if (voltage >= 1.6)
 {
 digitalWrite(newLED, HIGH);
 delay(ledDelay);
 digitalWrite(newLED, LOW);
 }
5 else if ((voltage < 1.6) && (voltage) > 1.4)
 {
 digitalWrite(okLED, HIGH);
 delay(ledDelay);
 digitalWrite(okLED, LOW);
 }
6 else if (voltage <= 1.4)

{
digitalWrite(oldLED, HIGH);
delay(ledDelay);
digitalWrite(oldLED, LOW);

 }
}

In the sketch for Project 6, the Arduino takes the value measured by
analog pin 0 at 2 and converts this to a voltage at 3. You’ll learn more
about the new type of variable, float at 1, in the next section. You’ll also
see some familiar code, such as the if-else functions, and some new top-
ics, such as doing arithmetic and using comparison operators to compare
numbers, which are all discussed in the sections that follow.

Arduino Workshop 2nd Edition (Sample Chapter) © 2021 by John Boxall

Building Blocks 85

Doing Arithmetic with an Arduino
Like a pocket calculator, the Arduino can perform calculations, such
as multiplication, division, addition, and subtraction. Here are some
examples:

a = 100;
b = a + 20;
c = b - 200;
d = c + 80; // d will equal 0

Float Variables
When you need to deal with numbers with a decimal point, you can use
the variable type float. The values that can be stored in a float fall between
3.4028235 × 10^38 and −3.4028235 × 10^38 and are generally limited to six
or seven decimal places of precision. You can mix integers and float numbers
in your calculations. For example, you could add the float number f to the
integer a and store the sum as the float variable g:

int a = 100;
float f;
float g;

f = a / 3; // f = 33.333333
g = a + f; // g = 133.333333

Comparison Operators for Calculations
We used comparison operators such as == and != with if statements and
digital input signals in Project 5. In addition to these operators, we can use
the following to compare numbers or numerical variables:

< less than

> greater than

<= less than or equal to

>= greater than or equal to

We’ve used these operators to compare numbers in lines 4, 5, and 6
in the sketch for Project 6 described earlier.

Improving Analog Measurement Precision
with a Reference Voltage

As demonstrated in Project 6, the analogRead() function returns a value
proportional to a voltage between 0 and 5 V. The upper value (5 V) is the
reference voltage, the maximum voltage that the Arduino analog inputs will
accept and return the highest value for (1,023).

Arduino Workshop 2nd Edition (Sample Chapter) © 2021 by John Boxall

86 Chapter 4

To increase precision while reading even lower voltages, we can use
a lower reference voltage. For example, when the reference voltage is 5 V,
analogRead() represents this with a value from 0 to 1,023. However, if we
needed to measure only a voltage with a maximum of 2 V, then we could
alter the Arduino output to represent 2 V using the 0–1,023 range to allow
for more precise measurement. You can do this with either an external or
internal reference voltage, as discussed next.

Using an External Reference Voltage
The first method of using a reference voltage is with the AREF (analog
reference) pin, as shown in Figure 4-32.

We can introduce a new reference voltage by
connecting the voltage into the AREF pin and the
matching GND to the Arduino’s GND. Note that
this can lower the reference voltage but will not
raise it, because the reference voltage connected
to an Arduino Uno must not exceed 5 V. A simple
way to set a lower reference voltage is by creating
a voltage divider with two resistors, as shown in
Figure 4-33.

D
0/RX

D
1/TX

D
2

D
3 PW

MD
4

D
5 PW

M

D
6 PW

MD
7

D
8

D
9 PW

M

D
10 PW

M
/SS

D
11 PW

M
/M

O
SI

D
12/M

ISO

D
13/SC

K

RESET

RESET2

A
REF

ioref

A
0

A
1

A
2

A
3

A
4/SD

A

A
5/SC

L

N
/C

GND

3V3

5V

VIN

A
rduino
U

no
(Rev3)

2121

12

R1R2

C1
100nF

Figure 4-33: Voltage divider circuit

Figure 4-32: The Arduino
Uno AREF pin

Arduino Workshop 2nd Edition (Sample Chapter) © 2021 by John Boxall

Building Blocks 87

The values of R1 and R2 will determine the reference voltage according
to the formula in Figure 4-34.

