
A Short Yarn
The King was in a foul mood. I mean a truly terrible, scream-
at-the-cat, throw-a-snowglobe-out-a-third-story-window kind
of mood. If you saw him rumbling toward you down the side-
walk, you would quickly change sides of the street. If he were
your dad, you would write letters to Santa year-round ask-
ing for a replacement dad. Really, it was capital-B Bad News
Bears for everyone.

The thing is, the King had lost his favorite possession that
morning, somewhere between eating his usual breakfast of
parched oats and his pre-late-afternoon vigorous stroll. He
had turned his palace upside-down (literally: the King had
a lot of money and a lot of servants), but to no avail. When
Scarlet and Ruben found him, he was weeping bitterly in his
study, sitting in an overstuffed armchair of solid gold.

Ruby Wizardry
©2015, Eric Weinstein

20   Chapter 2

“What did it look like?” Scarlet asked.
“What did what look like?” asked the King, gargling slightly

on his own salty tears as they flowed down his finely coiffed
moustache and into his mouth.

“The thing you lost,” said Ruben.
“Like a string!” said the King. “Because that’s what it was: a

string, with a knot on each end to secure my bits and trinkets.
This particular string had several beads on it that spelled out
‘Property of His Royal Highness, the King,’ like so:

'Property of His Royal Highness, the King'

“A string of letters,” said Ruben.
“More like a string of characters,” said the King. “Each letter

is really very unique. The K, for instance, is a crooked fellow.
And don’t even get me started on the p— ”

Ruby Wizardry
©2015, Eric Weinstein

The King and His String   21

But Ruben and Scarlet weren’t listening. They were already
searching high and low for the King’s missing string.

“Could your string have fallen into this Mysterious Pipe?”
Scarlet asked, gesturing toward a sputtering black metal pipe
with the words Mysterious Pipe written on it in white chalk.

“No,” said the King. “The Mysterious Pipe is deceptively
narrow at the top, and a string as long as mine could never
fit into it.”

“How long is your string?” Ruben
asked.

“I’m not sure,” said the King. “I sup-
pose we could count all the characters,
and then we’d know.” (Take it from me:
this would be super boring.)

“That would be boring,” said Scarlet.
“I think there’s a better way.” She walked
to a corner of the room, blew the dust off
a very old Computing Contraption, and
carefully typed the following at its little
green IRB prompt:

>> 'Property of His Royal Highness, the King'.length
=> 40

“Great coats!” said the King. “That’s right! I remember
now—my string is precisely 40 characters long. But how did
you do that?”

“Ruby has lots of great tricks like this,” said Scarlet. “Here’s
another.”

>> 'Property of His Royal Highness, the King'.reverse
=> "gniK eht ,ssenhgiH layoR siH fo ytreporP"

The King nodded. “Yes, that’s pretty much what my string
looks like in the mirror when I hang it up to dry after a refresh-
ing shower.”

In the meantime, Ruben had been counting the number of
characters in the King’s string using a bit of chalk he found

Ruby Wizardry
©2015, Eric Weinstein

22   Chapter 2

resting near the Mysterious Pipe. “Hang on a second,” he said.
“I’m counting 42 characters, including the quotation marks on
each end.”

The King snorted like an overweight wiener dog. “You don’t
count those!” he said. “Those are the little knots on each end
that keep the characters contained! You only count the charac-
ters, not the quotes.”

“And that’s exactly what Ruby does,” explained Scarlet. “But
you have to put quotes around your strings, or Ruby will think
you’re trying to use a variable.”

A Bit More About Variables
Believe you me, this confused the bejeepers out of the King.
Since he’s not nearly as bright a bulb as you are, I’ll let Ruben
and Scarlet spend ages explaining variables to him while I take
a moment to explain them to you.

A Ruby variable is just a name (without quotes!) that you can
give to a value (which is a piece of information, like the words
that make up the King’s string). One kind of value is a string;
another kind is a number, which you already saw when Ruby
told you that the length of the King’s string was 40.

You make a variable like this:

>> kings_string = 'A string fit for a king'
>> wiener_dog_weight = 22

The equal sign says to Ruby, “Hey! Take this value on the
right and save it with the name on the left.” This means that
later on, you can type the variable name and get the value
right back:

>> wiener_dog_weight
=> 22

Ruby Wizardry
©2015, Eric Weinstein

The King and His String   23

This could come in handy when you’re trying to keep track
of your wayward pet (let’s call him Smalls) and his fluctuating
weight:

>> smalls_weight = 22
=> 22
>> pounds_lost = 4
=> 4
>> smalls_new_weight = smalls_weight - pounds_lost
=> 18

Don’t worry about the 22 and the 4 being repeated back to
you; Ruby’s just trying to be helpful. Ruby always expects the
variable name to be on the left and the value to be on the right,
so make sure not to mix up the order!