In the formula, Vout is the reference voltage,
and Vin is the input voltage—in this case 5 V. R1
and R2 are the resistor values in ohms.

The simplest way to divide the voltage is to
split Vin in half by setting R1 and R2 to the same
value—for example, 10 kΩ each. When you’re doing this, it’s best to use the
lowest-tolerance resistors you can find, such as 1 percent; confirm their true
resistance values with a multimeter and use those confirmed values in the
calculation. Furthermore, it’s also a very good idea to place a 100 nF capaci-
tor between AREF and GND to avoid a noisy AREF and prevent unstable
analog readings.

When using an external reference voltage, insert the following line in
the void setup() section of your sketch:

analogReference(EXTERNAL); // select AREF pin for reference voltage

Using the Internal Reference Voltage
The Arduino Uno also has an internal 1.1 V reference voltage. If this meets
your needs, no hardware changes are required. Just add this line to void
setup():

analogReference(INTERNAL); // select internal 1.1 V reference voltage

The Variable Resistor

Variable resistors, also known as potentiometers, can generally be adjusted
from 0 Ω up to their rated value. Their schematic symbol is shown in
Figure 4-35.

Variable resistors have three pin connections:
one in the center pin and one on each side. As the
shaft of a variable resistor turns, it increases the resis-
tance between one side and the center and decreases
the resistance between the opposite side and the
center.

Variable resistors are available as either linear or logarithmic. The resis-
tance of linear models changes at a constant rate as they turn, while the
resistance of logarithmic models changes slowly at first and then increases
rapidly. Logarithmic potentiometers are used more often in audio amplifier

Vout = Vin

R2
R1 + R2)(

Figure 4-34: Reference
voltage formula

Figure 4-35: Variable
resistor (potentiometer)
symbol

Arduino Workshop 2nd Edition (Sample Chapter) © 2021 by John Boxall

88 Chapter 4

circuits, because they model the human hearing response. You can generally
identify whether a potentiometer is logarithmic or linear via the marking
on the rear. Most will have either an A or B next to the resistance value: A
for logarithmic, B for linear. Most Arduino projects use linear variable resis-
tors such as the one shown in Figure 4-36.

Figure 4-36: A typical linear variable resistor

You can also get miniature versions of variable resistors, known as
trimpots or trimmers (see Figure 4-37). Because of their size, trimpots are
useful for making adjustments in circuits, but they’re also very useful for
breadboard work because they can be slotted in.

Figure 4-37: Various trimpots

Arduino Workshop 2nd Edition (Sample Chapter) © 2021 by John Boxall

Building Blocks 89

N O T E When shopping for trimpots, take note of the type. Often you will want one that is
easy to adjust with a screwdriver that you have on hand. The enclosed types, pictured
in Figure 4-37, last longer than the cheaper, open contact types.

Piezoelectric Buzzers
A piezoelectric element (piezo for short), or buzzer, is a small, round device
that can be used to generate loud and annoying noises that are perfect
for alarms—or for having fun. Figure 4-38 shows a common example, the
TDK PS1240, next to an American quarter, to give you an idea of its size.

Figure 4-38: TDK PS1240 Piezo

Piezos contain a very thin plate inside the housing that moves when
an electrical current is applied. When a pulsed current is applied (such as
on . . . off . . . on . . . off), the plate vibrates and generates sound waves.

It’s simple to use piezos with the Arduino because they can be turned
on and off just like an LED. The piezo elements are not polarized and can
be connected in either direction.

Piezo Schematic
The schematic symbol for the piezo looks like a loudspeaker (Figure 4-39),
which makes it easy to recognize.