You’ll also notice I used _ (called an underscore) instead of
a space in the variable names. Ruby doesn’t allow spaces in
names, so it’s a good practice to use _ instead.

It sounds like the King is still getting the hang of strings
(imagine my ear pressed to the heavy oak door of his study), so
I’ll clue you in on one more bit of Ruby magic. When you see code
like this:

>> 'Property of His Royal Highness, the King'.reverse

it means you’re calling the reverse method on the string. When
we say we’re “calling a method,” what we mean is we’re asking
Ruby to carry out a command: “Hey, Ruby! Reverse this string
for me, please!” I’ll go on and on about methods later, but for

Ruby Wizardry
©2015, Eric Weinstein

24   Chapter 2

now, you can think of them as commands that work on particu-
lar Ruby objects. For example, strings can be reversed, but num-
bers can’t:

>> "18".reverse
=> "81"
>> 18.reverse
=> NoMethodError: undefined method `reverse' for 18:Fixnum

NoMethodError!? That’s Ruby saying, “Whoa, whoa, whoa. I know
how to reverse a string, but I don’t know how to reverse a number!”
As you practice, you’ll get to know which methods go with which
kinds of Ruby objects. Author’s honor. (I was never a scout.)

Ruby Operators
“Let me see if I’ve got this right,” said the King. “Variables are
names for Ruby values, like strings and numbers. They don’t
have quotes around them and can’t have spaces in them. I can
use the equal sign to set a variable equal to a value, and then I
can use my variable’s name to get that value back.”

“That’s exactly right,” said Ruben.
“And when I see an object followed by a dot followed by a

command, that means I’m using that command on that object,”
said the King.

“Precisely,” said Scarlet.
“You mentioned that I can’t reverse a number,” said the King.

“That makes sense. But what can I do to a number?”

Ruby Wizardry
©2015, Eric Weinstein

The King and His String   25

“All sorts of things,” said Ruben. He nudged Scarlet aside
and typed at the Computing Contraption:

>> 100 + 17
=> 117
>> 50 - 20
=> 30
>> 10 * 10
=> 100
>> 40 / 20
=> 2

“Yes, yes,” said the King. “I can add them with +, subtract
them with -, multiply them with *, and divide them with /.”

“You’ve probably seen ÷ for division,” Ruben continued, “but
in code we can just use /. For example, 4 ÷ 2 will be 4 / 2.”

“But what can I do that’s interesting?” the King complained.
“What about this?” asked Ruben, as he typed some more.

>> 22.next
=> 23
>> 22.pred
=> 21

“Aha!” said the King. “Now you’re talking. next must tell
Ruby to calculate the next number, and pred asks Ruby for its
predecessor, which is the number that comes right before it.”

“Right as rain,” said Ruben.
“rain!” exclaimed the King, jumping up so forcefully that he

knocked his solid gold armchair right over. He ran out of the
room at what seemed an impossible speed for a man of his age,
and Ruben and Scarlet followed.

After running for several minutes through the horribly
jumbled contents of the palace (the King had turned it upside-
down, after all), Ruben and Scarlet caught up with the King in
his main bathroom. He was weeping again, but this time with
joy, and clutched in his hands was—his string!

“Rain reminded me that I took a refreshing shower after my
breakfast of parched oats!” blubbered the King. “And here it
was, hanging to dry, just as I’d left it. I can’t thank you enough!”

Ruby Wizardry
©2015, Eric Weinstein

26   Chapter 2

“Careful!” said Scarlet. “Your string’s still a bit wet; look at
the beads sliding around on it.”

The King sniffed loudly and inspected his string, and the
characters on it were, in fact, sliding every which way. The King
thought for a moment, then double-knotted each end of the string
to keep his characters from sliding off:

"Property of His Royal Highness, the King"

“Double quotes!” said Scarlet. “Can you use those with Ruby
strings?”

“Definitely,” said Ruben, “and single- and double-quoted
strings work almost exactly the same way.” He pried open the
King’s medicine cabinet to expose a slightly-less-old Computing
Contraption, then typed the following:

>> double_quotes = "A string's the thing"
=> "A string's the thing"
>> single_quotes = 'for a springly King'
=> "for a springly King"

“See?” said Ruben. “Even when we type single quotes, Ruby
repeats double quotes back to us. Both work!”

“Though I think I’ve heard tell,” said the King, “that you can
put more complicated bits and trinkets in a double-quoted string
than a single-quoted one.”

“That’s true,” said Ruben, “but we’ll get to that in good time.”
And he closed the King’s medicine cabinet with a gold-plated click.

Ruby Wizardry
©2015, Eric Weinstein

The King and His String   27

A Smallish Project for You
Now that you know a bit about strings, numbers, and variables,
let’s put together a small project: writing a program to reflect
and echo the King’s string. A reflection of something is just that
thing backward, so you’ve probably already guessed that we’ll
be reverse-ing some strings. On the other hand, an echo of some-
thing is just that thing repeated a few times, and we’ll soon see a
way to repeat a string very quickly and easily. You’ll weep with
joy at how simple and easy it is. You’ll tear out the pages of this
book and use them to dry your tears.

Note 	 For some of the longer code examples, we’ll write Ruby
scripts instead of using IRB! Whenever you see a filename
in italics above the code, like kings_string.rb for the next
example, that means you can write the code as a file with
the given name and run it using the ruby command. Peek
back at Chapter 1 if you don’t remember how to do this, or
ask the nearest adult to help you. You can download all
the scripts that appear in this book at http://nostarch.com/
rubywizardry/. (But remember, if you’re learning to pro-
gram, try typing things out yourself instead of just reading
and running the code!)

Go ahead and make a new file called kings_string.rb. Then,
open your file and type the following. We’re going to make a
short program that shows off the cool things you can do by
assigning variables and how Ruby can play with strings.

kings_string.rb

kings_string = "Property of His Royal Highness, the King"
string_reflection = kings_string.reverse
times_to_echo = 3
string_echo = kings_string * times_to_echo
puts kings_string
puts string_reflection
puts string_echo

The first four lines are assigning variables. You can tell by
the equal sign.

Ruby Wizardry
©2015, Eric Weinstein

28   Chapter 2

The second line in particular is pretty cool: it defines a vari-
able to hold the kings_string, but because the reverse method
makes the string backward, string_reflection will actually be
"gniK eht ,ssenhgiH layoR siH fo ytreporP"!

You might be wondering about the fourth line of code, too:

string_echo = kings_string * times_to_echo

And you’re right to wonder! The * is the Ruby way of saying
“multiply by.” This means 2 * 2 would equal 4, 13 * 379 would
equal 4,927, and so on. But wait! you might further wonder,
How can you multiply a string (which is just a bunch of letters)
by a number? The answer is that Ruby is quite the clever robot.
When it sees something like this:

>> "Hello!" * 3

it does this:

=> "Hello!Hello!Hello!"

So this is how we produce our echo: kings_string * times_
to_echo will become "Property of His Royal Highness, the King"
repeated three times!

puts is short for “put string,” as in “Put that string on the
table where I can see it.” As we’ve seen, it just prints text
on the screen. What do you think you’ll see when you run
your program? Save and close your file, and then run it with
ruby kings_string.rb. You should see the following output:

Property of His Royal Highness, the King
gniK eht ,ssenhgiH layoR siH fo ytreporP
Property of His Royal Highness, the KingProperty of His Royal
Highness, the KingProperty of His Royal Highness, the King

Well done!

Ruby Wizardry
©2015, Eric Weinstein

The King and His String   29

You Know This!
Let’s take a minute to review all the stuff you’ve packed into
your brain over the last few pages.

We talked about strings and how they’re just words or phrases
between quotes (single or double quotes are both fine). In fact,
since the bits that make up a string don’t have to be just letters—
they can include punctuation and even numbers, so long as the
whole string is between quotes—we say that strings are made
up of characters rather than letters. You can think of a string as
a literal string of characters, with each end knotted with either
single or double quotes. (You can pick single or double, but the
ends have to match: "string' or 'string" won’t work!)

You also saw that strings have some handy methods, like
length and reverse, which are just commands that Ruby knows
how to use with strings. You always write the object you want
to affect, followed by a dot, followed by the command, like this:

"gadzooks".length

We talked a bit about numbers, which are values in Ruby that
work exactly like you think real-life numbers would. Numbers
have their very own methods, which include next (for going to the
next number) and pred (for going to the previous number):

>> 4.next
=> 5

Last, we talked about variables and how you can use them
to give Ruby values special names, like 42 or "chunky bacon". You
always write the variable name (which can’t contain spaces) on
the left, followed by an equal sign, followed by the value:

>> bacon_consistency = "chunky"
=> "chunky"
>> number_of_bacon_strips = 3
=> 3

Ruby Wizardry
©2015, Eric Weinstein

30   Chapter 2

And you can get that value back just by typing its name:

>> bacon_consistency
=> "chunky"

Given what you know, how could you go further with that
smallish project we tackled earlier? For instance, what if we
changed the number of times_to_echo with next or pred? What
would happen if we added a space on the end of the sentence
we stored in kings_string? (Hint: It might make our output look
nicer. But don’t put the space directly on the variable name
kings_string—remember, Ruby variable names can’t have
spaces!) What happens if we try to add a few different strings
together with + instead of multiplying them by a number? And
what in breakfast’s good name is chunky bacon, anyway?

Ruby Wizardry
©2015, Eric Weinstein

	9781593275662 42
	9781593275662 43
	9781593275662 44
	9781593275662 45
	9781593275662 46
	9781593275662 47
	9781593275662 48
	9781593275662 49
	9781593275662 50
	9781593275662 51
	9781593275662 52
	9781593275662 53