2

1

Figure 4-39: Piezo schematic

Arduino Workshop 2nd Edition (Sample Chapter) © 2021 by John Boxall

90 Chapter 4

N O T E When shopping for a piezo for this project, be sure to get the piezo element only
type; some buzzer types look like Figure 4-38 but include a tone-generating circuit
built into the case. We don’t want those because we’re going to drive our tone directly
from the Arduino.

Project #7: Trying Out a Piezo Buzzer
If you have a piezo handy and want to try it out, first connect it between
Arduino GND and digital pins D3 to D0 inclusive. Then upload the follow-
ing demonstration sketch to your Arduino:

// Project 7 - Trying Out a Piezo Buzzer
#define PIEZO 3 // pin 3 is capable of PWM output to drive tones
int del = 500;
void setup()
{
 pinMode(PIEZO, OUTPUT);
}

void loop()
{
1 analogWrite(PIEZO, 128); // 50 percent duty cycle tone to the piezo
 delay(del);
 digitalWrite(PIEZO, LOW); // turn the piezo off
 delay(del);
}

This sketch uses pulse-width modulation on digital pin 3. If you
change the duty cycle in the analogWrite() function (currently it’s 128,
which is 50 percent on) at 1, you can alter the sound of the buzzer.

To increase the volume of your piezo, increase the voltage applied to
it. The voltage is currently limited to 5 V, but the buzzer would be much
louder at 9 or 12 V. Because higher voltages can’t be sourced from the
Arduino, you would need to use an external power source for the buzzer,
such as a 9 V battery, and then switch the power into the buzzer using a
BC548 transistor as an electronic switch. You can use the same sketch with
the schematic shown in Figure 4-40.

The part of the schematic labeled 12 V will be the positive side of
the higher-power supply, whose negative side will connect to the Arduino
GND pin.

Arduino Workshop 2nd Edition (Sample Chapter) © 2021 by John Boxall

Building Blocks 91

21

D
0/

RX

D
1/

TX D
2

D
3

PW
M D
4

D
5

PW
M

D
6

PW
M D
7

D
8

D
9

PW
M

D
10

 P
W

M
/S

S

D
11

 P
W

M
/M

O
SI

D
12

/M
IS

O

D
13

/S
C

K

RE
SE

T

RE
SE

T2

A
RE

F

io
re

f

A
0

A
1

A
2

A
3

A
4/

SD
A

A
5/

SC
L

N
/C

GND

3V3

5V

VIN

A
rd

ui
no

U
no

(R
ev

3)

12V

2
1

21

1

23

R1
1kΩ

R2
1kΩ

Q
1

Figure 4-40: Schematic for Project 7

Project #8: Creating a Quick-Read Thermometer

Temperature can be represented by an analog
signal. We can measure temperature using the
TMP36 voltage output temperature sensor made
by Analog Devices (http://www.analog.com/tmp36/),
shown in Figure 4-41.

Notice that the TMP36 looks just like the
BC548 transistor we worked with in the relay con-
trol circuit in Chapter 3. The TMP36 outputs

Figure 4-41: TMP36
temperature sensor

Arduino Workshop 2nd Edition (Sample Chapter) © 2021 by John Boxall

http://www.analog.com/tmp36/

92 Chapter 4

a voltage that is proportional to the temperature, so you can determine the
current temperature using a simple conversion. For example, at 25 degrees
Celsius, the output voltage is 750 mV, and each change in temperature of
1 degree results in a change of 10 mV. The TMP36 can measure tempera-
tures between −40 and 125 degrees Celsius.

The function analogRead() will return a value between 0 and 1,023,
which corresponds to a voltage between 0 and just under 5,000 mV (5 V).
If we multiply the output of analogRead() by (5,000/1,024), we will get
the actual voltage returned by the sensor. Next, we subtract 500 (an off-
set used by the TMP36 to allow for temperatures below zero) and then
divide by 10, which leaves us with the temperature in degrees Celsius. If
you work in Fahrenheit, then multiply the Celsius value by 1.8 and add
32 to the result.

The Goal
In this project, we’ll use the TMP36 to create a quick-read thermom-
eter. When the temperature falls below 20 degrees Celsius, a blue
LED turns on; when the temperature is between 20 and 26 degrees, a
green LED turns on; and when the temperature is above 26 degrees,
a red LED turns on.

The Hardware
Here’s what you’ll need to create this project:

• Three 560 Ω resistors (R1 to R3)

• One red LED (LED1)

• One green LED (LED2)

• One blue LED (LED3)

• One TMP36 temperature sensor

• One breadboard

• Various connecting wires

• Arduino and USB cable

The Schematic
The circuit is simple. When you’re looking at the labeled side of the
TMP36, the pin on the left connects to the 5 V input, the center pin is
the voltage output, and the pin on the right connects to GND, as shown
in Figure 4-42.

Arduino Workshop 2nd Edition (Sample Chapter) © 2021 by John Boxall

Building Blocks 93

D0/RX

D1/TX

D2

D3 PWM

D4

D5 PWM

D6 PWM

D7

D8

D9 PWM

D10 PWM/SS

D11 PWM/MOSI

D12/MISO

D13/SCK

RESET

RESET2

AREF

ioref

A0

A1

A2

A3

A4/SDA

A5/SCL

N/C

G
N

D

3V
3

5V VI
N

Arduino
Uno

(Rev3)

TMP36
1 VCC

3 GND

2VOUT

21

21

21

R2
560Ω

R1
560Ω

R3
560Ω

LED1

LED3

LED2

Figure 4-42: Schematic for Project 8

The Sketch
And now for the sketch:

// Project 8 - Creating a Quick-Read Thermometer

// define the pins that the LEDs are connected to:
#define HOT 6
#define NORMAL 4
#define COLD 2

float voltage = 0;
float celsius = 0;
float hotTemp = 26;
float coldTemp = 20;
float sensor = 0;

void setup()
{
 pinMode(HOT, OUTPUT);
 pinMode(NORMAL, OUTPUT);
 pinMode(COLD, OUTPUT);
}

void loop()

Arduino Workshop 2nd Edition (Sample Chapter) © 2021 by John Boxall

94 Chapter 4

{
// read the temperature sensor and convert the result to degrees Celsius
1 sensor = analogRead(0);
 voltage = (sensor * 5000) / 1024; // convert raw sensor value to
millivolts
 voltage = voltage - 500; // remove voltage offset
 celsius = voltage / 10; // convert millivolts to Celsius
 // act on temperature range
2 if (celsius < coldTemp)
 {
 digitalWrite(COLD, HIGH);
 delay(1000);
 digitalWrite(COLD, LOW);
 }
3 else if (celsius > coldTemp && celsius <= hotTemp)
 {

digitalWrite(NORMAL, HIGH);
delay(1000);
digitalWrite(NORMAL, LOW);

 }
 else
 {

// celsius is > hotTemp
digitalWrite(HOT, HIGH);
delay(1000);
digitalWrite(HOT, LOW);

 }
}

The sketch first reads the voltage from the TMP36 and converts it to
temperature in degrees Celsius at 1. Next, using the if-else functions at 2
and 3, the code compares the current temperature against the values for
hot and cold and turns on the appropriate LED. The delay(1000) statements
are used to prevent the lights from flashing on and off too quickly if the
temperature fluctuates rapidly between two ranges.

You can experiment with the thermometer by blowing cool air over it
to lower the temperature or by rubbing two fingers over the TMP36’s body to
generate heat.

Looking Ahead
And Chapter 4 comes to a close. You now have a lot more tools to work with,
including digital inputs and outputs, new types of variables, and various
mathematical functions. In the next chapter, you will have a lot more fun
with LEDs, learn to create your own functions, build a computer game and
electronic dice, and much more.

Arduino Workshop 2nd Edition (Sample Chapter) © 2021 by John Boxall

